镍矿选矿方法

镍矿选矿方法
镍矿选矿方法

镍矿的选矿方法

1.硫化铜镍矿选矿

该类型矿石多为岩浆熔离型铜镍矿,其中含镍3%以上的富矿石可供直接冶炼;含镍小于3%的矿石,则需选矿处理。

(1)硫化铜镍矿的矿物组成和选矿方法

该类矿石中常见金属矿物有:磁黄铁矿、镍黄铁矿和黄铜矿,此外还有磁铁矿、黄铁矿、钛铁矿、铬铁矿、墨铜矿、铜蓝、辉铜矿、斑铜矿以及铂族矿物等;脉石矿物有:橄榄石、辉石、斜长石、滑石、蛇纹石、绿泥石、阳起石和云母等,有时还有石英和碳酸盐等。

铜镍矿石中铜主要以黄铜矿形态存在;而镍主要呈镍黄铁矿、针硫镍矿、紫硫镍铁矿等游离硫化镍形态存在,有相当一部分镍以类质同像赋存于磁黄铁矿中,还有少量硅酸镍。

硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。

(2)主要镍矿物的可浮性及铜镍矿石的浮选特点

镍黄铁矿、针硫镍矿和含镍磁黄铁矿均可用丁基或戊基等高级黄药有效浮选。镍黄铁矿和针硫镍矿的可浮性介于黄铜矿与磁黄铁矿之间。镍黄铁矿在弱酸性、弱碱性或中性介质中均能获得较好浮选;针硫镍矿在弱酸性、中性或弱碱性介质中也可用丁基黄药较好浮选;含镍磁黄铁矿适于在酸性或弱酸性介质中浮选,但浮选速度较慢。

镍黄铁矿、针硫镍矿和含镍磁黄铁矿三者均可用石灰抑制,但其程度不同。磁黄铁矿较易抑制,而抑制镍黄铁矿和针硫镍矿则要求过量石灰。与磁黄铁矿和黄铁矿不同,其他碱不抑制镍黄铁矿和针硫镍矿。单独使用石灰分离镍黄铁矿和黄铜矿的效果不够好,通常需加少量氰化物来抑制镍黄铁矿。镍黄铁矿能较快地被空气中的氧所氧化,在其表面生成氢氧化铁膜,可浮性下降,磁黄铁矿比镍黄铁矿在空气中氧化更快。硫酸铜是镍黄铁矿,尤其是磁黄铁矿的活化剂。镍矿物被石灰(而不是被氧化物)抑制后,可用硫酸铜再活化。为了改善硫酸铜对镍矿物的活化,有时需预先添加少量硫化钠。

硅酸镍矿物目前尚不能用工业浮选法选出,因此,矿石中的硅酸镍含量的多少是影响镍回收率高低的重要因素。

基于铜镍矿石的性质,其浮选工艺具有下列特点:浮选流程较简单、浮选时间长、精选次数少、分散精选多点出精矿,尽早回收镍矿物;镍精矿品位一般为4~8%,高者可达13~15%。脱除磁黄铁矿以及滑石、绿泥石、阳起石、蛇纹石、云母等易浮脉石是改善镍精矿质量的关键;为强化镍矿物浮选,常采用混合捕收剂;为脱除磁黄铁矿常采用浮选和磁选联合流程。

(3)铜镍矿石的浮选流程

浮选硫化铜镍矿石时,常采用浮选硫化铜矿物的捕收剂和起泡剂。确定浮选流程的一个基本原则是,宁可使铜进入镍精矿,而尽可能避免镍进入铜精矿。因为铜精矿中的镍在冶炼过程中损失大,而镍精矿中的铜可以得到较完全的回收。铜镍矿石浮选具有下列四种基本流程:

(4)直接优先浮选或部分优先浮选流程

当矿石中含铜比含镍量高得多时,可采用这种流程(下图),可把铜选成单独精矿。该流程的优点是,可直接获得含镍较低的铜精矿。

直接优先浮选或部分优先浮选流程

(5)混合浮选流程

用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍(下图)。

混合浮选流程

从矿石中混合浮选铜镍,再从混合精矿中分选出含低镍的铜精藏和含铜镍精矿。该镍精矿经冶炼后,获得高冰镍,对高冰镍再进行浮选分离。该流程如下图所示。

混合-优先浮选流程

(7)混合-优先浮选并从混合浮选尾矿中再回收部分镍

当矿石中各种镍矿物的可浮性有很大差异时,铜镍混合浮选后,再从其尾矿中进一步回收可浮性差的含镍矿物(下图)。

混合-优选浮选并从混合浮选尾矿中再回收部分镍

(8)铜镍分离

铜是镍冶炼的有害杂质,而在铜镍矿石中铜品位又具有工业回收价值,因此铜镍分离技术是铜镍矿石选矿中的一个重要课题。铜镍分离技术分为铜镍混合精矿分离和高冰镍分离工艺两种。通常,铜镍矿物粒度较粗且彼此嵌布关系不甚紧密的矿石,多采用混合精矿分离方法;而对铜镍矿物粒度细且彼此嵌布十分致密的矿石,则多采用高冰镍分离工艺。

