A2O生物池计算书(1500t)

A2O生物池计算书(1500t)
A2O生物池计算书(1500t)

X X设计院

计算书

工程名称: XXX污水处理工程——A2/O生物池工程代号: 2013-M011-03

专业: 工艺

计算:

校对:

审核:

2016年5月20日

生物池工艺计算(一)

1、设计进出水水质

表1进水水质

表2 出水水质

2、基础资料:

近期规模:0.30×104m3/d,远期:0.60×104m3/d。

考虑XXX污水处理厂进水规模,生化池近期设一组两格,

单格流量:0.15×104m3/d ,K

=1.84

z

设计水温15℃。

XXX污水处理厂出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B标准。

3、基本参数设定:

混合液污泥浓度:MLSS=3500mg/L。溶解氧浓度C=2.0mg/L。

4、A 2/O 生物池理论计算 4.1 好氧池计算 4.1.1 硝化菌比生长率

0.098(15

15)

0.098(15

15)

8

0.470.470.4480.48

a

N a

N e e d K N m ??=创

=创=++

K N ——硝化作用中氮的半速率常数, 15℃时取0.4 N a ——反应池中氨氮浓度,mg/L 4.1.2 设计污泥龄

112.5 5.5850.448

d m

F F d q q m

=???

θd ——反应池设计泥龄值(d )

F ——安全系数,取1.5~3.0,本设计取2.5 4.1.3 污泥净产率系数

(1515)(1515)0.9()

10.90.080.6 1.0722200.85(0.60.6)

11200.08 1.0725.585

1.303

h h t i h

i

h t d

b Y f X

Y f Y S b f y q --鬃?=?+?+?创?=?+?+?=

Y ——污泥产率系数;

ψ——反应池进水中悬浮固体中不可水解/ 降解的悬浮固体的比例,通过测定求得,无测定条件时,取0.6;

X i ——反应池进水中悬浮固体浓度(mg/L );

f ——污泥产率修正系数,通过实验确定,无实验条件时取0.8~0.9,本设计取0.85

b h ——异氧菌内源衰减系数(d -1),取0.08; Y h ——异氧菌产率系数(kgSS/kgBOD 5),取0.6; f t ——温度修正系数,取1.072(t-15);

S i ,S e ——反应池进水、出水五日生化需氧量(BOD 5)浓度(mg/L)。

4.1.4 好氧池容积

30()3000(12020) 5.585 1.303

62410001000 3.5

i e d Q S S Y V m X q ?鬃?创=

==状

X ——反应池混合液浓度(kgMLSS/m 3) 4.2 厌氧池计算 4.2.1 厌氧池容积

311 1.53000187.502424

a a T Q V m ×′=

== 4.3.2 排出系统的微生物量

(1515)(1515)

()0.9()

110003000(12020)

0.90.080.6 1.0720.85(0.6)

110000.08 1.0725.585

110.48/i e h h t

m h h t d

Q S S b Y f W f Y b f kg d

q ---鬃?=

鬃-+??创?=

创-+?=

4.3.3 缺氧池容积

23

0.001()0.120.0013000(3520)0.12110.840.030 3.5

301.9ki te m

a de Q N N W V k X

m

鬃--?=

×创--?=

′=

N ki ——反应池进水总凯氏氮浓度(mg/L),本设计按进水总氮计算; N te ——反应池出水总氮浓度(mg/L);

k de ——脱氮速率(kgNO 3-N/kgMLSS.d ),取0.03~0.06。 5、池容尺寸设计:

根据以上池容预计算数据确定生物池容尺寸见图。 5.1 厌氧池池容设计

厌氧区池容设计为: 4.0×4.0×6.0×2 V 1=192m 3

名义停留时间:T 1=192×24÷3000=1.54h

5.2 缺氧区池容设计

缺氧区池容设计为: 7.70×4.0×6.0×2 V 2=369.6m 3。

名义停留时间:T 2=369.6×24÷3000=2.96h 5.3好氧区池容设计

好氧区池容设计为: 12.0×6.0×6.0×2 V 3=864m 3

名义停留时间:T 3= 864×24÷3000=6.91h 5.4 A 2/O 生物池总设计容积

V 总= V 1+ V 2+ V 3 =192+369.6+864=1425.6m 3 总水力停留时间:HRT=V 总

/Q=1425.6×24÷3000=11.40h

5.5 A 2/O 生物池污泥负荷率

05()3000100

0.0601/.10001000 3.51425.6

e S Q S S L kgBOD KgMlss d X V ?′=

==创创

容积负荷率:Fr=Ls×X=0.0601×3.5=0.210kgBOD 5/m 3·d 6、污泥回流量计算

根据物料平衡

进水:(TSS )Q+X R Q R =(Q+Q R )X 式中:Q R ——回流污泥量(m 3/d )。 X R ——回流污泥浓度,根据公式:

6

10R X r SVI

==10g/L

SVI 取100,r 取1,X R 取为10000mg/L ,其他符号同前。

220×3000+10000×Q R =(3000+Q R )×3500 Q R =1513m 3/d

回流比R 为50.43%,设计最大污泥回流比按R=100%考虑, 则设计最大回流污泥量为3000 m 3/d 。

7.混合液回流量可按下式计算

Q Ri =31000de r te ke

V k X

Q N N -- (CECS 149:2003 P8 公式4.0.6)

式中

Q Ri ——混合液回流量(m 3/d);

Q r ——回流污泥量(m 3/d), 按最大R=100%污泥回流 N te ——反应池出水总氮浓度(mg /L ,设计取20mg /L)。 N ke ——反应池出水总凯氏氮浓度(mg /L ,取8mg /L)。 按t=150

C 时计算,

当污泥回流R=100%时,Q r =5000 m 3/d Q Ri =

10008640.030 3.5

3000208

创?--=4560m 3/d

混合液回流比R=200%考虑,混合液总回流量为6000 m 3/d ,单格混合液回流量为3000 m 3/d 。

8.曝气系统计算(两池之和) 8.1好氧池设计需氧量

好氧池的需氧量可根据去除的BOD 5量和氮量等计算确定。实际供氧量应考虑进水水量和进水水质的波动以及反应池混合液温度等因素的影响。好氧池的需氧量可按下式计算:

(AOR )O 2=0.001aQ(S i —S e )+b[0.001Q(N ki -N ke )- 0.12m W ] -c m W

-0.62b[0.001Q(N ti -N te ) -0.12m W ] (CECS 149:2003 P8 公式4.0.8) 式中(AOR )O 2——好氧池的需氧量(kgO 2/d), N ti ——反应池进水总氮浓度(mg/L ,35mg/L);

