实验一 集成运放的线性运算电路

实验一 集成运放的线性运算电路
实验一 集成运放的线性运算电路

实验报告模板

集成运放的线性运算电路实验

一、实验目的

1.掌握运放运算电路的测量分析方法。

2.巩固集成运放几种典型运算电路的用法,掌握电路元、器件选择技巧。二、实验内容

1.反相求和运算电路实验,

2.差动比例运算电路实验.

三、实验步骤

四、实验总结

使用Multisim 电路仿真软件做电路实验,感觉十分方便,可以通过仿真电路来对一些电路原理进行验证,将实验结果与计算结果进行对比分析,通过软件的仿真

可以减少实验成本低,并且极大的提高实验过程的安全性。

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

集成运放组成的基本运算电路 实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

电工电子实验报告实验4.6 运算放大器的线性应用

实验4.6 运算放大器的线性应用 一、实验目的 1.进一步理解运算放大器线性应用电路的结构和特点。 2.掌握电子电路设计的步骤,学会先用电子设计软件进行电路性能仿真和优化设计,再进行实际器件构成电路的连接与测试方法。 3.掌握运算放大器线性应用电路的设计及测试方法。 二、实验仪器与器件 1.双路稳压电源1台 2.示波器1台 3. 数字万用表1台 4. 集成运算放大器μA741 2块 5. 定值电阻若干 6.电容若干 7.DC信号源3块 8.电位器2只 三、实验原理及要求 运算放大器是高放大倍数的直流放大器。当其成闭环状态时,其输入输出在一定范围内为线性关系,称之为运算放大器的线性应用。运放线性应用时选择合理的电路结构和外接器件,可构成各种信号运算电路和具有各种特定功能的应用电路。选择适当个数的运算放大器和阻容元件构成电路实现以下功能: 1. U o=Ui 2.U O= 5U i1+U i2(R f=100k); 3.U O= 5U i2-U i1(R f=100k); 4.U O= - (0.1ui+1000∫u idt)(C f=0.1μF); 5.用运放构成一个输出电压连续可调的恒压源(要求用一个运放实现); 6.用运放构成一个恒流源(要求用一个运放实现); 7. 用运放构成一个RC正弦波振荡器(振荡频率为500Hz)。 四、实验电路图及实验数据 1. U o=Ui Ui(V)0.3 0 -0.3 计算Uo(V) 0.3 0 -0.3 测量Uo(V) 0.302 0.001 -0.301

2.U O= 5U i1+U i2(R f=100k)

3.U O = 5U i2-U i1 (R f=100k ); Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1 计算Uo(V) 1.4 1.6 -1.4 测量Uo(V) 1.407 1.608 -1.396 Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1 计算Uo(V) 1.6 1.4 -1.6 测量Uo(V) 1.735 1.533 -1.703

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

十一种经典运放电路分析

十一种经典运放电路分析 从虚断,虚短分析基本运放电路 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器: 传输文件进行[薄膜开关] 打样 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

基本运算电路实验报告

基本运算电路实验报告 实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 双运算放大器LM358 三、 实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。 2.通用型集成运放的输入级电路,为啥 均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。 4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交 流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。 5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 专业: 姓名: 日期: 地点:紫金港 东三--

集成运放线性运算实验.(精选)

集成运放线性运算实验 一、实验目的 1、研究由集成运算放大器组成的比例、加法和减法等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 3、熟悉典型集成运放应用电路的接线和使用方法。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。 (2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路

电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2 =R 1 // R F 。 图1 反相比例运算电路 图2 反相加法运算电路 2) 反相加法电路 电路如图2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 4) 差动放大电路(减法器) 对于图3所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 )U (U R R U i1i21 F O -= 图3 减法运算电路图 i 1F O U R R U -=

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

CMOS数字集成电路设计_八位加法器实验报告

CMOS数字集成电路设计课程设计报告 学院:****** 专业:****** 班级:****** 姓名:Wang Ke qin 指导老师:****** 学号:****** 日期:2012-5-30

目录 一、设计要求 (1) 二、设计思路 (1) 三、电路设计与验证 (2) (一)1位全加器的电路设计与验证 (2) 1)原理图设计 (2) 2)生成符号图 (2) 3)建立测试激励源 (2) 4)测试电路 (3) 5)波形仿真 (4) (二)4位全加器的电路设计与验证 (4) 1)原理图设计 (4) 2)生成符号图 (5) 3)建立测试激励源 (5) 4)测试电路 (6) 5)波形仿真 (6) (三)8位全加器的电路设计与验证 (7) 1)原理图设计 (7) 2)生成符号图 (7) 3)测试激励源 (8) 4)测试电路 (8) 5)波形仿真 (9) 6)电路参数 (11) 四、版图设计与验证 (13) (一)1位全加器的版图设计与验证 (13) 1)1位全加器的版图设计 (13) 2)1位全加器的DRC规则验证 (14) 3)1位全加器的LVS验证 (14) 4)错误及解决办法 (14) (二)4位全加器的版图设计与验证 (15) 1)4位全加器的版图设计 (15) 2)4位全加器的DRC规则验证 (16) 3)4位全加器的LVS验证 (16) 4)错误及解决办法 (16) (三)8位全加器的版图设计与验证 (17) 1)8位全加器的版图设计 (17) 2)8位全加器的DRC规则验证 (17) 3)8位全加器的LVS验证 (18) 4)错误及解决办法 (18) 五、设计总结 (18)

运算放大器基本电路——11个经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB 以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