(9)铜镍混合精矿分离工艺

目前,该工艺最常用的分离方法为石灰-氰化物法和石灰-硫化钠法,有时采用矿浆加温措施会改善分离效果。此外,还有亚硫酸氢盐法等。

(10)高冰镍混合精矿分离工艺

该工艺比分离熔炼和水冶处理方法有更好的技术经济效果,故应用较广。

高冰镍的组成主要有硫化铜(Cu

2S)和硫化镍(Ni

3

S

2

),其次是Cu-Ni合金,

此外还有钴和铂族金属以及一些铁杂质。高冰镍的组成可在冶炼过程中人为的控制。含铁量和冷却速度是高冰镍浮选分离的两个主要因素,它们不仅影响高冰镍的物质组成,而且影响其晶体结构。

铁是高冰镍分离浮选的有害杂质,它可导致高冰镍的组成复杂化。当含铁量﹤1%时,会出现类似斑铜矿和镍黄铁矿的化合物,而不利于浮选,并影响钴的回收;当铁含量﹥4%时,不仅使高冰镍组成更为复杂,晶体结构也变得更细,而不利于浮选。生产经验表明,高冰镍中铁含量以控制在2~4%范围内为宜。

高冰镍的冷却速度对其分离也有很大影响。当其从800℃缓慢冷却至200℃时,铜和镍矿物的结晶粒度变粗,特别是当缓冷温度降至510~520℃时,硫化

镍发生晶变,由-NiS

2转变为a-Ni

3

S

2

,使溶于硫化镍中的硫化铜析出,从而有利

于降低硫化镍矿中的含铜量。因此,保证高冰镍的缓冷速度,可以改善高冰镍浮选的分离效果。

2.氧化镍矿处理

氧化镍矿中的镍红土矿含铁高,含硅镁低,含镍为1~2 %;而硅酸镍矿含铁低,含硅镁高,含镍为1.6~ 4.0%。目前,氧化镍矿的开发利用是以镍红土矿为主。由于氧化镍矿中的镍常以类质同象分散在脉石矿物中,且粒度很细,采用机械选矿方法直接处理,难以获得良好效果。矿石经焙烧处理改变矿物结构后,虽可取得较好技术指标,但费用较高,尚未用于工业生产。

目前,氧化镍矿处理多采用破碎、筛分等工序预先除去风化程度弱、含镍低的大块基岩矿块,富集比较低。近年来,由于炼镍技术的不断发展和镍消耗量的增加以及硫化镍富矿资源的不断减少,氧化镍矿的开发利用日益受到重视。氧化镍矿床一般埋藏较浅,适于露天大规模开采,亦可进行选择性开采。由于采矿成本较低,与硫化镍矿相比,具有一定的竞争能力。

氧化镍矿的冶炼富集方法,—可分为火法和湿法两大类。火法冶炼又可分为造锍熔炼、镍铁法和粒铁法。湿法冶炼又有还原焙烧—常压氨浸法、高压酸浸法等。

火法冶炼中的回转窑粒铣法,属于古老方法,其缺点是,流程复杂,粒铁含镍低,镍回收率低,不能回收钴;电炉熔炼的特点是镍回收率高,一部分钻进入镍铁,可在精炼过程中回收,该法适于处理硅镁镍矿。当其用于含铁高的红土矿时,铁的回收率较低,且电能消耗较大。

湿法冶炼中的常压氨浸法,具有钴回收率较低的缺点;而高压酸浸法适合于处理含硅酸镁低的氧化镍矿。

目前,氧化镍的处理多采用电炉炼冰镍法;而回转窑炼粒铁法已少见。湿法冶炼方法,如氨浸和酸浸法等已在工业上应用。其他氧化镍新冶炼方法,如高温氯化、硫酸化焙烧等提取工艺,目前仍处于研究阶段,已取得一定进展。