N ki ——反应池进水总凯氏氮浓度(mg/L ,35mg/L ,此处采用总氮数据计算,35mg/L);

N ke ——反应池出水总凯氏氮浓度(mg/L ,8mg/L); N te ——反应池出水总氮浓度(mg/L ,取20mg/L); a ——碳的氧当量,当含碳物质以BOD 5计时,取1.47; b ——常数,氧化每公斤氨氮所需氧量(kg O 2/kgN),取4.57; c ——常数,细菌细胞的氧当量,取1.42。

(AOR)O 2=0.001×1.47×3000×(120-20)+4.57[0.001×3000(35-8)-0.12×11

0.48]-1.42×110.48-0.62×4.57[0.001×3000×(35-20)-0.12×110.48]=

503.89(kgO 2/d) 8.2标准需氧量计算:

采用鼓风曝气,微孔曝气管,曝气管敷设于池底,距池底0.20m ,淹没深度5.8m ,将实际需氧量AOR 换算成标准状态下的需氧量SOR 。

(20)

(20)

()() 1.024

S T sm T L AOR C SOR a C C br -′=

-?

C S(20)——水温20℃时清水中溶解氧的饱和度,mg/L;

C sm(T)——设计水温T ℃时好氧池中平均溶解氧的饱和度,mg/L; T ——设计水温;

C L ——好氧池中溶解氧浓度,2mg/L ;

a ——污水传氧速率与清水传氧速率之比,取0.82; ρ——压力修正系数,取1.0;

β——污水中饱和溶解氧与清水中饱和溶解氧之比,取0.95。 查表得清水表面处饱和溶解氧值: t=5℃ Csm=12.8mg/L ; t=20℃ Csm=9.17mg/L ;t=30℃ Csm=7.6mg/L

代入 当t=5℃,标准需氧量为:

(520)

503.899.17

783.87/32.66/0.82(0.95 1.012.82) 1.024SOR kg d kg h -′=

==创??

代入 当t=30℃,标准需氧量为;

(3020)

503.899.17

835.56/34.82/0.82(0.95 1.07.62) 1.024SOR kg d kg h -′=

==创??

8.3 标准供空气体积G s

3334.82

497.43/8.29/min 0.280.280.25

s A SOR G m h m E =

===创

考虑1.15的供气变化系数,标态供气量为: 8.29′1.15=9.53m 3/min 9.曝气器数量计算

选用微孔管式曝气器,Ф70x1000,设计通气量4-8m 3 /h ;

1.根据曝气群供气量计算,单个曝气器供气量按6m 3/h 计算,曝气器需要数

量为:n≥:498/6=83个。

2.实际曝气群设计个数为88个,满足计算要求。 10.混合液回流泵计算

混合液回流比按200%计算, Q=3000m 3/d=125m 3/h (单格)。 选用潜水泵, Q=150m 3 /h,H=2.0m ,N=4kW 。 11.污泥量计算

()3000(12020)

0.851.303332.27/10001000

i e Q S S W fY x x kg d --=

==

实际污泥龄:θd 3.51425.6

15.02332.27

×==天

普通快滤池设计计算书

普通快滤池设计计算书 1. 设计数据 1.1设计规模近期360000/m d 1.2滤速8/v m h = 1.3冲洗强度215/s m q L =? 1.4冲洗时间6min 1.5水厂自用水量5% 2.设计计算 2.1滤池面积及尺寸 设计水量31.056000063000m /Q d =?= 滤池工作时间24h ,冲洗周期12h 滤池实际工作时间24240.123.812 T h =-? =(式中只考虑反冲洗停用时间,不考虑排放初滤水) 滤池面积263000330.88823.8Q F m vT ===? 采用滤池数8N =,布置成对称双行排列 每个滤池面积2330.8841.368F f m N = == 采用滤池尺寸1:2=B L 左右 采用尺寸9L m =, 4.6B m = 校核强制滤速889.14/181 Nv v m h N ?===--强 2.2滤池高度 支承层高度10.45H m = 滤料层高度20.7H m = 砂面上水深32H m = 超高(干弦)40.3H m = 滤池总高12340.450.720.3 3.45H H H H H m =+++=+++=

2.3配水系统(每只滤池) 2.3.1干管 干管流量· 41.3615620.4/g q f g L s ==?= 采用管径800g d mm =(干管埋入池底,顶部设滤头或开孔布置) 干管始端流速 1.23/g v m s = 2.3.2支管 支管中心间距0.25z a m = 每池支管数922720.25z z L n a =? =?=根(每侧36根) 每根支管长 4.60.80.3 1.752 z l m --== 每根支管进口流量620.48.62/72 g z z q q L s n = == 采用管径80z d mm = 支管始端流速 1.72/z v m s = 2.3.3孔口布置 支管孔口总面积与滤池面积比(开孔比)0.25%α= 孔口总面积20.25%41.360.1034k F f m α=?=?= 孔口流速0.62046/0.1034 k v m s == 孔口直径9k d mm = 每个孔口面积225263.6 6.36104k k f d mm m π-= ?==? 孔口总数250.103416266.3610 k k k F N m f -==≈?个 每根支管孔口数16262372k k z N n n = =≈个 支管孔口布置设两排,与垂线成045夹角向下交错排列 每根支管长 4.60.80.3 1.752 z l m --== 每排孔口中心距 1.750.150.50.523z k k l a m n = ==??

V型滤池计算说明书

V型滤池计算说明 书

9.7 过滤设备 (V型滤池) 9.7.1 设计要点: ①滤速可达7—20m/h,一般为12.5~15.0m/h。 ②采用单层加厚均粒滤料,粒径一般为0.95~1.35mm,允许夸大到 0.70~2.00mm,不均匀系数1.2~1.6或1.8之间。 ③对于滤速在7—20m/h之间的滤池,其滤层厚度在0.95—1.5之间选用,对于更高的滤速还可相应增加。 ④底部采用带长柄滤头底板的排水系统,不设砾石承托层。 ⑤反冲洗一般采用气冲,气水同时反冲和水冲三个过程,大大节省反冲洗水量和电耗,气冲强度为13—16 L/s·2m,清7水冲洗强度为 3.6— 4.1 L/s·2m,表面扫洗用原水,一般为1.4—2.2 L/s·2m。 ⑥整个滤料层在深度方向的粒径分布基本均匀,在反冲洗过程中滤料层不膨胀,不发生水力分级现象,保证深层截污,滤层含污能力高。 ⑦滤层以上的水深一般大于1.2m,反冲洗时水位下降到排水槽顶,水深只有0.5m 。 ⑧V型进水槽和排水槽分设于滤池的两侧,池子可沿着长的方向发展,布水均匀V 型滤池是恒水位过滤,池内的超声波水位自动控制可调节出水清水阀,阀门可根据池内水位的高、低,自动调节开启程度,以保证池内的水位恒定。V 型滤池所选用的滤料的铺装厚度较大(约 1.40m),粒径也较粗(0.95—1.35mm)的石英砂均质滤料。当反冲洗滤层时,滤料呈微膨胀状态,不易跑砂。V