福州大学集成电路版图设计实验报告

福州大学物信学院 《集成电路版图设计》 实验报告 姓名:席高照 学号:111000833 系别:物理与信息工程 专业:微电子学 年级:2010 指导老师:江浩

一、实验目的 1.掌握版图设计的基本理论。 2.掌握版图设计的常用技巧。 3.掌握定制集成电路的设计方法和流程。 4.熟悉Cadence Virtuoso Layout Edit软件的应用 5.学会用Cadence软件设计版图、版图的验证以及后仿真 6.熟悉Cadence软件和版图设计流程,减少版图设计过程中出现的错误。 二、实验要求 1.根据所提供的反相器电路和CMOS放大器的电路依据版图设计的规则绘制电路的版图,同时注意CMOS查分放大器电路的对称性以及电流密度(通过该电路的电流可能会达到5mA) 2.所设计的版图要通过DRC、LVS检测 三、有关于版图设计的基础知识 首先,设计版图的基础便是电路的基本原理,以及电路的工作特性,硅加工工艺的基础、以及通用版图的设计流程,之后要根据不同的工艺对应不同的设计规则,一般来说通用的版图设计流程为①制定版图规划记住要制定可能会被遗忘的特殊要求清单②设计实现考虑特殊要求及如何布线创建组元并对其进行布局③版图验证执行基于计算机的检查和目视检查,进行校正工作④最终步骤工程核查以及版图核查版图参数提取与后仿真 完成这些之后需要特别注意的是寄生参数噪声以及布局等的影响,具体是电路而定,在下面的实验步骤中会体现到这一点。 四、实验步骤 I.反相器部分: 反相器原理图:

反相器的基本原理:CMOS反相器由PMOS和NMOS构成,当输入高电平时,NMOS导通,输出低电平,当输入低电平时,PMOS导通,输出高电平。 注意事项: (1)画成插齿形状,增大了宽长比,可以提高电路速度 (2)尽可能使版图面积最小。面积越小,速度越高,功耗越小。 (3)尽可能减少寄生电容和寄生电阻。尽可能增加接触孔的数目可以减小接触电阻。(4)尽可能减少串扰,电荷分享。做好信号隔离。 反相器的版图: 原理图电路设计: 整体版图:

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

数字ic设计实验报告

数字集成电路设计 实验报告 实验名称二输入与非门的设计 一.实验目的 a)学习掌握版图设计过程中所需要的仿真软件

b)初步熟悉使用Linux系统 二.实验设备与软件 PC机,RedHat,Candence 三.实验过程 Ⅰ电路原理图设计 1.打开虚拟机VMware Workstation,进入Linux操作系统RedHat。 2.数据准备,将相应的数据文件拷贝至工作环境下,准备开始实验。 3.创建设计库,在设计库里建立一个schematic view,命名为,然后进入电路 图的编辑界面。 4.电路设计 设计一个二输入与非门,插入元器件,选择PDK库(xxxx35dg_XxXx)中的nmos_3p3、 pmos_3p3等器件。形成如下电路图,然后check and save,如下图。 图1.二输入与非门的电路图 5.制作二输入与非门的外观symbol Design->Create Cellview -> From Cellview,在弹出的界面,按ok后出现symbol Generation options,选择端口排放顺序和外观,然后按ok出现symbol编辑界面。按照需 要编辑成想要的符号外观,如下图。保存退出。

图2.与非门外观 6.建立仿真电路图 方法和前面的“建立schemtic view”的方法一样,但在调用单元时除了调用analogL 库中的电压源、(正弦)信号源等之外,将之前完成的二输入与非门调用到电路图中,如下图。 图3.仿真电路图 然后设置激励源电压输出信号为高电平为3.5v,低电平为0的方波信号。 7.启动仿真环境 在ADE中设置仿真器、仿真数据存放路径和工艺库,设置好后选择好要检测的信号在电路中的节点,添加到输出栏中,运行仿真得到仿真结果图。

基本运算电路设计实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: __________________ 实验名称: 基本运算电路设计 实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验目的和要求 1. 掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2. 掌握基本运算电路的调试方法。 3. 学习集成运算放大器的实际应用。 二、实验内容和原理(仿真和实验结果放在一起) 1、反相加法运算电路: 1212 12121 2 =( ) f o I I f f f o I I I I I u u u R R R R R u u u R R ++=-=-+ 当R1=R2时, 121 () f o I I R u u u R =- +,输出电压与Ui1,Ui2之和成正 比,其比例系数为1f R R ,电阻R ’=R1//R2//Rf 。 2、减法器(差分放大电路) 专业:机械电子工程 姓名:许世飞 学号: 日期: 桌号:

11o I f u u u u R R ----= 由于虚短特性有:2 3 23 321231 1233211 11,() I f f o I I f f o I I f u u u R R R R R R u u u R R R R R R R R R u u u R R R -+== ?+?? =+ - ?+??===-=因此解得:时,有可见,当时,输出电压等于出入电压值差。 3、由积分电路将方波转化为三角波: 电路中电阻R2的接入是为了抑制由IIO 、VIO 所造成的积分漂移,从而稳定运放的输出零点。在t<<τ2(τ2=R2C )的条件下,若vS 为常数,则vO 与t 将近似成线性关系。因此,当vS 为方波信号并满足Tp<<τ2时(Tp 为方波半个周期时间),则vO 将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 4 、同相比例计算电压运算特性:

集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。

【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。 实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】

反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。

相关文档
最新文档