选矿实验流程

选矿试验的要求 选矿试验资料是选矿工艺设计的主要依据。选矿试验成果不仅对选矿设计的工艺流程、设备选型、产品方案、技术经济指标等的合理确定有着直接影响,而且也是选矿厂投产后能否顺利达到设计指标和获得经济效益的基础。因此,为设计提供依据的选矿试验,必须由专门的试验研究单位承担。选矿试验报告应按有关规定审查批准后才能作为设计依据。在选矿试验进行之前,选矿工艺设计者应对矿床资源特征、矿石类型和品级、矿石特征和工艺性质、以及可选性试验等资料充分了解,结合开采方案,向试验单位提出试验要求,在“要求”中,一般不必详述试验单位通常都应做到的内容,而应着重提出需要试验单位解决的特殊内容和主要问题。 一、选矿试验类型的划分 选矿试验按研究的目的可分为可选性试验、工艺流程试验和选矿单项技术试验三种,按试验规模可分为试验室试验、半工业试验和工业试验三种。为便于明确选矿试验要求和叙述的方便,概括上述两种分类,将选矿试验类型划分为可选性试验、试验室小型流程试验、试验室扩大连续试验、半工业试验、工业试验和选矿单项技术试验六种。 (1)可选性试验。一般由地质勘探部门完成。在地质普查、初勘和详勘阶段,应循序渐进地提高和加深可选性试验研究深度。可选性试验着重研究和探索各种类型和品级矿石的性质与可选性差别,基本选矿方法与可能达到的选矿指标,有害杂质剔除的难易,伴生成分综合回收的可能性等。试验研究的内容和深度应能判定被勘探的矿床矿石的利用在技术上是否可行、经济上是否合理,能为制订工业指标和矿床评价提供依据。可选性试验是在试验室装置或小型试验设备上进行的,一般只作矿床评价用。 (2)试验室小型流程试验。试验室小型流程试验是在矿床地质勘探完成之后,可行性研究或初步设计之前进行。它着重对矿石矿物特征和选矿工艺特性、选矿方法、工艺流程结构、选矿指标、工艺条件及产品(包括某些中间产品)等进行试验研究和分析,并应进行两个以上方案的试验对比。试验研究的内容和深度。一般应能满足设计工作中初步制订工艺流程和产品方案、选择主要工艺设备及进行设计方案比较的要求。由于试验室小型流程试验规模小、试料少、灵活性大、入力物力花费较少,因此允许在较大范围内进行广泛的探索,又因它的试料容易混匀,分批操作条件易于控制,因此是各项试验的最基本试验。但是,它是在试验室小型非连续(或局部连续)试验设备上进行的,其模拟程度和试验结果的可靠性虽优于可选性试验,但不及试验室扩大连续试验。 (3)试验室扩大连续试验。试验室扩大连续试验是在小型流程试验完成之后,根据小型流程试验确定的流程,用试验室设备模拟工业生产过程的磨矿、选别乃至脱水作业的连续试验。它着重考察流程动态平衡条件下(包括中矿返回)的选矿指标和工艺条件。各试验研究单位连续试验设备的能力很不一致,一般为 40 一 200kg/h。试验室扩大连续试验比小型流程试验的模拟性较好,可靠性较小型流程试验高些。 (4)半工业试验。半工业试验是在专门建立的半工业试验厂或车间进行的,试验可以是全流程的连续,也可以是局部作业的连续或单机的半工业试验。试验的目的主要是验证试验室试验的工艺流程方案,并取得近似于生产的技术经济指标,为选矿厂设计提供可靠的依据或为进一步做工业试验打下基础。半工业试验所用的设备为小型工业设备,试验厂的规模尚无明确的规定,一般为 1~5t/h。 (5)工业试验。工业试验是在专门建立的工业试验厂或利用生产选矿厂的一个系列甚至全厂进行的局部或全流程的试验,由于其设备、流程、技术条件与生产或今后的设计基本相同,故技术经济指标和技术参数比半工业试验更为可靠。