型滤池的另一特点是单池面积较大,过滤周期长,水质好,节省反冲洗水量。单池面积普遍设计为70—902m,甚至可达1002m以上。由于滤料层较厚,载污量大,滤后水的出水浊度普遍小于0.5NTU。 V 型滤池的冲洗一般采用的工艺为气洗→气水同时冲洗→水冲洗+表面扫洗。 9.7.2 设计参数确定 设计水量 Q=8×1043m/d;滤速V=10m/h。 滤池冲洗确定(见下表) 总冲洗时间12min=0.2h 冲洗周期T=48h 反冲横扫强度1.8L/(s·2m)【一般为 1.4~2.0 L/(s·2m)】 9.7.3 设计计算 (1)池体设计 ①滤池工作时间t’(读者注:平均每天的过滤时间) t’=24-t×24/T=24-0.2×24/48=24-0.1=23.9(h)(式中未考虑排放滤水) ②滤池面积F 滤池总面积F=Q/V·t’=80000/10×23.9=3352m ③滤池的分格

生物滤池除臭系统

生物滤池除臭技术 1、相关技术背景 国内外现有无组织废气主要处理技术有:热氧化法、物理化学法、低温等离子法、植物提取液法、生物过滤法等。 热氧化法:利用高温下的氧化作用,将污染物分解成CO2、H2O和其它元素对应的氧化物的方法。此方法对几乎所有污染物都能有效地进行处理。但产生二次污染是此方法的缺点。 物理化学法:将无组织废气收集、输送到装有一系列化学处理剂的容器中,使污染成分进行中和反应、氧化反应、物理吸附等过程,消除污染物。此方法具有处理范围广、操作简单等优点,但有二次污染物产生,运行费用偏高。 低温等离子法:利用螺旋微波低温冷光技术产生的高能离子束和电子束形成的低温等离子体,以每秒300万次至3000万次的速度反复轰击无组织废气分子,去激活、电离、裂解废气中的各种成份,从而发生氧化等一系列复杂的化学反应,再经过多级净化,将污染物转化为洁净的物质释放至大自然。工艺简洁、操作简单、运行费用低、适应范围广、自动化程度高是此技术的优点。但不适用于易燃易爆场所,并且电耗较大,运行成本较高。 生物过滤法:是将人工筛选的特种微生物菌群固定于生物载体上,当无组织废气经过生物表面时被特定微生物捕获并消化掉,从而使污染物得到去除。此法运行费用低,易于自动化控制,不产生二次污染。 2、生物滤池除臭技术说明 生物除臭工艺的原理是利用微生物的生物降解作用对臭气物质进行吸收和降解从而达到除臭的目的。臭气通过湿润、多孔和充满活性微生物的滤层,利用微生物细胞对恶臭物质的吸附、吸收和降解功能,微生物的细胞个体小、表面积大、吸附性强、代谢类型多样的特点,将恶臭物质吸附后分解成CO2、H2O、H2SO4、HNO3等简单无机物。生物滤池法除臭效率高,适合大气量低浓度的废气处理。 微生物成长、繁殖需要适宜的湿度、pH值、氧气含量、温度和营养成分等。 该方法的优点是,处理产物环保、无害,效率高,对各个浓度的臭气处理性能优

底盘的设计计算书

底盘设计计算书 目录 1.计算目的 2.轴载质量分配及质心位置计算 3.动力性计算 4.稳定性计算 5.经济性计算 6.通过性计算 7.结束语 1.计算目的 本设计计算书是对陕汽牌大客车专用底盘的静态参数,动力性,经济性,稳定性及通过性的定量分析。旨在从理论上得到整车的性能参数,以便评价该大客车专用底盘的先进性,并为整车设计方案的确定提供参考依据。 2.轴载质量分配及质心位置计算 在此处仅对大客车专用底盘进行详细准确的分析计算,而对整车改装部分(车身)只做粗略估算。(车身质量按340KG/M计算或参考同等级车估算)。计算整车的最大总质量,前轴轴载质量,后桥轴载质量及质心位置可按以下公式计算。 M=ΣMi M1=ΣM1iM1=Σ(1-Xi/L) M2=ΣM2iM2=Σ(Xi/L) hg=Σ(Mi·hi/M) A=M2·L/M

式中: M——整车最大总质量 M1——前轴轴载质量 M2——后桥轴载质量 Mi——各总成质量 Xi——各总成质心距前轴距离 Hi——各总成质心距地面距离 M1i——各总成分配到前轴的质量 M2i——各总成分配到后桥的质量 hg——整车质心距地面距离 L——汽车轴距 A——整车质心距前轴距离 2.1各总成质量及满载时的质心位置 序号名称质量质心距前轴M1I质心距地面HI。MI距离XI距离HI KGMMKG。MMKG。MM1前轴前轮前悬挂 2后桥后轮后悬挂 3发动机离合器 4变速箱 5传动轴 6散热器附件 7膨胀箱支架

8空滤器气管支架 9消音器气管支架 10油箱支架 11电瓶支架 12方向盘xx 13转向机支架 14转向拉杆 15换档杆操纵盒 16贮气筒支架 17操纵踏板支架 18前后拖钩 19全车管路附件 20车架 底盘 21车身 空车 22乘客 23行李 24司机 满载 2.2水平静止时轴载质量分配

生物滤池除臭装置操作使用说明书

生物滤池除臭装置使用说明书
生物滤池除臭装置 使用说明书
****************有限公司 -1-

生物滤池除臭装置使用说明书
*************** 有 限 公 司
目录
一. 适用范围和主要特点 ................................................................... - 4 1.适用范围 ..................................................................................... - 4 2.主要特点 ..................................................................................... - 4 -
二. 主要技术参数 ............................................................................... - 4 三. 生物滤池除臭的工作原理 ........................................................... - 5 四. 各处理单元的功能与控制 ........................................................... - 6 -
1.臭气收集系统 ........................................................................... - 6 2.臭气预处理 ............................................................................... - 7 -
****************有限公司 -2-

