关于高等数学基础知识点归纳

关于高等数学基础知识点归纳
关于高等数学基础知识点归纳

关于高等数学基础知识

点归纳

标准化管理部编码-[99968T-6889628-J68568-1689N]

第一讲函数,极限,连续性

1、集合的概念

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给

定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集,记作N+。

⑶、全体整数组成的集合叫做整数集,记作Z。

⑷、全体有理数组成的集合叫做有理数集,记作Q。

⑸、全体实数组成的集合叫做实数集,记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合

⑵、描述法:用集合所有元素的共同特征来表示集合

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就

说A、B 有包含关系,称集合A 为集合B 的子集,记作A B。

⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中

的元素完全一样,因此集合A 与集合B 相等,记作A=B。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合

B 的真子集,记作A。

⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:

①、任何一个集合是它本身的子集。

②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算

⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A

∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)

即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A

∩B。

即A∩B={x|x∈A,且x∈B}。

⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。

通常记作U。

⑷、补集:对于一个集合A,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U

的补集。简称为集合A 的补集,记作CA。

即CA={x|x∈U,且x 不属于A}。

⑸、运算公式:交换律:A∪B=B∪A A∩B=B∩A

结合律:(A∪B)∪C=A∪(B∪C)

(A∩B)∩C=A∩(B∩C)

分配律:(A∪B)∩C=(A∩C)∪(B∩C)

(A∩B)∪C=(A∪C)∩(B∪C)

对偶律:C(A∪B)=CA∩CB

C (A ∩B)=CA ∪CB 集合中元素的个数

⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 ⑵、用card 来表示有限集中元素的个数。例如A ={a,b,c },则card(A)=3。 ⑶、一般地,对任意两个集合A 、B ,有 card(A)+card(B)=card(A ∪B)+card(A ∩B)

2、常量与变量

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化, 我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其 称 之为变量。

⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于 某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间 [a ,+∞):表示不小于a 的实数的全体,也可记为:a ≤x <+∞; (-∞,b):表示小于b 的实数的全体,也可记为:-∞<x <b ; (-∞,+∞):表示全体实数,也可记为:-∞<x <+∞

注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x 的全体称为点α的δ邻域,点 α称为此邻域的中心,δ称为此邻域的半径。

3、函数

⑴、函数的定义:如果当变量x 在其变化范围内任意取定一个数值时,量y 按照一定的法则f 总有确 定的数值与它对应,则称y 是x 的函数。变量x 的变化范围叫做这个函数的定义域。通 常x 叫做自变量,y 叫做函数值(或因变量),变量y 的变化范围叫做这个函数的值域。 注:为了表明y 是x 的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y 与x 之 间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确 定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只 讨论单值函数。 ⑵、函数相等

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应 关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 3、函数的简单性态

⑴、函数的有界性:如果对属于某一区间I 的所有x 值总有│f(x)│≤M 成立,其中M 是一个与x 无关

的常数,那么我们就称f(x)在区间I 有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数。

函数的有界性,单调性应与相关点集I 联系起来,离开了点集I 。这些概念是没有任何意义的。 ⑵、函数的单调性:如果函数在定义域区间(a,b)内随着x 增大而增大,即:对于(a,b)内任意两点x 及x ,当x <x 时,有)()(21x f x f ,则称函数)(x f 在区间(a,b)内是单调增加的。

如果函数

)(x f 在定义域区间(a,b)内随着x 增大而减小,即:对于(a,b)内任意两点x

及x ,当x <x 时,有)()(21x f x f ?,则称函数)(x f 在区间(a,b)内是单调减小的。

⑶、函数的奇偶性 如果函数

)(x f 对于定义域内的任意x 都满足)()(x f x f =-,则)(x f 叫做偶函数;如果函数对于定义域

内的任意x 都满足

)()(x f x f -=-,则)(x f 叫做奇函数。

注:偶函数的图形关于y 轴对称,奇函数的图形关于原点对称。 奇偶函数的定义域必关于原点对称。 ⑷、函数的周期性 设

)(x f 的定义域为I 。若存在0?T ,对任意的I x ∈,都使得))(()(I T x x f T x f ∈+=+,则称函数

)(x f 为周期函数,称T 为其周期。

注:我们说的周期函数的周期是指最小正周期。

周期函数的定义域必是无限的点集,但也不能说是全体实数,如x y tan =的定义域为(-∞,+∞)。且≠x k

π±π/2(k=0,1,2....)