镍矿精选工艺流程

红土镍矿全球分布 世界上红土镍矿分布在赤道线南北30度以内的热带国家,集中分布在环太平洋的热带―亚热带地区,主要:有美洲的古巴、巴西;东南亚的印度尼西亚、菲律宾;大洋洲的澳大利亚、新喀里多尼亚、巴布亚新几内亚等。 我国镍矿资源储量中70%集中在甘肃,其次分布在新疆、云南、吉林、四川、陕西和青海和湖北7个省,合计保有储量占全国镍资源总储量的27%。我国的红土镍矿主要从菲律宾进口。由于自1970年起日本与菲律宾开始进行合作,成立合资矿业公司开采含镍2%以上的高品位镍矿,运送回新日铁和住友商社进行冶炼,导致菲律宾的高品位镍矿砂被日本企业垄断,而我国只能进口镍含量在0.9%~1.1%的低品位镍矿砂。 我国周边国家有镍矿储量1125万吨,只分布在少数国家。包括俄罗斯(660万吨)、印度尼西亚(320万吨)、菲律宾(41万吨)、缅甸(92万吨)和越南(12万吨)。 但占世界总储量比例较大,约占23%。其中,红土镍矿主要分布在印度尼西亚、菲律宾以及缅甸。印度尼西亚镍资源主要为基性、超基性岩体风化壳中的红土镍矿,分布在群岛的东部。矿带可以从中苏拉威西追踪到哈尔马赫拉、奥比、瓦伊格奥群岛,以及伊利安查亚的鸟头半岛的塔纳梅拉地区。由于印度尼西亚超基性岩带风化壳广泛分布,因此其红土型镍钴矿有良好的找矿前景。菲律宾也以红土镍为主,主要分布在诺诺克岛。缅甸也有红土型硅酸镍矿,受印缅山脉超基性岩带控制,分布在中部盆地西缘。俄罗斯的镍资源分布在西伯利亚地台西北缘诺里尔斯克硫化铜镍矿区。越南镍矿为铜镍硫化物型,分布在西北部,已知有山萝省的班福矿床,赋存在黑水河裂谷塔布蛇绿岩带内,有探明储量12万吨。 世界红土镍矿资源开发及湿法冶金技术的进展 摘要:随着硫化镍矿资源口趋枯竭,高效开发占全球镍资源72%的红土镍矿日益迫切。文章介绍了世界红土镍矿资源特点、国内外的开发现状,并阐述了其传统湿法生产工艺及进展。认为常压浸出和细菌浸出等新湿法流程具有工艺简单、能耗低、操作易于控制、投资少等优点,将会有很好的发展前景。 关键词:红土镍矿湿法冶金技术开发现状 按照地质成因来划分,镍矿床主要有两类:岩浆型硫化镍矿和风化型红土镍矿,其中红土镍矿资源储量占全球镍资源的72%。近年来,由于不锈钢行业的带动,全世界镍需求量在不断上升,2008年我国不锈钢产能达到1000万t,而实际产量仅为535万t,镍供应不足是重要原因之一。

钼矿选矿尾矿水处理

书山有路勤为径,学海无涯苦作舟 钼矿选矿尾矿水处理 优于一般粘土,有利于提高质量。近年耕地保护力度越来越强,无偿取土早已不再,买土难且价格远超过利用尾矿,所以在锦西、河北太行山区都有所见。遗憾的是尾矿中残留的钼白白浪费,委实令人痛惜。 郭献军开展利用钼矿渣制各道路水泥熟料的试验研究,结果表明,以钙铁榴石为主要组成矿物的钼矿渣可以用作水泥原料。钼矿渣中残存的磁黄铁矿与硅灰石在水泥熟料煅烧过程中具有助熔作用,有利于熟料的烧成。用自燃煤矸石为铝质校正原料,既能增加生料中的氧化铝,又能带进一些具有活性的氧化硅和氧化铝,有利于改善生料的易烧性。 有些尾矿材质直接或精选后可以用来制造砖瓦以及附加值更高的瓷砖等建筑陶瓷产品,有些矿山已做过相应的考察和试验,据了解,多因为交通问题而否决。过高的运输成本使得产品很难在建材业内竞争。如果尾矿中能够选出质量较高的陶土、瓷土,倒不如选出来,向陶瓷厂供应原料土。 5 钼尾矿农用实例 钼尾矿农用。已经有了一些成功的探索,包括一定规模的工业试生产和田间肥效试验、示范和应用。以钼尾矿为主要原料制造矿质肥料。2007 年沈宏集团涞源矿业公司以大湾钼尾矿为主要原料,完成1000 吨级矿质肥料(多元硅肥)的工业试验。产品以钙、镁、硅为主,同时含钾及铁、铜、锌、钼等微量元素,在黑龙江省获得多元硅肥肥料登记。在黑、吉、辽、冀、豫的水稻、玉米、冬小麦、果树、大棚蔬菜、大豆、花生多种作物表现增产、抗逆、抗病虫、提高品质的功效。2008 年通过环境科学学会技术鉴定,并由中国科学技术协会发布为2009 年全国推广的新技术。 钼尾矿制造土壤调理剂。2010 年广东万方集团以白石嶂钼尾矿为主要原料完

