清华大学2011秋线性代数小测验试题

清华大学2011秋线性代数小测验试题
清华大学2011秋线性代数小测验试题

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

《线性代数A》教学大纲

《线性代数A》教学大纲 课程中文名称:线性代数A 课程性质: 必修 课程英文名称:Linear Algebra A 总学时:48学时,其中课堂教学48学时 先修课程:初等数学 面向对象:全校理工科学生(包括财经类等文科专业) 开课系(室):数学科学系 一.课程性质、目的和要求 线性代数是理工科及财经管理类本科生必需掌握的一门基础课,通过本课程的学习使学生掌握行列式的计算、矩阵理论、向量组和向量空间基本概念,用矩阵理论求解线性方程组、及用线性方程组解的结构理论讨论矩阵的对角化并进一步研究二次型,使学生掌握本课程的基本理论和方法,培养和提高逻辑思维和分析问题解决问题的能力,并为学习相关课程与进一步扩大知识面奠定必要的、必需的基础。 二、课程内容及学时分配 1. 行列式(6学时) 教学要求:了解行列式的定义、掌握行列式的基本性质。会应用行列式性质和行列式按行(列)展开定理进行行列式计算。 重点:行列式性质 难点:行列式性质和行列式按行(列)展开定理的应用 2.矩阵(12学时) 教学要求:理解矩阵的概念、掌握单位矩阵、对角矩阵与对称矩阵的性质。掌握矩阵的线性运算、乘法、方阵行列式、转置的定义及其运算规律。理解逆矩阵的概念及其性质,熟练掌握逆矩阵的求法。熟练掌握矩阵的初等变换及其应用。理解矩阵秩的概念并掌握其求法。了解满秩矩阵的定义及其性质。了解分块矩阵及其运算。 重点:矩阵的线性运算、矩阵的乘法、逆矩阵的求法、矩阵的初等变换 难点:矩阵的秩,矩阵的分块 3.向量组和向量空间(10学时) 教学要求:理解n维向量的概念及其运算。理解向量组的线性相关、线性无关与线性表示等概念,了解并会用向量组线性相关、线性无关的有关性质及判别法。了解向量组的极大线性无关组和秩的概念,并会求向量组的秩。了解n维向量空间及其子空间、基、维数与坐标等概念。了解向量的内积、长度与正交等概念,会用施米特正交化方法把向量组正交规范化。了解规范正交基、正交矩阵的概念、以及它们的性质。 重点:n维向量的概念、线性相关、线性无关、极大线性无关组、向量组秩的概念难点:线性无关的相关证明、向量组秩的概念、向量空间 4. 线性方程组(8学时)

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

线性代数与概率统计及答案

线性代数部分 第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 5. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 6.设行列式 n a a a a =22 2112 11 , m a a a a =21 2311 13 ,则行列式 23 2221131211--a a a a a a 等于() A. m n - B.)(-n m + C. n m + D.n m - 二、填空题 1. 行列式=0 100111010100111.

2.行列式010...0002... 0......... 00 0 (10) 0 0 n n = -. 3.如果M a a a a a a a a a D ==333231 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 4.行列式= --+---+---1 1 1 1 111111111111x x x x . 5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为 . 6.齐次线性方程组??? ??=+-=+=++0 0202321 2 1321x x x kx x x x kx 仅有零解的充要条件是. 7.若齐次线性方程组?? ? ? ?=+--=+=++0 230520232132321kx x x x x x x x 有非零解,则k =. 三、计算题 2.y x y x x y x y y x y x +++; 3.解方程 00 11 01110111 0=x x x x ; 6. 111...1311...1112... 1 ... ...... 1 1 1 ...(1)b b n b ----

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

清华大学线性代数考试样题

第1页/共2页

二·计算题(每题 18 分,合计 54 分) 9.设 3 阶实对称矩阵A 有 3 个特征值3, 3,?3,已知属于特征值? 3的特征向量为 T )1,2,1(1?=α,求矩阵A 及. 1?A 10.设321,,ααα是3维线性空间V 的一个基,σ是V 上的线性变换,已知 321122)(αααασ++?=,321222)(αααασ??=,321322)(αααασ??=, (1) 求线性变换σ在基321,,ααα下的矩阵; (2) 设由基321,,ααα到基321,,βββ的过渡矩阵为,向量???? ???????=200010021P γ在基 321,,ααα下的坐标是,求()T X 2,1,0?=)(γσ在基321,,βββ下的坐标. 11.设元()齐次线性方程组 n 4≥n ???????=+++?=+=+=+++++000041 31 214321n n ax ax bx ax bx ax bx bx bx bx bx ax L L 其中.试讨论取何值时,方程组只有零解;取何值时,方程组有非零解?在有非零解时,写出方程组的基础解系. 0≠b n b a ,,三·证明题(第 12 题 8 分,第 13 题 6 分,共 14 分) 12.设A 是矩阵,n m ×β是m 维非零列向量,已知β是非齐次线性方程组的b Ax =一个解,r ααα,,,21L 是导出组0=Ax 的基础解系,试证明 (1)r αβαβαββ+++,,,,21L 线性无关; (2)的解集合的极大线性无关组含有b Ax =1+r 个向量. 13.设A 为任意阶实反对称矩阵(即n A A T ?=),试证明2A I ?是正定矩阵. 第2页/共2页