A.奇函数+奇函数=奇函数

B.偶函数+偶函数=偶函数

C.奇函数·偶函数=奇函数

D.奇函数·奇函数=偶函数 E 偶函数·偶函数=偶函数 若

)(x f 以T 为最小正周期,则)(x f ω以

)0(?ωω

T

为最小正周期

4、反函数

⑴、反函数的定义:若由函数

)(x f y =得到)(y x ?=,则称)(y x ?=是)(x f y =的反函数,)(x f y =为

直接函数,反函数也可记为)(1x f y -=

注:

x x f f x f f ==--)]([)]([11

⑵、反函数的存在定理:若在(a ,b)上严格增(减),其值域为R ,则它的反函数必然在R 上确定,且严格增(减). 例题:

2x y =,其定义域为(-∞,+∞),值域为[0,+∞).对于y 取定的非负值,可求得y x ±= .若我们不加

条件,由y 的值就不能唯一确定x 的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反 函数。如果我们加上条件,要求x ≥0,则对y ≥0、x= 就是2x y =在要求x ≥0 时的反函数。即是:函数在此要求

下严格增(减).

⑶、反函数的性质:在同一坐标平面内, 与的图形是关于直线y=x 对称的。 例题:函数

x y 2=与函数x y 2log =互为反函数,则它们的图形在同一直角坐标系中是关于直线

x y =对称的。如右图所示:

5、复合函数

复合函数的定义:若y 是u 的函数:

)(u f y = ,而u 又是x 的函数:)(x u ?= ,且)(x ?的函数

值的全部或部分在)(u f 的定义域内,那么,y 通过u 的联系也是x 的函数,我们称后一 个

函数是由函数)(u f y =及)(x u ?=复合而成的函数,简称复合函数,记作)]([u f y ?=,

其中u 叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。

例题:函数与函数是不能复合成一个函数的因为对于的定义域(-∞,+∞)中的任何x 值所对应的u 值(都大 于或等于2),使

u y arcsin =都没有定义。

6、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三 角函数及反三角函数。下面我们用表格来把它们总结一下:

⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一 个解析式表出的函数称为初等函数.

注:初等函数必须能用一个式子表示,不能用一个式子表示的函数不能称为初等函数,故分段函数一般不能 叫初等函数

7、数列的极限

⑴、数列的极限:设{n x }为一数列,如果存在常熟a ,对于任意给定的正数ε(不论其多么小),总存在正整数

N ,使得当N n ?时,不等式ε?-a x n 都成立,那么就称常数a 是数列{n x }的极限,或者称数列收敛于a ,记为

a x n n =∞

→lim 或)(∞→→n a x n

注:此定义中的正数ε只有任意给定,不等式才能表达出与a 无限接近的意思。且定义中的正整数N 与任意 给定的正数ε是有关的,它是随着ε的给定而选定的。在利用数列极限定义证明某个数列是否存在极限 时,重要的是对于任意给定的正数ε,只要能够指出定义中所说的这种正整数N 确实存在,但没有必 要去求最小的N 。如果知道a x n -小于某个量(这个量是n 的一个函数),那么当这

个量小于ε时,

ε?-a x n 当然也成立若令这个量小于ε来定出N 比较方便的话,就可以采用这种方法。

⑵、数列的有界性:对于数列,若存在着正数M ,使得一切都满足不等式│ │≤M ,则称数 列是有界的,若正数M 不存在,则可说数列是无界的。 ⑶、收敛数列的几个重要性质:

A.极限的唯一性:如果数列{n x }收敛,那么它的极限唯一。(根据极限的定义用反证法证明)

B.有界性:如果数列{n x }收敛,那么它一定有界。

注:数列收敛是数列有界的充分非必要条件。即数列收敛,一定有界,但数列有界不一定收敛。 例:数列1,-1,1,-1,…,(-1),… 是有界的,但它是发散的。 C.保号性:如果a x n n =∞

→lim

且0?a (或0?a )那么存在正整数0?N ,当N n ?时,都有0?n x (或

0?n x )

推论:如果数列{n x }从某项起有0≥n x (或0≤n x ),且a x n n =∞

→lim ,那么0≥a (或

0≤a )

注:即使从某项起有0?n x (或0?n x ),且 a x n n =∞

→lim ,那么a 不一定一定为0?a ,也有可能

0=a

D.收敛数列与子数列的关系:如果数列{n x }收敛于a ,那么它的任一子数列也收敛,且极限是a 。 如果数列{n x }有俩个子数列收敛于不同的极限,那么数列{n x }是发 散的。 ⑷.数列存在的充分必要条件:a x n n =∞

→lim

?a x x n n n n ==+∞

→∞

→122lim lim

?其任一子数列的极限都为a

8、函数的极限

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取n →∞内的正整数, 若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x 下面我们结合着数列的极限来学习一下函数极限的概念!