铂族金属常用的选矿方法

书山有路勤为径,学海无涯苦作舟 铂族金属常用的选矿方法 目前就铂族金属的提取而言,工业上采用的主要是重选、浮选和它们的联合工艺,其中应用最多的是浮选。 (1)重选铂族金属矿物密度都在7 克/立方厘米以上,特别是自然金属和金属互化物都超过10 克/立方厘米,常见的自然铂、粗铂矿、锇铱矿还高达15~22 克/立方厘米,不仅远高于常见的脉石(一般密度为2.5~2.75 克/立方厘米,少数可达4.3 克/立方厘米),且高于常见的贱金属矿物(一般密度为3.6~5.5 克/立方厘米,仅个别矿物如方铅矿为7.2~7.6 克/立方厘米,但在铂矿石中很少见)。因此,只要粒度较大(一般指大于0.04 毫米),能够单体解离就可以用重选方法加以富集。一般用于处理砂铂矿和原矿中铂族金属粒度较大的铂族金属。对于一些铂矿石,往往还辅以混汞或磁选工艺以提高精矿品位和回收率。 (2)浮选铂族矿物多具有疏水性而可附着在气泡上,且现在开采的大多数资源中,细粒铂族矿物通常都是铜、镍硫矿矿物共生,因此浮选已成为当今含铂族矿物最重要,也是应用最广泛的选矿手段。但因铂族矿物密度大,当粒度较大时,则辅以重选方法,即用重、浮联合工艺才能更有效地全面回收。浮选目前主要用于处理硫化铜矿,使铂族矿物和铜、镍硫化物一并回收。铂族金属矿物的选别效果与磨矿细度、介质酸度、药剂种类及用量、工序安排等多种因素有关。通常都需要针对不同矿石的特点进行实验,以确定合理工艺流程和技术条件。 (3)重、浮联合流程对于铂族矿物粒度较大的矿石,采用重选和浮选联合法,可充分利用二者的优点,获得较好的效果。南非吕斯腾堡铂矿公司早在20 世纪30 年代就用重-浮联合法处理含铂的氧化及硫化矿石,60 年代所属的瓦特威尔选厂在浮选后,用绒面溜槽重选,获得吕斯腾堡铂矿物(含铂30%~35%,

钼矿选矿工艺

钼矿常规选矿工艺 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。 辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的S—Mo—S 结构和层内极性共价键S—Mo形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在S—Mo—S层间,亲水的S—Mo面占很小比例。但过磨时,S—Mo面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。 钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离: 一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理:次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出; 方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。 含氧化钙的脉石易泥化,因此,对于含此类脉石的矿石切忌过磨。生产上往往添加水玻璃,六聚偏磷酸钠或有机胶作脉石抑制剂或分散

选矿工艺流程修订稿

选矿工艺流程 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

工艺流程试验是为选矿厂设计(或现有选矿厂的技术改造)提供依据,在选矿厂初步设计(或拟定现场技术改造方案)前进行。一般选进行试验室试验,然后在试验室试验的基础上,根据情况决定是否进行半工业或工业试验。 选矿工艺流程试试验内容和必要的资料收集,一般由试验研究单位负责制订,有条件的可由试验、设计和生产部门三结合洽商确定。 一、收集资料的一般内容如下,但具体工程需根据条件的不同,区别对待 (一)了解上级机关下达任务的目地和委托单位提出的要求,例如:选矿厂规模、服务年限;主要有用成分和伴生成综合利用问题;试验阶段的划分;要求试验完成日期;选矿厂处理单一矿床的矿石还是几个矿床、不同类型的矿石;用户对精矿化学成分的特殊要求以及对精矿等级和粒度的要求;建厂地区的水源,选矿药剂,焙烧用燃料等的供应情况和性能分析资料等。 (二)了解有关地质资料,例如:矿床类型;地质储量;矿体产状;矿石类型;品位特征;嵌布特性;围岩脉石等变化情况;远景评价;采样设计等。 (三)了解采矿设计方面的资料,例如:采矿的开拓方案和采矿方法;不同类型矿石的混采、分采;围岩混入率和矿石采出品位;开采设计矿区的矿石类型配比和平均品位;开采设计5-10年内逐年开采的矿石类型配比和平均品位等。 (四)了解选矿方面资料,例如:选矿设计对试验的特殊要求。国内外类似矿石的试验研究和生产实践情况,可能应用的选进技术等。 二、选矿工艺流程试验主要内容有 (一)矿石性质研究 是选择选矿方案和确定选厂设计方案时与类似矿石生产实践作对比分析的依据,其中某些数据是选厂具体设计中必不可少的原始数据。 矿石性质研究包括:光谱定性和半定量,化学全分析,岩矿鉴定,物相分析,粒度分析,磁性分析,重液分析,试金分析,磨矿细度,矿石可磨度,及各种物理性能(比重、比磁化系数、导电率、水分、真比重和假比重、堆积角和摩擦角、硬度、粘度等)。 (二)选矿方法、流程结构,选矿指标和工艺条件 直接关系到选矿厂的设计方案和具体组成,是选厂设计的主要原始资料,必须慎重考虑,要求选矿方法、流程结构合理,选矿指标可靠。