给水厂混凝沉淀过滤消毒设计计算书

第二章:总体设计 2.1水厂规模的确定 水厂的设计生产量Q 包括以下两项:供应用户的出厂量Q 1和水厂的自用水量Q 2,一般Q 2只占Q 1的5-10%,所以水厂设计生产量可按下式计算: Q=KQ 1 (式中K=1.05-1.10 ) 水厂设计计算水量Q 1=50000m 3/d 即 Q=KQ 1=50000 1.0552500?= m 3/d=2187.5 m 3/h=0.61 m 3/s 根据水厂设计水量2万m 3/d 以下为小型水厂,2万~10万m 3/d 为中型水厂,10万m 3/d 以上为大型水厂的标准可知水厂为中型水厂。 2.2净水工艺流程的确定 玉川集聚区是以工业项目为主,从目前情况看用户对水质的要求不高,完全可以靠供给原水满足企业需求。但从长远来看,一方面不同的企业对水质的要求不同,尤其是夏季的洪水季节,当源水水质发生较大的变化时,可能会因为水质的变化影响企业的生产。 所以水厂以地表水作为水源,且水量充沛水质较好,则主要以取出水中的悬浮物 和杀灭致病细菌为目标,经过比较后采用地面水的常规处理工艺系统。工艺流程如图1所示。 原水 混 合 絮凝沉淀池 滤 池 混凝剂消毒剂清水池 二级泵房 用户 图1 水处理工艺流程 2.3处理构筑物及设备型式选择 (1) 药剂溶解池 设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条件。

溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。 由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。 投药设备采用计量泵投加的方式。采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。 (2)混合设备 根据快速混合的原理,实际生产中设计开发了各种各样的混合设施,主要可以分为以下四类:水力混合、水泵混合、管式混合和机械混合。 在本次设计采用管式混合器对药剂与水进行混合。管式混合是利用原水泵后到絮凝反映设施之间的这一段压水管使药剂和原水混合的一种混合设施。主要原理是在管道中增加一些各种结构的能改变水流水力条件的附件,从而产生不同的效果。 在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。管式混合器采用管式静态混合器。 (3)反应池 反应作用在于使凝聚微粒通过絮凝形成具有良好沉淀性能的大的絮凝体。 目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有栅条(网格)絮凝、折板絮凝和波纹板絮凝。这三种形式的絮凝池在大、中型水厂中均有使用,都具有絮凝效果好、水头损失小、絮凝时间短、投资小、便于管理等优点,并且都能达到良好的絮凝条件,从工程造价来说,栅条造价为折板的1/2,为波纹板的1/3,因此采用栅条(网格)絮凝。 (4)沉淀池 原水经投药、混合与絮凝后,水中悬浮杂质已形成粗大的絮凝体,要在沉淀

普通快滤池设计计算(稻谷文书)

普通快滤池设计计算 1.已知条件 设计水量Qn=20000m 3/d ≈833m 3/h.滤料采用石英砂,滤速v=6m/h,10d =0.6,80K =1.3,过滤周期Tn=24h ,冲洗总历时t=30min=0.5h;有效冲洗历时0t =6min=0.1h 。 2.设计计算 (1)冲洗强度q q[L/(s*m 3)]可按下列经验公式计算。 632 .0632.145.1)1()35.0(2.43v e e dm q ++= 式中 dm ——滤料平均粒径,mm ; e ——滤层最大膨胀率,采用e=40%; v ——水的运动黏度,v=1.142 mm /s (平均水温为15℃)。 与10d 对应的滤料不均匀系数80K =1.3,所以 dm=0.980K 10d =0.9x1.3x0.6=0.702(mm) 632 .0632.145.114 .1)4.01()35.04.0(702.02.43?++??=q =11[L/(s*m 3)] (2)计算水量Q 水厂自用水量主要为滤池冲洗用水,自用水系数α为 v qt t Tn Tn 0 6.3)(- -= α= 6 1 .0116.3)5.024(24 ??- -=1.05 Q=αQn=1.05X883=875(m 3/d) (3)滤池面积F 滤池总面积F=Q/v=875/8=109㎡ 滤池个数N=3个,成单排布置。 单池面积f=F/N=109/3=36.33(㎡),设计采用40㎡,每池平面尺寸采用B×L=5.2m×7.8m (约40㎡),池的长宽比为7.8/5.2=1.5/1. (4)单池冲洗流量冲q 冲q =fq=40×11=440(L/s)=0.44(m 3/s) (5)冲洗排水槽 ①断面尺寸。两槽中心距a 采用2.0m,排水槽个数 1n =L/a=7.8/2.0=3.9≈4个

(完整word版)生物除臭工艺设计

污水厂生物除臭设计 近年来,生物脱臭技术(尤其是生物过滤除臭技术)以其工艺相对成熟、基建费用低、操作维护简单、污染物净化彻底且处理效果好等特点而在实际应用中逐渐推广[1-3],已成功应用于治理污水厂、公共区域的恶臭以及对VOC和有毒气体排放物的去除,已成为城市污水处理中臭气处理的主流工艺[4]。 1污水厂臭气成分及来源 污水处理厂的臭气成分分为三类:①含硫化合物,如H2S、硫醇、硫醚类;②含氮化合物,如氨、胺类、酰胺、吲哚等;③含氧有机物,如醇、酚、醛、酮、有机酸等。其中H2S、NH3,是臭味的主要组成成分[5]。经德国工程师协会调查,各处理工段产生的臭气与气味值。 在采用二级生物处理工艺的污水处理厂中,一般包括粗格栅、提升泵站、细格栅及沉砂池、生物反应池、二沉池、消毒池等构筑物,其产生的污泥一般在厂区内贮存、浓缩、脱水,有的还要进行消化稳定处理。 从表1可以看出,污水前处理部分(格栅井、提升泵房集水池及沉砂池)和生物反应池中的厌氧段和污泥处理部分(贮泥池、脱水问等)是除臭的重点。 2生物过滤除臭原理 Ottengraf等提出了生物膜理论,并建立了模型来描述低浓度有机废气的净化过程。孙石等较早地在国内介绍了Ottengraf模型,并认为恶臭气体在生物滤池中的吸附净化一般要经历以下几个步骤[6]:①废气中的有机污染物首先同水接触并溶解(或混合)于水中,即由气膜扩散进入液膜;②溶解(或混合)于液膜中的有机污染物在浓度差的推动下进一步扩散到生物膜内,进而被其中的微生物捕获并吸收;③进入微生物体内的有机污染物在其自身的代谢过程中作为能源和营养物质被分解,最终转化为无害的化合物。 在净化过程中,总吸收速率主要取决于气、液两相中的有机污染物扩散速率(气膜扩散、液膜扩散)和生化反应速率。 3生物过滤除臭设计 以某污水处理厂一期生化池加盖除臭工程为例,介绍污水处理厂恶臭气体的生物过滤工艺设计。该污水处理厂一期设计规模为20×104m3/d,采用改良A2/O工艺。 3.1恶臭物质浓度及排放标准 ①主要恶臭物质浓度设计值 H2S浓度为0.75~1.50 mg/m3,NH3浓度为0.50~2.83 mg/m。,臭气浓度(气味值)为250~4 000。H2S原始设计浓度为1.50 mg/m3,NH3原始设计浓度为2.83 mg/m3。 ②除臭排放标准 由于该污水厂位于城市商业、交通、居民混合区,属环境空气质量功能二类区,根据《环境空气质量标准》(GB 3095—1996)的规定,其环境空气质量执行二级标准。 臭气处理后排放根据《城镇污水处理厂污染物排放标准》(GB 18918—2002)、《恶臭污染物排放标准》(GB 14554—93)、《工作场所有害因素职业接触限值》(GBZ 2.1—2007)的要求,按照从严的原则确定除臭排放标准如下:H2S≤0.06 mg/m3,NH3≤1.50 mg/m3,CH4≤1 mg/m3,甲硫醇≤0.007 mg/m3.甲硫醚≤0.07 mg/m。,二甲二硫≤0.06 mg/m3.臭气浓度(气味值)≤20。 3.2恶臭收集与输送 3.2.1加盖设计 除臭工艺的第一个重点是建立臭气收集系统,理想的臭气收集系统是对臭气污染源在最小的范围内进行封闭和直接收集。为了减少臭气对周围环境的影响,设计中对产生臭气的改良