⑴、函数的极限(分两种情况) a):自变量趋向无穷大时函数的极限 定义:设函数)(x f 当x

大于某一正数时有定义,若存在常数

A ,对于任意给定的正数ε(不论其多么小),总

存在着正数

X ,使得当x 满足不等式X x ?时,对应的函数值)(x f 都满足不等式

ε?-A x f )(,那么常数A 就叫做函数)(x f 当∞→x 时的极限,记作A x f x =∞

→)(lim 或A x f →)(

(当∞→x

注:)(-∞→+∞→x x 时

)(x f 的极限定义只需要将以上定义中的X x ?改为X

x ?(或X x ?-)即可。

下面我们用表格把函数的极限与数列的极限对比一下: b):自变量趋向有限值时函数的极限 定义:设函数

)(x f 在点0x 的某一去心邻域内有定义,若存在常数A ,对于任意给定的正数ε(不论其多么

小),总存在着正数δ,使得当x 满足不等式δ?-?0

0x x 时,对应的函数值)(x f 都满足不等式

ε?-A x f )(,那么常数A 就叫做函数)(x f 当0x x →时的极限,记作A x f x

x =→)(lim 0

或A x f →)( (当0x x

→)

注:在定义中只要求在去心邻域内不等式成立,不要求在0x 点此不等式成立,意味着0x x →时)(x f 以A 为极限

)(x f 在0x 点是否有定义即使有定义函数值等于什么无关。

自己参考数列极限引生函数的左右极限概念。 注: 0x x

→ 时函数极限存在的充要条件:

有些时候,我们要用此极限的定义来证明函数的极限为A ,其证明方法是怎样的呢 a):先任取ε>0; b):写出不等式

ε?-A x f )(;

c):解不等式能否得出去心邻域δ?-?0

0x x ,若能;

d): 则对于任给的ε>0 ,总能找出δ,当δ?-?00x x 时, ε?-A x f )(成立,因此A x f x

x =→)(lim 0

⑵、函数的极限的性质

参考数列极限的重要性质:唯一性,局部有界性,局部保号性 ⑶、函数极限与数列极限的关系 如果极限

)(lim 0

x f x x →存在,{n x }为函数)(x f 的定义域内任一收敛于0x 的数列,且满足:0x x n ≠,那么相应的

函数值数列{

)(x f }必收敛,且)(lim )(lim 0

x f x f x x n x n →→=。

9、无穷小与无穷大 无穷大量:设有函数)(x f y =

,在x=x 的去心邻域内有定义,对于任意给定的正数N (一个任意大

的数),总可找到正数δ,当δ?-?00x x 时,N x f ?)( 成立,则称函数当0x x →时为无穷大量。

记为:

∞=→)(lim 0

x f x x (表示为无穷大量,实际它是没有极限的)

同样我们可以给出当x →∞时, 无穷大的定义:设有函数)(x f y = ,当x 充分大时有定义,对于任意给定的

正数N (一个任意大的数),总可以找到正数M ,当M x ?时, N x f ?)(成立,则称函数当x →∞时是无穷大量,

记为:∞=∞

→)(lim

x f x

无穷小量:以0为极限的变量叫无穷小量。(定义参照无穷大)

注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0 可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0. 无穷小的运算性质

A.有限个无穷小的和也是无穷小

B.有限个无穷小的乘积也是无穷小

C.有界函数与无穷小的乘积是无穷小

D.常数与无穷小的乘积是无穷小 极限与无穷小的关系:α+=?→A x f A x f )()(,其中α是在与A x f →)(时自变量的同一变化趋势下

的无穷小量。

无穷小的比较:通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定义:设α,β都是时的无穷小量,且β在x 的去心邻域内不为零, a):如果0lim

=→β

α

x x ,则称α是β的高阶无穷小或β是α的低阶无穷小,记作)(βαo =; b):如果0lim

≠=→c x x β

α

,则称α和β是同阶无穷小; c):如果1lim

=→β

α

x x ,则称α和β是等价无穷小,记作:α∽β(α与β等价);

d):如果0,0lim

?≠=→k c k x x β

α

,则称α是关于β的k 阶无穷小 注:a.无穷小比较中的α和β必须是在自变量相同变化趋势下的无穷小量.