镍矿石选矿流程

镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和加工方法完全不同。 硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿石时,常采用浮选硫化铜矿物的捕收剂和起泡剂。确定浮选流程的一个基本原则是,宁可使铜进入镍精矿,而尽可能避免镍进入铜精矿。因为铜精矿中的镍在冶炼过程中损失大,而镍精矿中的铜可以得到较完全的回收。铜镍矿石浮选具有下列四种基本流程。 直接用优先浮选或部分优先浮选流程:当矿石中含铜比含镍量高得多时,可采用这种流程,把铜选成单独精矿。该流程的优点是,可直接获得含镍较低的铜精矿。 1)混合浮选流程:用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍。 2)混合—优选浮选流程:从矿石中混合浮选铜镍,再从混合精矿中分选出含低镍的铜精矿和含铜的镍精矿。该镍精矿经冶炼后,获得高冰镍,对高冰镍再进行浮选分离。 3)混合—优先浮选并从混合浮选尾矿中再回收部分镍:当矿石中各种镍矿物的可浮性有很大差异时,铜镍混合浮选后,再从其尾矿中进一步回收可浮性差的含镍矿物。 铜是镍冶炼的有害杂质,而在铜镍矿石中铜品位又具有工业回收价值,因此铜镍分离技术是铜镍矿石选矿中的一个重要课题。铜镍分离技术分为铜镍混合精矿分离和高冰镍分离工艺两种。通常,前者用于铜镍矿物粒度较粗且彼此嵌布关系不甚紧密的矿石,后者用于铜镍矿物粒度细且彼此嵌布十分致密的矿石。 金川铜镍矿是大型金属共生硫化铜镍矿。其第一选矿厂选矿工艺流程主要包括:破碎为三段一闭路流程;磨矿和浮选工序改造为三段磨矿、三段浮选流程。 目前铜镍硫化物矿石主要采用火法冶炼。金川镍矿也不例外,其基本流程分备料(焙烧)—熔炼—吹炼—精炼(电解)等环节。由于该矿属于蛇纹石类型矿石,铜镍矿物彼此致密嵌布,直接采用机械选矿方法进行铜镍分离有困难,因此采用高冰镍浮选分离技术。铜镍混合精矿经转炉熔炼成高冰镍,然后经破碎和磨浮工艺,最后电解成最终产品——电解镍。 吉林磐石矿也是铜镍矿,其选矿工艺流程采用三段一闭路碎矿,阶段磨矿,铜镍混合—分离浮选,镍精矿三段脱水、铜精矿两段脱水的工艺流程。 氧化镍矿目前多采用破碎、筛分等工序预先除去风化程度弱、含镍低的大块基岩。由于氧化镍矿中的镍常以类质同象分散在脉石矿物中,且粒度很细,因此不能用机械选矿方法予以富集,只能直接冶炼。 氧化镍矿的冶炼富集方法,可分为火法和湿法两大类。前者又可分为造硫熔炼、镍铁法和粒铁法;后者又有还原焙烧-常压氨浸法、高压酸浸法等。

钼矿钼矿选矿工艺钼矿浮选工艺样本

钼矿-钼矿选矿工艺-钼矿浮选工艺 一、钼矿的历史及性质 钼是18世纪后期才发现的, 而且在自然条件下没有金属形态的钼存在。尽管如此, 钼的主要矿物-辉钼矿在古代时就早已得到了应用, 只是辉钼矿和铅、方铅矿及石墨都很相似, 不易区分, "molybdos"这个词在希腊文里就是铅的意思。 曾在14世纪的一把日本武剑中发现含有钼。到1778年, 瑞典科学家卡尔.威廉.谢勒( Carl Wilhelm Scheele) 才证实了钼的存在。她将辉钼矿在空气中进行加热, 从而产生了一种白色的氧化粉末。此后不久, 到1782年, 彼得.雅各布.耶尔姆( Peter Jacob Hjelm) 用碳成功地还原了这种氧化物, 获得一种黑色金属粉末, 她称这种金属粉末为”钼”。 19世纪钼基本上是作为实验品, 后来才逐渐生产。1891年, 法国的斯奈德Schneider)公司率先有钼作为合金元素生产了含钼装甲板, 她们马上发现, 钼的密度仅是钨的一半, 这样以来, 在许多钢铁合金应用领域钼有效地取代了钨。 钼具有较高熔点(2625℃)、沸点(4600℃)、硬度(5.5)和密度(10.2g/cm3), 是电和热的良导体.相对原子量95.94g/g, 在元素周期表中为VI B 族元素, 原子序数42, 原子体积9.42 cm3/mol。 在常温下钼在空气或水中都是稳定的, 但当温度达到400℃时开始发生轻微的氧化, 当达到600℃后则发生剧烈的氧化而生成MoO3 。盐酸、氢氟酸、稀硝酸及碱溶液对钼均不起作用。钼可溶于硝酸、王水或热硫酸溶液中。