一体化生物滤池除臭原理

一体化生物滤池除臭原理 一体化洗涤-生物滤床除臭装置具有前级喷雾洗涤吸收处理、多级生物滤床吸收分解吸收功能,生物填料保湿喷淋、保温层、加热系统、自来水与循环水可切换等辅助系统;,配有自动控制系统,可实现整个装置的自动连续运行。它就是一种既能治理某些特定恶臭气体,又能灵活的仅通过变换洗涤吸收药剂,生物滤床填料与微生物菌种来治理复杂的混合臭气、达到事半功倍的治理效果。 洗涤-生物滤床过滤联合除臭装置,包括前级洗涤区与多级生物滤床过滤区,除臭装置在横向分为几个区域,自前而后分别就是:臭气的导入区、前级洗涤区(可按实际情况添加中与药剂)、多级生物滤床过滤区、净化气体排出区(该区与外界相连)。在前级洗涤区与生物滤床过滤区之间、后级洗洗区与净化气体排出区分别装有气液分离装置。在竖向前后两级洗涤区设置为三层,自上而下分别就是:位于上部的喷淋区;位于中部的填料层;位于底部的就是储水槽。 前级洗涤区的填充层,充满了高效气、液相接触的有机填料。底部的储水槽就是经过特殊设计的,具有排污功能,出水槽内的水通过水泵可以循环使用。前后储水槽及水泵循环系统各自独立,并设有补水阀。 装置的除臭原理 臭气经导入口先平流进入洗涤区,经前级水或低浓度化学洗涤液洗涤,在洗涤区完成了对臭气的水或化学药剂的吸收、除尘及加湿的预处理。未清除的恶臭气体再

进入多级生物滤床过滤区,通过过滤层时,污染物从气相中转移到生物膜表面。 恶臭气体喷洒水的作用下与湿润状态的填充材料(生物填料)的水膜接触并溶解。进入生物膜的恶臭成分在填充材料(生物填料)中,在微生物的吸收分解下被降解。微生物把吸收的恶臭成分作为能量来源,用于进一步的繁殖。以上三个过程同时进行。确保整个系统排放达标。 前级喷淋的反应:H2SO4+2NaOH-Na2SO4+2H2O HNO3+NaOH-NaNO3+H2O HCl+NaOH-NaCl+H2O 微生物降解恶臭成分时的反应式: 甲硫醇:2CH3SH+7O2-2H2SO4+2CO2+2H2O 甲基化硫:2(CH3)2S+5O2-H2SO4+2CO2+2H2O 三甲胺:2(CH3)3N+13O2-2HNO3+6CO2+8H2O 洒水方式及时间前级洗涤去设计为连续循环洒水,对进入的恶臭气体进行预处理,多级生物滤床过滤设计为时间间歇式洒水,洒水量为容器的二分之一至八分之一范围。若处于干燥状态,生物将失去活性,若湿度过高,载体表面水膜加厚,通气的压损增大,阻碍气体流动,因此加湿程度应从保持生物活性与空气溶解接触效率两个方面考虑。 在菌种驯育期间应采用连续洒水让菌种尽快生长,早日挂膜。 选择合理的洒水条件主要考虑以下三点:a为生物填料层提供适度的湿度,避免微生物产生的弱硫酸与弱硝酸过剩积存,保持微生物良好的生活环境;b增加对水溶性污染物的吸收效率;c不增加除臭装置的压损。因此洒水间隙即淋水周期处理对象而定,其淋水周期为20-24次/天。 3、3、2生物滴滤池处理系统技术说明

普通快滤池的设计计算书

3.12普通快滤池的普通快滤池的设计设计设计 3.12.1设计参数设计参数 设计水量Qmax=22950m3/d=0.266m3/ 采用数据:滤速)m (s /14q s /m 10v 2?==L ,冲洗强度 冲洗时间为6分钟 3.12.2普通快滤池的普通快滤池的设计计算设计计算设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h ,实际工作时间T= h 8.2312241.024=×?,滤池面积为 2m 968.231022950v =×==T Q F 采用4个池子,单行行排列 2m 244 96N F f === 采用池长宽比 L/B=1.5左右,则采用尺寸L=6m 。B=4m 校核强制滤速m 3.131-41041-N Nv v =×== ‘ (2) 滤池高度: 支撑层高度:H1=0.45m 滤料层高度:H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.干管流量:s /3361424fq q g L =×== 采用管径s /m 19.1v mm 600d g g ==,始端流速 2.支管: 支管中心距离:采用,m 25.0a j = 每池支管数:根480.2562a 2n j =×=× =L m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k mm 6000024%25.0Kf F =×== 采用孔眼直径mm 9d k = 每格孔眼面积:22 k mm 6.634d f ==π 孔眼总数9446 .6360000f F N k k k === 每根支管空眼数:个2048/944n n j k k === N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =?=?=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =×=×= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==(μ 5.复算配水系统: 管长度与直径之比不大于60,则6023075 .07.1d l j j <== 孔眼总面积与支管总横面积之比小于0.5,则 33.1075.0464d 4f n g 2j j k =×=)()(π π F 孔眼中心间距应小于0.2,则2.017.0a k <=