b.无穷小的比较只是定性的,即只有阶的高低之别,没有数量上的关系 C.不是任何无穷小量都能比较其阶的高低 如:当∞→x

时,2

sin x x =

α,2

1x =

β都是无穷小量,但x x x sin lim lim

→∞→=βα

不存在,不能比较其阶的高低

等价无穷小的性质

A.设α∽'

α,β∽'β且'

'

lim α

β存在,则.''

lim lim α

βαβ= 注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题,但是做无穷小变换时必须分子或分母整体替换,不能分子或分母分项替换。 B.β与α是等价无穷小的充分必要条件为:)(ααβo +=

C.常用的等价无穷小有:当0→x 时 1)

1(-+α

βx ∽x αβ )1(log x a +∽

x a

ln 1 x cos 1-∽221

x 1-x e ∽x

x sin ∽x tan ∽x arcsin ∽x ∽)1ln(x +∽x arctan 1-x α∽αln x {0?α且1≠α}

无穷大与无穷小的关系 在自变量的同一变化过程中,如果

)(x f 是无穷大,则

)

(1

x f 为无穷下;如果)(x f 是无穷小且0)(≠x f ,则)

(1

x f 为无穷大。 10、函数极限的运算法则

⑴、函数极限的运算规则 若已知0x x

→(或∞→x )时,B x g A x f →→)(,)(

则 B A x g x f

x x ±=±→))()((lim 0

B

A

x g x f x x =→)()(lim

,(0≠B ) 推论:如果)(lim x f 存在,而c 为常数,则)(lim )](lim[x f c x cf = 如果)(lim

x f 存在,而n 为正整数,则n n x f x f )]([lim )](lim[=

注:数列极限也有同样的运算性质。 复合函数的极限的运算法则 设函数

)]([x g f y =是由函数)(x g u =与函数)(u f y =复合而成,)]([x g f 在点0x 的某去心领域内有定义,

A u f u x g u u x x ==→→)(lim ,)(lim 0

0,且存在00?δ,当),(00δx U x

∈时,有0)(u x g ≠,则

⑵极限存在准则 准则一:如果数列{n x },{

n y },{n z }满足下列条件

A.从某项起,即存在N n ∈,当0n n ?时,有n n n z x y ≤≤

那么数列{n x }的极限存在,且a x n n =∞

→lim

注:此准则也就是夹逼准则. 准则二:单调有界的函数必有极限. 注:有极限的函数不一定单调有界

两个准则都可以推广到函数的极限,但要注意使用的条件。 ⑶、两个重要的极限

1sin lim 0=→x x x e x x x =+→1

0)1(lim 或e x

x x =+∞→)11(lim

注:我们要记住这两个重要的极限,在今后的解题中会经常用到它们。 例题:求x x x

)21(lim -

→ 解答:令2x

t

-

=,则t x 2-=,因为∞→?∞→t x 则222])1

1[(lim )

11(lim )21(lim --∞→-∞→∞→=+=+=-e t

t x t t t t x x 注:解此类型的题时,一定要注意代换后的变量的趋势,像∞→x 时,若用t 代换

x

1

,则0→t 。 ⑷.关于极限的几个重要结论

A.m

n m n b a m

n b x b x b a x a x a m

m m n n n

n ?=?∞=+???+++???++--∞→ 0{lim 00

1101

10 (其中0,000≠≠b a )

11、函数的一重要性质——连续性

在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的 反映,就是函数的连续性

在定义函数的连续性之前我们先来学习一个概念——增量 设变量x 从它的一个初值1x 变到终值2x ,终值与初值的差12

x x -就叫做变量x 的增量,记为:x ?即:

12x x x -=?增量x ? 可正可负.

我们再来看一个例子:函数)(x f y =在点0x 的邻域内有定义,当自变量x 在领域内从0x 变到x x ?+0

时,函数

y 相应地从)(0x f 变到)(0x x f ?+,其对应的增量为:)()(00x f x x f y -?+=?

这个关系式的几何解释如下图:

现在我们可对连续性的概念这样描述:如果当x ?趋向于零时,函数y 对应的增量y ?也趋向于零,即:

0lim 0

=?→?y x ,那么就称函数)(x f y =在点0x 处连续。

函数连续性的定义: 设函数

)(x f y =在点0x 的某个邻域内有定义,如果有)()(lim 00

x f x f x x =→称函数)(x f y =在点

0x 处连续,且称0x 为函数的的连续点.