二、钼矿的用途 1、钼大量用于合金添加剂、生产不锈钢、工具钢、耐温钢等。 2、钼钢广泛用于金属压力加工行业、冶金行业、建材行业、机械行业、宇航军及工业、核工业、化工纺织工业和农业。 3、钼还可作为化工原料, 生产催化剂、润滑剂、颜料和肥料等。 4、在冶金工业中, 钼作为生产各种合金钢的添加剂, 或与钨、镍、钴, 锆、钛、钒、铼等组成高级合金, 以提高其高温强度、耐磨性和抗腐性。金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电极和栅极、半导体及电光源材料。在化学工业中, 钼主要用于润滑剂、催化剂和颜料。 三、钼资源及分布 自然界中已知的钼矿物及含钼矿物约有30种, 其中具有工业价值的是辉钼矿MoS2 , 其它较常见的还有钼华、钼铅矿、蓝钼矿、铁钼矿等。 钼在地壳中的平含量为1.1×10-4%, 属稀有金属。集中分布在美国、加拿

选矿方法(基本原理、工艺流程)

1、重介质选矿法: (1)方法是基于矿石中不同的矿粒间存在着密度差,(或粒度差),籍助流体动力和各种机械力作用,造成适宜的松散分层和分离条件,使不同物料得到分离。 重介质选矿分选原理 根据阿基米德定理,小于重介质密度的颗粒将在介质中上浮,大于重介质密度的颗粒在介质中下沉。 (2)工艺流程 矿石的重选流程是由一系列连续的作业组成。作业的性质可分成准备作业、选别作业、产品处理作业三个部分。(1) 准备作业,包括a:为使有用矿物单体解离而进行的破碎与磨矿;b:多胶性的或含黏土多的矿石进行洗矿和脱泥;c:采用筛分或水力分级方法对入选矿石按粒度分级。矿石分级后分别入选,有利于选择操作条件,提高分选效率。2) 选别作业,是矿石的分选的主体环节。选别流程有简有繁,简单的由单元作业组成,如重介质分选。(3) 产品处理作业,主要指精矿脱水、尾矿输送和堆存。 2、跳汰选矿法 (1)原理:跳汰选矿是在垂直交变介质流的作用下,使矿粒群松散,然后按密度差分层:轻的矿物在上层,叫轻产物;重的在下层,叫重产物,从而达到分选的目的。介质的密度在一定范围内增大,矿粒间的密度差越大,则分选效率越高。 实现跳汰过程的设备叫跳汰机。被选物料给入跳汰机内落到筛板上,便形成一个密集的物料展,这个物料层,称为床层。在给料的同时,从跳汰机下部周期性的给入上下交变的水流,垂直变速水流透过筛孔进入床层,物料就是在这种水流中经受跳汰的分选过程。 (2)工艺过程 当水流上升时,床层被冲起,呈现松散及悬浮的状态。此时,床层中的矿粒,按其自

身的特性(密度、粒度和形状),彼此作相对运动,开始进行分层。在水流已停止上升,但还没有转为下降水流之前,由于惯性力的作用,矿粒仍在运动,床层继续松散、分层。水流转为下降,床层逐渐紧密,但分层仍在继续。当全部矿粒落回筛面,它们彼此之间已丧失相对运动的可能,则分层作用基本停止。此时,只有那些密度较高、粒度很细的矿粒,穿过床层中大块物料的间隙,仍在向下运动,这种行为可看成是分层现象的继续。下降水流结束,床层完全紧密,分层便暂告终止。水流每完成一次周期性变化所用的时间称为跳汰周期。在一个跳汰周期内,床层经历了从紧密到松散分层再紧密的过程,颗粒受到了分选作用。只有经过多个跳汰周期之后,分层才逐趋完善。最后,高密度矿粒集中在床层下部,低密度矿粒则聚集在上层。然后,从跳汰机分别排放出来,从而获得了两种密度不同,即质量不同的产物。 3、浮选 (1)原理:浮选是根据矿物表面物理化学性质的差异,而分选矿物的一种选矿方法。 (2)浮选流程包括磨矿,分级,调浆及浮选的粗选、精选、扫选作业。有一段磨浮流程;分段磨矿-浮选的阶段磨浮流程;精矿或中矿再磨再选流程。浮选产出粗精矿的作业称粗选;粗精矿再选作业称精选;尾矿再选作业称扫选。回收矿石中多种有用矿物时,不同矿物先后浮选的流程称优先浮选或选择浮选;先将有用矿物全部浮出后再行分离的流程,称混合-分离浮选。工业生产时必须针对矿石的性质和对产品的要求,采用不同的药方和浮选流程。 浮选的原则流程即浮选的骨干流程或流程的主干结构。它一般包括段数、循环和矿物的浮选顺序等内容。 3)浮选机:浮选机类型:机械搅拌式浮选机、充气式浮选机、混合式浮选机或充气搅拌式浮选机、气体析出式浮选机。