滤池设计计算书

第四节、滤池 滤池选用V 型滤池 特点:下向流均粒砂滤料,带表面扫洗的气水反冲滤池。 优点:1、运行稳妥可靠; 2、采用砂滤料,材料易得; 3、滤床含污量大、周期长、滤速高、水质好; 4、具有气水反洗和水表面扫洗,冲洗效果好。 缺点:1、配套设备多,如鼓风机等; 2、土建较复杂,池深比普通快滤池深。 使用条件:1、适用于大、中型水厂 2、单池面积可达150m 2以上。 设计计算 1、平面尺寸计算 Q F n v = ? 式中 F---每组滤池所需面积 (m 3) Q---滤池设计流量 (m 3/h) n---滤池分组数 (组) v---设计滤速 (m/h), 一般采用8~15 m/h 设计中取 v=10m/h , n=6 21200002483.3610÷==?F m 单格滤池面积: F f N = 式中 f---单格滤池面积 (m 3) N---每组滤池分格数 (格) 设计中取 N=4283.33 20.834 ==f m 则单格滤池的尺寸为6.0m ×4.0m 。 单格滤池的实际面积:/ f B L =? 式中 f /----单格滤池的实际面积 (m 2) B-----单格池宽 (m) L----单格池长 (m) 设计中取 L=6.0m , B=4.0m 26.0 4.024f m '=?= 正常过滤时实际滤速

1Q v N f '= '?1Q Q n = 式中 v /----正常过滤时实际滤速 (m/h) Q 1----一组滤池的设计流量 (m 3/h) 215000/6833.33==Q m 833.33 8.68/424.0 '= =?v m h 一格冲洗时其他滤格的滤速为 ()11n Q v N f = - 式中 v /----一格冲洗时其他滤格的滤速(m/h),一般采用10~14m/h 。 ()833.33 11.57/4124.0 = =-?n v m h 2、进水系统 (1)、进水总渠 1 111Q H B v = 式中 H 1 ---- 进水总渠内水深 (m ); B 1 ---- 进水总渠净宽 (m ); v 1 ---- 进水总渠内流速 (m/s ),一般采用0.6~1.0m/s 。 设计中取H 1=1.0m ,v 1=0.8m/s, 10.230.291.00.8==?B m (2)、气动隔膜阀的阀口面积 2 2Q A v = 式中 A ---- 气动隔膜阀口面积 (m 2 ); Q 2 ---- 每格滤池的进水量 (m 3/s), 1 2Q Q N = ; v 2 ---- 通过阀门的流速(m 3/s);一般采用0.6~1.0m/s 。 设计中取v 2=0.8m/s 320.290.058/4==Q m s A=0.058/0.8=0.072m 2 (3)、进水堰堰上水头

V型滤池计算说明书

9.7过滤设备 (V型滤池) 9.7.1 设计要点: ①滤速可达7—20m/h,一般为12.5~15.0m/h。 ②采用单层加厚均粒滤料,粒径一般为0.95~1.35mm,允许夸大到0.70~ 2.00mm,不均匀系数1.2~1.6或1.8之间。 ③对于滤速在7—20m/h之间的滤池,其滤层厚度在0.95—1.5之间选用,对于更高的滤速还可相应增加。 ④底部采用带长柄滤头底板的排水系统,不设砾石承托层。 ⑤反冲洗一般采用气冲,气水同时反冲和水冲三个过程,大大节省反冲洗水量和电耗,气冲强度为13—16 L/s·2 m,表面 m,清水冲洗强度为3.6—4.1 L/s·2 扫洗用原水,一般为1.4—2.2 L/s·2 m。 ⑥整个滤料层在深度方向的粒径分布基本均匀,在反冲洗过程中滤料层不膨胀,不发生水力分级现象,保证深层截污,滤层含污能力高。 ⑦滤层以上的水深一般大于 1.2m,反冲洗时水位下降到排水槽顶,水深只有 0.5m 。 ⑧ V型进水槽和排水槽分设于滤池的两侧,池子可沿着长的方向发展,布水均匀V 型滤池是恒水位过滤,池内的超声波水位自动控制可调节出水清水阀,阀门可根据池内水位的高、低,自动调节开启程度,以保证池内的水位恒定。V 型滤池所选用的滤料的铺装厚度较大(约1.40m),粒径也较粗(0.95—1.35mm)的石英砂均质滤料。当反冲洗滤层时,滤料呈微膨胀状态,不易跑砂。V 型滤池的另一特点是单池面积较大,过滤周期长,水质好,节省反冲洗水量。单池面积普遍设计为70—902 m以上。由于滤料层较厚,载污量大,滤后水m,甚至可达1002 的出水浊度普遍小于0.5NTU。 V 型滤池的冲洗一般采用的工艺为气洗→气水同时冲洗→水冲洗+表面扫洗。9.7.2 设计参数确定 设计水量 Q=8×1043 m/d;滤速V=10m/h。 冲洗周期T=48h 反冲横扫强度1.8L/(s·2 m)】 m)【一般为 1.4~2.0 L/(s·2

生物除臭技术

生物除臭技术 第1章概述 1.1生物除臭技术的发展 生物除臭技术是20世纪50年代发展起来的新兴除臭技术,是利用微生物的生理代谢活动降解恶臭物质,将其氧化成无臭、无害的最终产物,达到除臭的目的。生物除臭早在1957年就在美国获得专利,70年代后,各国开始在这一领域开展广泛的研究,其中美国、日本、德国取得的成就最为显着,主要研究内容包括除臭的基本原理和方法、装置设备及操作工艺条件等。80年代以来,已有各类微生物除臭的装置和设备开始运用于石油、化工、屠宰、污水处理等实际中,并取得明显效果。 生物除臭技术与目前采用的物理、化学法,例如燃烧、吸附、吸收和还原等相比较。这些物理化学方法的工艺或设备较复杂,运行费用较高;用于处理某些恶臭废气时,效果不甚理想。生物脱臭法通过不断改进完善,克服了前述物理、化学方法的缺陷,并显示出处理效率较高、适应性较广、工艺较简单以及费用较省等优点,成为治理恶臭的一个重要发展方向。 1.2生物除臭的原理 气味物质的成分大多都是低分子脂肪酸、胺类、醛类、酮类、醚类以及脂肪族的、芳香族的、杂环的氮或硫化物,带有活性基团的这些物质被液相吸收后,特别易被生物氧化,当活性基团被氧化后,恶臭气味就消失了。臭气经不同种类的微生物分解后,产物不一样。如含氮的臭气,经微生物的氨化作用后,分解为HN 3 。又通过亚硝化细菌、硝化细菌的作用,进一步氧化为稳定的硝酸态化合物;而含硫的臭气经微生物分解后产 生H 2S,H 2 S可以被硫化细菌氧化为硫酸。生物除臭工艺就是基于这一原理,所以该方法 要求被去除的臭味物质有好的水溶性。 微生物除臭过程分为三个步骤: (1)臭气同水接触并溶解到水中,臭气的有机物质由气相转移到液相(或固体表面液膜)中; (2)溶于水中的臭气通过微生物的细胞壁和细胞膜被微生物吸收,不溶于水的臭