下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数在区间(a,b] 内有定义,如果左极限

)(lim 0

x f b x -→存在且等于)(b f ,即:)()(lim 0

b f x f b x =-→,那么我们就称函数

)(x f 在点b 左连续.设函数)(x f 在区间[a,b)内有定义,如果右极限)(lim 0

x f a x +→存在且等于)(a f ,即:

)()(lim 0

a f x f a x =+→,那末我们就称函数在点a 右连续.

一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a 点右连续,b 点左连续,则在闭区间[a , b]连续,如果在整个定义域内连续,则称为连续函数。

注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续. 注:连续函数图形是一条连续而不间断的曲线。

通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现 什么情形呢接着我们就来学习这个问题:函数的间断点 函数的间断点

定义:我们把不满足函数连续性的点称之为间断点. 它包括三种情形: a):

)(x f 在0x 无定义;

b): 在0x x →时无极限;

c): 在0x x

→时有极限但不等于)(0x f ;

下面我们通过例题来学习一下间断点的类型: 例1: 正切函数

x y tan =在2

π

=

x 处没有定义,所以点2

π

=

x 是函数

x y tan =的间断点,因

∞=→

x x tan lim 2

π

,我们就称2

π

=

x 为函数

x y tan =的无穷间断点;

例2:函数x

y 1

sin

=在点0=x 处没有定义;故当0→x 时,函数值在-1 与+1 之间变动无限多次,我 们就称点0=x

叫做函数的振荡间断点;

例3:函数

,10,00

,1{)(?+=?-=x x x x x x f 当0→x 时,左极限1)(lim 0-=-→x f x ,右极限1)(lim 0=+

→x f x ,从

这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点0=x 是不存在极限。我们还可以发现

在点0=x

时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几

何图形表示出来如下:

例4:函数1

1

2--=x x y 在点1=x 没有定义,所以函数在点1=x 为不连续。但这里

2)1(lim 11lim 1

21=+=--→→x x x x x ,如果补充定义:令1=x 时2=y ,则所给函数在1=x 成为连续。所以1=x 称为该函数的可去间断点。 间断点的分类

我们通常把间断点分成两类:如果0x 是函数

)(x f 的间断点,且其左、右极限都存在,我们把0x 称为

函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.第一类间断点中,左、右极限相等者称为可去间断点,不相等者称为跳跃间断点,无穷间断点和振荡间断点显然是第二类间断点。 连续函数的性质及初等函数的连续性 连续函数的性质

a):连续函数的和,差,积,商(分母的函数值不等于0)是连续的 b):复合函数的连续性:若函数)(x u

?=在0x 点连续,函数)(u f y =在)(00x u ?=点连续,则复合函数

)]([x f y ?=在0x 点连续;

c):反函数的连续性:若函数)(x f y =在区间I

上单调且连续,那么其反函数

)(1x f y -=在相应的区间上表现

相同的单调性且连续; 初等函数的连续性

通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的(基本初等函数包括幂函数,指数函数,对数函数,三角函数,反三角函数);一切初等函数(基本初等函数经过有限次四则运算及有限次复合后所构成的函数类)在其定义区间内也都是连续的. 注:初等函数在其定义域内不一定连续,如

1cos )(-=x x f 的定义域为),2,1,0(2???±±==k k x π,它在定

义域内的任一点都不连续。初等函数只有其定义域构成区间,则其在定义区间内连续。

闭区间上连续函数的性质 A.定理1(最值定理):若函数)(x f 在[]b a ,上连续,则它在[]b a ,上必有最大值和最小值。

B.定理2(零点定理):若函数

)(x f 在[]b a ,上连续,且)(a f 与)(b f 异号,那么在开区间()b a ,内至少有一点

ξ,使0)(=ξf

C.定理3(介值定理):若函数

)(x f 在[]b a ,上连续,且在这区间的端点取不同的函数值A a f =)(,

B b f =)(,那么,对于A 与B 之间的任意一个数

C ,在开区间()b a ,内至少有一点ξ,使得C f =)(ξ

闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几 条重要的性质,下面我们来学习一下:

推论: 在闭区间连续的函数必取得介于最大值M 与最小值m 之间的任何值。

第二讲 导数与微分

1、导数的概念

导数的定义:设函数

)(x f y =在点0x 的某一邻域内有定义,当自变量x 在0x 处有增量x ?(点x x ?+0仍

在该邻域内)时,相应地函数取得增量)()(00x f x x f y -?+=?,若y ? 与x ?之比当0→?x 时极限存在,

则称函数

)(x f y =在点0x 处可导,并称这个极限值为函数)(x f y =在点0x 处的导数。记为:)(0'x f ,即:

x

x f x x f x y x f x x ?-?+=??=→?→?)()(lim lim

)(00000' 还可记为:0|'

x x y =,0|x x dx dy =或0|)(x x dx x df = 注:因变量增量与自变量增量之比x y

??是因变量y 在以0x 和x x ?+0为端点的区间上的平均变化率。而导数

)(0'x f 则是因变量y 在点0x 处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。

函数

)(x f 在点0x 处存在导数简称函数在点x 处可导,否则不可导。若函数)(x f 在区间),(b a 内每一点都可

导,就称函数

)(x f 在区间),(b a 内可导。这时函数)(x f y =对于区间),(b a 内的每一个确定的x 值,都对应着

一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数

)(x f y =的导函数。记作

'y ,)('x f ,

dx dy 或dx

x df )(

左、右导数:前面我们有了左、右极限的概念,导数是差商

极限,因此我们可以给出左、右导数的概念。若极

限x

y x ??-

→?0

lim 存在,我们就称它为函数)(x f y =在0x x =处的左导数。若极限x y x ??+→?0lim 存在,我们就称它为函

)(x f y =在0x x =处的右导数。

注:如果函数)(x f 在开区间),(b a 内可导。且)('a f +及)('b f -都存在,就说)(x f 在闭区间],[b a 上可导。

注:函数

)(x f y =在0x 处的左右导数存在且相等是函数)(x f y =在0x 处的可导的充分必要条件。

注:函数在0x 点可导,不能保证函数在0x 点的邻域内可导,如

Q

C x Q

x x x f u ∈∈=,0,{

)(2在0=x 处可导且0)0('=f ,但0≠x 时它不可导。

导数的几何意义:函数

)(x f y =在点0x 处的导数)(0'

x f 在几何上表示曲线)(x f y =在点M ))

(,(00x f x 处的切线的斜率,即αtan )(0'=x f ,其中α

是切线的倾角。

注:函数)(x f y =在某点处的导数为无穷大,即导数不存在,不代表在该点没有切线,可能在该点有垂直于x

轴的切线 注:曲线

)(x f y =在点),(00y x M 处的切线方程为:))((00'0x x x f y y -=-

法线方程为:

)()

(1

00'0x x x f y y --

=-

函数可导性与连续性的关系:如果函数)(x f y =在点x 处可导,则函数在该点必连续,但是一个函数在某点连

续却不一定在该点可导。 例:函数

3)(x x f y ==在区间),(+∞-∞内连续,但在0=x 处不可导。

函数的和、差、积、商求导法则 如果函数)(x u u

=及)(x v v =都在点x 具有导数。那么它们的和、差、积、商(除分母为零的点外)都在点x 具

有导数。且

(1).);()()]()(['''

x v x u x v x u ±=±

(2).);()()()()]

()(['''

x v x u x v x u x v x u +=

(3).);

0)(()()()()()(])()([2'''≠-=x v x v x v x u x v x u x v x u

注:函数的和、差、积、商、复合函数可导,不能保证它们各自可导。 例:

Q C x Q x x f u ∈∈=,1,0{

)(,Q

C x Q x x g u ∈∈=,0,1{)(时,0)]([,0)()(,1)()(==?=+x g f x g x f x g x f 都可导,但

)(x f 及)(x g 在任一点都不可导。

复合函数的求导法则

在学习此法则之前我们先来看一个例子!

例:求'

)2(sin x 解:由于x x cos )(sin

'=,故x x 2cos )2(sin '=

这个解答是错误的,正确的解答应该如下:

发生错误的原因是'

)2(sin x 是对自变量x 求导,而不是对x 2求导。 下面我们给出复合函数的求导法则 复合函数的求导规则 如果)(x g u =在点x 处可导,而)(u f y =在点)(x g u =可导,则复合函数)]([x g f y =在点x 可导,且其导

数为

)()(''x g u f dx dy ?=或dx

du du dy dx dy ?=(其中u 为中间变量) 反函数求导法则 如果函数)(y f x

=在区间y I 内单调、可导且0)('≠y f ,则它的反函数)(1x f y -=在区间

}),(|{y x I y y f x x I ∈==内也可导,且)(1)]([''1y f x f =

-或

dy

dx

dx dy 1

=

上述结论可简单地说成:反函数的导数等于直接函数导数的倒数。 例:求

x y arcsin =的导数。

解:此函数的反函数为y x sin =,故y x cos '=则:

例:求

x y arctan =的导数

解:此函数的反函数为y x tan =,故y x 2'sec =则:2

22''11tan 11sec 11x y y x y +=

+===

高阶导数

我们知道,在物理学上变速直线运动的速度v(t)是位置函数s(t)对时间t 的导数,即:dt

ds v =

, 而加速度a 又是速度v 对时间t 的变化率,即速度v 对时间t 的导数:)(dt

ds

dt d dt dv a ==

,或'')(s a =。 这种导数的导数

)(dt

ds

dt d 叫做s 对t 的二阶导数。下面我们给出它的数学定义: 定义:函数

)(x f y =的导数)(''x f y =仍然是x 的函数.我们把)(''x f y =的导数叫做函数)(x f y =

的二阶导数,记作"

y 或

2

2dx y

d ,即:'

'"

)(y y = 或)(2

2dx

dy

dx d dx y d =.相应地,把)(x f y =的导数)(''x f y =叫做

)(x f y =的一阶导数。类似地,二阶导数的导数,叫做三阶导数,三阶导数的导数,叫做四阶导数,???,一

般地)1(-n 导数的导数叫做n 阶导数。

二阶及二阶以上的导数统称高阶导数。由此可见,求高阶导数就是多次接连地求导,所以,在求高阶 导数时可运用前面所学的求导方法。 例:求对数函数

)1ln(x y +=的n 阶导数。

解:

4

)

4(3"'2"')1(321,)1(21,)1(1,11x y x y x y x y +??-=+?=+-=+=

一般地,可得n

n n x n y )1()!

1()1(1

)(+--=-

莱布尼茨(Leibniz)公式:k

k n n

k k n n

v u C v u -=∑=+0

)(

隐函数及其求导法则

我们知道用解析法表示函数,可以有不同的形式.若函数y 可以用含自变量x 的算式表示,像

x y sin =,

x y 31+= 等,这样的函数叫显函数.前面我们所遇到的函数大多都是显函数.

一般地,如果方程0),(=y x F 中,令x 在某一区间内任取一值时,相应地总有满足此方程的y 值存在,

则我们就说方程0),(=y x F 在该区间上确定了x 的隐函数y .把一个隐函数化成显函数的形式,叫做隐函数的显

化。

注:有些隐函数并不是很容易化为显函数的 隐函数的求导

若已知0),(=y x F ,求

dx

dy 时,一般按下列步骤进行求解:

a):若方程0),(=y x F ,能化为)(x f y =的形式,则用前面我们所学的方法进行求导;

b):若方程0),(=y x F ,不能化为)(x f y =的形式,则是方程两边对x 进行求导,并把y 看成x 的函

)(x f y =,用复合函数求导法则进行。

例:已知122

=-+xy y x

,求

dx

dy

解:此方程不易显化,故运用隐函数求导法。两边对x 进行求导,

x

y x y y dx dy xy y yy x dx d xy y x dx d --==?=+-+?==-+220)(220)1()('''22 注:我们对隐函数两边对x 进行求导时,一定要把变量y 看成x 的函数,然后对其利用复合函数求导法则进行求

导。

有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较直观的方法呢下面我们再来学习一种求导的方法:对数求导法 对数求导法

对数求导的法则:根据隐函数求导的方法,对某一函数先取函数的自然对数,然后在求导。注:此方法特别适用于幂函数的求导问题。 例:已知

)0(sin ?=x x y x ,求'y

解:此题若对其直接求导比较麻烦,我们可以先对其两边取自然对数,然后再把它看成隐函数进行求导,就比较简单些。如下

先取两边对数:x x y ln sin ln

=,把其看成隐函数,再两边求导

x

x x x y y sin ln cos 1'+= 因为

x x y sin =,所以)ln (cos )sin ln (cos sin 'x

six

x x x x x x x y y x +=+

= 参数方程求导法 一般地,若由参数方程)

()

({

t y t x ψ?==确定y 与x 间的函数关系

则根据复合函数的求导法则与反函数的求导法则有:

)()(1''t t dt

dx dt dy dx dt dt dy dx dy ?ψ==?= 上式也可写成dt

dx

dt

dy dx dy =

如果)(t x

?=,)(t y ψ=还是二阶可导的,那么又可以得到函数的二阶导数公式

即)