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

清华版线性代数课件线性代数§

例2计算 n 阶行列式副对角线以上的元素全为0 其中表示元素为任意数解由定义有递推关系递推公式由以上结论容易得到四n 阶行列式的性质行列式 DT 称为行列式 D 的转置行列式记性质1 行列式的行与列互换其值不变即 DT D 性质1说明行列式对行成立的性质都适用于列下面仅对行讨论由性质 1 和前面关于下三角行列式的结果马上可以得到上三角行列式主对角线以下的元素全为0 的值等于主对角元的积即性质2 行列式按任一行展开其值相等即其中是 D 中去掉第 i 行第 j 列的全部元素后剩下的元素按原来的顺序排成的 n-1 阶行列式称为的余子式称为的代数余子式即性质3 线性性质 1行列式的某一行列中所有的元素都乘以同一数k 等于用数 k 乘此行列式 2 若行列式的某一行列的元素都是两数之和那么该行列式可以写成两个行列式的和例如 1 若行列式的某一行列的元素都是 n 个数之和那么该行列式可以写成 n 个行列式的和例如说明 2 若行列式的某 m 行列的元素都是两例如说明个数之和那么该行列式可以写成个行列式的和由性质3马上得到推论1 某行元素全为零的行列式其值为零性质4 行列式中两行对应元素全相等其值为零对行列式的阶数用数学归纳法证明证明当D为二阶行列式时结论显然成立假设当 D 为 n-1 阶行列式时结论成立设行列式 D 的第 i 行和第 j 行元素对应相等则当D为 n 阶行列式时将D 按第k 行展开得其中为 k-1 阶行列式且有两行元素对应相等故由归纳假设知推论2 行列式中两行对应元素成比例其值为零由性质 3 和性质 4 马上得到性质5 在行列式中把某行各元素分别乘以数 k再加

到另一行的对应元素上行列式的值不变对行列式做倍加行变换其值不变即在行列式的计算中性质35以及下面的性质6经常用到为书写方便我们先引入几个记号用表示第 i 行表示第 i 列交换行列式的第 i j 两行列记作把行列式的第 j 行列的各元素乘以同一数 k 然后加到第 i 行列对应的元素上去记作行列式的第 i 行列乘以数k 记作注意和含义不同性质6 反对称性质行列式的两行对换行列式的值反号证明课程简介线性代数是代数学的一个分支主要处理线性关系问题线性关系是指数学对象之间的关系是以一次形式来表达的最简单的线性问题就是解线性方程组行列式和矩阵为处理线性问题提供了有力的工具也推动了线性代数的发展向量概念的引入形成了向量空间的概念而线性问题都可以用向量空间的观点加以讨论因此向量空间及其线性变换以及与此相联系的矩阵理论构成了线性代数的中心内容它的特点是研究的变量数量较多关系复杂方法上既有严谨的逻辑推证又有巧妙的归纳综合也有繁琐和技巧性很强的数字计算在学习中需要特别加强这些方面的训练第一章行列式第二章矩阵第三章线性方程组第四章向量空间与线性变换基础基本内容用向量的观点讨论基本问题并介绍向量空间的有关内容第五章特征值与特征向量第六章二次型矩阵理论中心内容参考及辅导书目 1《线性代数学习指南》居余马林翠琴编著清华大学出版社 2《线性代数》第四版同济大学应用数学系编高等教育出版社一二阶行列式的引入用消元法解二元一次线性方程组§11 n阶行列式的定义与性质 1 2 1 a22 a11a22x1 a12a22x2 b1a22 2 a12 a12a21x1 a12a22x2 b2a12 两式相减消去x2 得a11a22 – a12a21 x1 b1a22 – b2a12 当 a11a22 – a12a21 0时方程

(完整版)线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

线性代数期末考试题及答案

(2011 至 2012学年 第__2_学期) 课程名称:线性代数A 考试时间:110分钟 课程代码:7100059试卷总分:100分 考试形式:闭卷 学生自带普通计算器: 否 一、单项选择题(每小题3分,共15分) 1、A 和B 均为n 阶矩阵,且222()2A B A AB B -=-+,则必有( ) A A E =; B B E =; C A B =. D AB BA =。 2、设A 是方阵,如有矩阵关系式AB=AC ,则必有( ) A. A =0B. B ≠C 时A=0C. A ≠0时B=CD. |A|≠0时B=C 3、设A 是s n ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的列向量组线性无关 C.A 的行向量组线性相关 D.A 的列向量组线性相关 4、若1x 是方程=AX B 的解,2x 是方程=AX O 的解,则()是方程=AX B 的解(c R ∈) A.12x cx + B. 12cx cx + C.12cx cx - D.12cx x + 5 、设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1 阶子式全为0 C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为0 二、填空题(每小题3分,共15分) 1、已知向量T )4,2,3,1(=α与T k k )2,3,1,(--=β正交,则=k _. 2、1 1101-?? ??? =. 3、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为. 4、如果21,X X 都是方程O X A n n =?的解,且21X X ≠,则=?n n A ; 5、设向量组123100130121T T T (,,),(,,),(,,)==-=-ααα线性 (填相关或无关)

相关文档
最新文档