XX市给水厂设计计算书

摘要 E市给水工程,是为了满足该区近期和远期用水量增长的需要而新建的。该工程分为两组,最终的供水设计规模为3.1万m3/d, 整个工程包括取水工程,净水工程和输配水工程三部分。其工艺流程如下: 水源取水头自流管一级泵房自动加药设备 机械搅拌澄清池普通快滤池清水池配水池 二级泵房配水管网用户 同时,本设计课题还包括:水厂占地面积,人员配备,厂内建筑物布置和管线定位等。 整个工艺流程中主要构筑物的设计时间为 机械搅拌澄清池池:1.28h 普通快滤池冲洗时间:6min 普通快滤池的滤速为:13.3m/h

目录 第一章设计水量计算 第一节最高日用水量计算 第二节设计流量确定 第二章取水工艺计算 第一节取水头部设计计算 第二节集水间设计计算 第三章泵站计算 第一节取水水泵选配及一级泵站工艺布置 第二节送水泵选配及二级泵站工艺布置 第四章净水厂工艺计算 第一节机械搅拌澄清池计算 第二节普通快滤池计算 第三节清水池计算 第四节配水池计算 第五节投药工艺及加药间计算 第六节加氯工艺及加氯间计算 第七节净水厂人员编制及辅助建筑物使用面积计算第八节检测仪表

第一章 设计水量计算 第一节 最高日用水量计算 一、各项用水量计算 1、 综合生活用水量1Q 1Q d m d l N q f 33411108.81.1.200104?=???=??=人 m d l N q f Q 344111/10408.11.1.200104.6?=???=??=人 2、 工业企业生产用水量2Q ()()d m m d n N q Q d m m d n N q Q 3 4 3 222 /3432221076.11.180********.11.11001201?=??=-??=?=??=-??=万元万元万元 3、 未预见水量和管网漏失水量3Q ()d m Q Q Q 34213104.02.0?=+= 4、 消防用水量x Q d m s l N q Q x x X 3410432.0252?=?=?= 二、最高日用水量d Q m Q Q Q Q d 34321106.2?=++= 由于总用水量较小和消防水量相差不大则d m d m Q d 3434101.310072.3?≈?= d m Q d 34/104?= 第二节 设计流量确定 一、确定设计流量 1、 取水构筑物、一级泵站、原水输水管、水处理构筑物设计流量 s l d m T Q a Q s l d m T Q a Q d I d I 11.4863600 2410405.173.3763600 24101.305.134/ /34=???=?==???=?=

重力式无阀滤池计算说明书

重力式无阀滤池计算说明书 一、设计水量 滤池净产水量Q 1=5000m 3/d=208m 3/h ,考虑4%的冲洗水量。 滤池处理水量Q=1.04Q 1=217m 3/h=0.0603m 3/s 。 二、设计数据 滤池采用单层石英砂滤料,设计滤速v=8m/h 。 平均冲洗强度q=15L/(s ·m 2),冲洗历时t=4min 。 期终允许水头损失采用1.7m 。 排水井堰顶标高采用-0.75m (室外地面标高为0.00m )。 滤池入土深度先考虑取-1.40m 。 三、计算 1、滤池面积 滤池净面积2278217 m v Q F === ,分为2格,N=2。 单格面积25.132 27 m N F f ===,单格尺寸采用3.6×3.6m 。 四角连通渠考虑采用边长为0.35m 的等腰直角三角形, 其面积2'0613.02 ' m f =。 并考虑连通渠斜边部分混凝土壁厚为120mm 的面积, 则每边长m 52.012.0235.0=?+=,22135.0m f =。 则单格滤池实际净面积F 净=3.6×3.6-0.135×4=12.42m 2。

实际滤速为8.74m/h ,在7~9m/h 之间,符合要求。 2、进、出水管 进水管流速v 1=0.7m/s ,断面面积211086.07 .00603.0m v Q ===ω, 进水总管管径m D 33.041 == π ω,取DN350。 单格进水管管径m D 23.024 1 1== π ω,取DN250,校核流速v 2为0.6m/s , 水力坡度i 1=0.0026,管长l 1=11m ,考虑滤层完全堵塞时,进水全部沿DN350虹吸上升管至虹吸破坏口,流速v 3为0.31m/s ,水力坡度i 2=0.0005,管长l 2=4m 。 则单格进水管水头损失 m g v l i g v l i h 103.081 .9231 .05.040005.081.926.05.16.035.0110026.0222 22 32 222 2 111=??+?+?+?++?=+++=∑)(进ξξ 式中局部阻力系数ξ1包括管道进口、3个90°弯头和三通,ξ2为60°弯头,进水分配箱堰顶采用0.10m 的安全高度,则进水分配箱堰顶比虹吸辅助管管口高出0.20m 。 3、冲洗水箱 平均冲洗强度q=15L/(s ·m 2),冲洗历时t=4.5min ,单格滤池实际净面积F 净=12.42m 2,

(完整版)80000m3生物滤池除臭装置计算

(一) 生物滤池工艺及外形计算 生物滤池尺寸的计算,一般是根据空气在滤床中的停留时间、空气的单位负荷率、以及组分去除能力的考虑来定。废水处理设施所排臭气的停留时间一般在15~40s 之间。根据我们工程经验,停留时间应该>20s 。 1.工艺计算: 风量Q=80000m 3/h 表面负荷率选用200m 3/m 2.h 。 生物活性介质装填高度h=1.2m 生物滤池表面积S= 80000/200=400m 2 生物活性介质的需要量:V= 1.2*S=1.2x20=24m 3 空床停留时间的核算:t= V/ Q=24/4000*3600=22s >20s (可用) 2.外形尺寸计算: 根据表面积S=20m 2,则: 生物滤池的直径D= 2* S =2*14.320=5m 生物滤池高度的计算: 滤池底部排水区的高度h 1=400mm 滤池底部布气区的高度h 2=200mm 滤池生物活性介质区的高度h 3=1200mm 滤池顶部布水区的高度h 4=600mm 滤池顶部尾气收集区的高度h 5=300mm 生物滤池总的高度H= h 1 +h 2+h 3+h 4+h 5=2700mm 生物滤池外形尺寸DxH=Φ5000x2700mm (二) 增湿循环系统设计 生物滤池 1、循环水泵的选择: 从气味源收集到的气体被送到生物滤池除臭装置处理,进滤池的气体要求