()

()()()(3

'"''"22t t t t t dx y d ??ψ?ψ-== 例:计算由摆线的参数方程)

cos 1()sin ({t a y t t a x -=-=所确定的函数)(x y y =的二阶导数

解:),2(2

cos cos 1sin )cos 1(sin Z n n t t t t t a t a dt

dx dt dy

dx dy ∈≠=-=-=π

函数的微分

学习函数的微分之前,我们先来分析一个具体问题:一块正方形金属薄片受温度变化的影响时,其边 长由x 变到了x+△x ,则此薄片的面积改变了多少 解答:设此薄片的边长为x ,面积为

A ,则A 是x 的函数:2

x A =,薄片受温度变化的影响面积的改变量。可以

看成是当自变量x 从0x 取的增量x ?时,函数

A 相应的增量A ?,即:

202

020)(2)(x x x x x x A ?+?=-?+=?。从上式我们可以看出,A ?分成两部分,第一部分x x ?02是x ?的

线性函数,即下图中红色部分;第二部分2

)(x ?即图中的黑色部分, 当0→?x 时,它是x ?的高阶无穷小,表示为:)(x o ?

由此我们可以发现,如果边长变化的很小时,面积的改变量可以近似的用地一部分来代替。下面我们 给出微分的数学定义:

函数微分的定义:设函数在某区间内有定义,0x 及x x ?+0在这区间内,若函数的增量可表示为

)(x o x A y ?+?=?,其中A 是不依赖于x ?的常数,)(x o ? 是x ?的高阶无穷小,则称函数)(x f y =

在点0x 可微的。

x A ?叫做函数)(x f y =在点0x 相应于自变量增量x ?的微分,记作dy ,即:x A dy ?=。

通过上面的学习我们知道:微分dy 是自变量改变量x ?的线性函数,dy 与y ? 的差)(x o ?是关于x ? 的高阶无穷小量,我们把dy 称作y ?的线性主部。于是我们又得出:当0→?x 时,dy y

≈?.导数的记号为:

)('x f dx

dy

=,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把x ?看成dx ,即:定义自变量的增量等于自变量的微分) 由此我们得出:函数)(x f 在点0x 可微的充分必要条件是函数)(x f 在点0x 可导,且当)(x f 在点0x 可微时,其

微分一定是x x f dy

?=)(0'。

微分形式不变性 设

)(),(x u u f y ?==,则复合函数)]([x f y ?=的微分为:dx x u f dx y dy x

)()('''

?==, 由于du dx x =)('

?

,故我们可以把复合函数的微分写成du u f dy )('=

由此可见,无论u 是自变量还是中间变量,)(u f y =的微分dy 总可以用)('u f 与du 的乘积来表示,我们把这

一性质称为微分形式不变性 微分的几何意义 可微函数)(x f y =在点0x 点的微分是当自变量x 取得增量x ?时,曲线)(x f y =在点0x 的切线的纵坐标的增

量。

基本初等函数的微分公式(自己归纳总结)

常数和基本初等函数的导数公式(自己归纳总结)

复合函数的微分法则就是前面我们学到的微分形式不变性,在此不再详述。

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(), ()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=,

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

高数下册知识点

高等数学(下)知识点 高等数学下册知识点 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = , ),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 向量的模、方向角、投影: 1) 向量的模: 2 22z y x r ++= ; 2) 两 点 间 的 距 离 公式: 212212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角 γβα,, 4) 方 向 余 弦 : r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα

高等数学(下)知识点 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 (二) 数量积,向量积 1、 数量积:θ cos b a b a =? 1)2a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?= 大小:θsin b a ,方向:c b a ,,符合右手规 则 1)0 =?a a 2)b a //?0 =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S 2、 旋转曲面:

高等数学基础知识点归纳

第一讲函数,极限,连续性 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能 构成集合,因为它的元素不是确定的。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。 ⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。 ⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A 。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。 ②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。 ⑷、补集:对于一个集合A,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a-b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离: ||PQ 邻域: 设0P 是n R 的一个点, 是某一正数, 与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP 空心邻域: 0P 的 邻域去掉中心点0P 就成为0P 的 空心邻域,记为 0(,)U P o =0{0||}P PP 。 内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域 ),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E R , 如果E 的补集 n E R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D d D PP 为D 的直径。

高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 30 2),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y m t x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??= ==??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

高等数学基本知识大全

高等数学

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

相关文档
最新文档