潮湿,相对湿度必须控制在90%~95%以上,否则填料会干化,微生物将失活。通常处理1m3的臭气需要散水量需要0.5~3L。 =(0.5~3)*4000=2~12m3/h,选取泵的流量为5m3/h。 水泵流量:Q 水 为保证螺旋喷嘴喷出的水能够形成雾状,充分对臭气进行保湿,水泵需要足够的扬程,考虑管道沿程阻力的损失,选取水泵扬程H=30m。 根据水泵流量及扬程,选取水泵型号为:CDL8-3,品牌为南方泵业, 电机功率:1.1Kw,380V/50Hz ,IP55 2、预处理塔的计算: 进水量Q1=5m3/h,液体密度ρ1=1000kg/ m3 进气量Q2=4000 m3/h,气体密度取为空气的密度ρ2=1.20kg/ m3 预处理塔内装设鲍尔环乱堆填料,采用φ25x25的塑质乱堆填料,填料因子为300 m2/ m3 液气质量通率之比:5x1000/(4000x1.2)=1.04 查得泛点流速为1m/s 取操作气体流速为泛点流速的0.5倍,塔内气体流速v=0.5*1=0.5 m/s 塔的截面面积A= Q2/v=2.22m2 选取预处理塔直径D=1800mm 填料高度取800mm,则填料堆积体积V=1.78m3 预处理塔底部排水区的高度h1=400mm 预处理塔底部布气区的高度h2=200mm 预处理塔塑质乱堆填料的高度h3=800mm 预处理塔顶部布水区的高度h4=600mm 预处理塔顶部尾气收集区的高度h5=300mm 预处理塔总的高度H= h1 +h2+h3+h4+h5=2300mm 预处理塔外形尺寸RxH=Φ1800x2300mm

生物除臭滤池调试方案设计

实用文档 合肥王小郢污水处理厂 提标改造及除臭降噪工程 生物除臭系统 工 艺 调 试 方 案 编制人: 审核人: 批准人: 太平洋水处理工程有限公司 编制日期:2012年9月8日

目录 一、工程概况及调试宗旨 (3) 二、生物除臭工艺流程 (3) 三、生物滤池调试内容 (4) 四、细则 (4) 1、试车、调试条件 (4) 2、调试准备 (5) 3、充水试验 (6) 4、单机调试 (6) 5、单元调试 (7) 6、生物滤池除臭系统整体调试 (8) 7、改善缺陷、补充完善 (12) 8、试运行 (12) 五、安全文明施工及技术措施 (12)

一、工程概况及调试宗旨 合肥市王小郢污水处理厂位于铜陵南路和太湖路交口西北角,王小郢污水处理厂分两期建设,一期、二期工程设计规模分别为15万m3/d,总设计规模为30万m3/d,总变化系数1.3。一期和二期工程均采用改良型氧化沟处理工艺,污水经处理后排入南淝河,最终入巢湖。王小郢污水处理厂提标改造工程深度处理部分的总设计规模按照30万m3/d考虑,总变化系数为1.3。出水入南淝河,最终排入巢湖。 合肥王小郢污水处理厂提标改造及除臭降噪工程主要分为两部分:一是除臭降噪:对预处理区旋流沉砂池上部露天设置的气提风机的降噪及旋流沉砂池加盖除臭和一、二期预处理区(包括粗格栅封闭罩)和厌氧池等部位的加盖除臭工程,并进行生物过滤除臭处理。二是氧化沟的提标改造,包括氧化沟电机降噪和沉淀池跌水降噪部分工程。 本方案是针对合肥王小郢污水处理厂提标改造及除臭降噪工程中的除臭降噪部分的生物除臭系统调试及试运行工作编写的,可供安装、调试及营运工作人员使用,亦可作为建设方、施工方施工验收之参考。二、生物除臭工艺流程 本工程废气治理采用生物滤池为主的除臭净化工艺,其工艺流程为:各构筑物单体间产生的臭气经加盖密封系统收集后,通过风机抽送到生物滤池除臭装置。恶臭气体在生物滤池除臭装置中先进入生物滤池的预洗段,其中易于溶于水的气体成分进入水中部分被去除,并除去气

快滤池工艺计算书

●滤池间设计 过滤是三级处理的重要环节,是确保出水达到高级标准的必要处理单元。过滤可以除大部分悬浮物和胶体,在降低出水SS 的同时,还可以有效的降低出水的COD 、BOD 、NH 3-N 和TP 。污水三级处理中常用的过滤设施按过滤介质不同可分为成床过滤(也称为深层过滤)和表面过滤。 普通快滤池的布置,根据其规模大小,采用单排或双排布置、是否设中央渠、反冲洗方式、配水系统形式以及所在地区房东要求等,可布置成许多形式。应使阀门集中、管路简单、便于操作管理和安装检修。 已知:设计水量:20000m 3/d 日变化系数:1.2 冲洗强度:15L/(m 2.s) 冲洗时间:6min 1、滤池工作时间 滤池工作时间24h ,冲洗周期24h ,滤池实际工作时间: 9.2324240.1-24=?=T h (式中0.1代表反冲洗停留时间;只考虑反冲洗停用时间,不考虑排放初滤水时间) 2、设计处理水量 Q=2×104 m 3/d=0.231 m 3/s 日变化系数1.2 Q max =1.2×Q=24000 m 3/d=0.278 m 3/s=1000 m 3/h 3、滤池面积及尺寸 由《室外给水设计规范》: 《污水再生利用工程设计规范》:

《污水过滤处理工程技术规范》: 综合比较,本次设计滤池采用石英砂单层滤料,设计滤速取v1=6m/s 滤池面积为: F=Q max / (v1× T)=1.2×Q /(v1× T) =24000/(6×23.9)=167.36 m2≈168 m2由手册3,表9-16得到 滤池个数N=4格,每个滤池面积f= F/N=42(m2) 由手册3,表9-11,采用滤池长宽比L/B=2:1~4:1 取L/B=2左右,L=7,B=6,实际滤池面积L×B=42 m2 实际滤速v1=24000 m3/d ×24 h / ( 23.9h ×4×40m2) =5.98m/h(基本符合7-9m/h) 校核强制滤速v'= N×v1 /(N-1)=6.98 m/h

相关文档
最新文档