金矿的选矿方法

金矿选矿 根据矿物中金的结构状态和含金量,可将金矿床矿物分为金矿物、含金矿物和载金矿物三大类。所谓金的独立矿物,系指以金矿物和含金矿物形式产出的金,它是自然界中金最重要的赋存形式,也是工业开发利用的主要对象。 目前主流的选金工艺 一般都通过破碎机破碎-再进球磨机-粉碎,通过重选、浮选 提取出来精矿和尾矿,再通过化学方法,最后经过冶炼,其产品最终成为成品金。 该选矿工艺可理解为: 原矿进行第一段破碎后进入双层振动筛筛分 上层产品通过再破碎后与中层产品一同进行第二段破碎 第二段破碎产品返回合并第一段破碎产品又进行筛分。 筛分后的最终产品通过第一段球磨机进行磨矿并与分级机构构成闭路磨矿 其分级溢流经旋流器分级后进入第二段球磨机再磨 然后与旋流器构成闭路磨矿。 旋流器溢流首先进行优先浮选 其泡沫产品进行二次精选、三次精选最终成为精矿产品 经优先浮选后的尾矿经过一次粗选、一次精选、二次精选、三次精选、一次扫选的选别流程 一次精选的尾矿与一次扫选的泡沫产品一并进入旋流器进行再分级、再选别 二次精选与一次精选构成闭路选别 三次精选与二次精选构成闭路选别。 破碎及研磨 2 多采用颚式破碎机进行粗碎 采用标准型圆锥破碎机中碎 而细碎则采用短头型圆锥破碎机以及对辊破碎机。中、小型选金厂大多采用两段一闭路破碎 大型选金厂采用三段一闭路破碎流程。为提高产量及设备利用系数 选矿厂一般遵循多碎少磨原则 降低入磨矿石粒度。 重选 重力选矿是按矿物密度差分选矿石的方法 在当代选矿方法中占有重要地位。采用的主要设备有溜槽、摇床、跳汰机和短锥旋流器等。 浮选 我国80%的选金厂采用浮选法选金 产出的精矿多送往有色冶炼厂处理。由于氰化法提金的日益发展和企业为提高经济效益 减少精矿运输损失 近年来产品结构发生了较大的变化 多采取就地处理 当然也由于选冶之间的矛盾和计价等问题 迫使矿山就地自行处理 促使浮选工艺有较大发展 在选金生产中占有相当的重要地位。 化选

钼矿石选矿

钼矿石选矿 创建时间:2008-08-02 钼矿石选矿(processing of molybdenum ores) 从含钼矿石中分离与富集钼矿物的过程。选矿产品为钼精矿,用以冶炼生产钼合金钢、钼基合金及钼化工产品。 矿物与资源自然界钼矿物有30余种,有工业意义的钼矿物主要是辉钼矿,其次为钼钨钙矿、彩钼铅矿、铁钼华等(见表)。钼矿石工业类型有单一钼矿石、铜钼矿石、钨钼矿石、铀钼矿石、含钼多金属矿石等。中国钼矿资源丰富,储量居世界前列。钼矿山分布面很广,多集中于陕西、河南、吉林、辽宁四省;主要钼矿山有陕西金堆城钼矿,辽宁杨家杖子钼矿与河南滦川钼矿。中国钼矿特点是品位较低,共生矿多,储量大,主要为地下开采。此外,世界上的钼矿主要集中于南北美洲科迪勒拉山系。重要产钼国家有美国、加拿大、智利、秘鲁、墨西哥以及俄罗斯、亚美尼亚等。 工艺流程根据钼矿物硬度小,嵌布粒度细,但可浮性好的特点,钼矿石选矿多采用分段浮选,多次精选的工艺流程。钼矿石的选矿流程分为单一钼矿石选矿与含钼多金属共生矿石选矿两类流程。 单一钼矿石选矿采用一段闭路磨矿粗选,粗选尾矿经过2~3次扫选排出最终尾矿,粗选精矿再磨后多次精选(4~12次)得钼精矿。 含钼多金属共生矿石选矿根据伴生矿物的可选性差异而采用不同的选矿工艺流程。铜钼共生矿石多采用铜一钼混合浮选,丢弃大量尾矿,混合精矿再磨后进行铜钼分离的工艺流程;钼钨共生矿石,伴生白钨矿采用优先浮选,伴生黑钨矿用浮选重选联合流程;钼铀共生矿一般采用浮选一水冶联合工艺流程。浮选是回收辉钼矿,分离钼矿物与伴生金属矿物的有效方法。浮选以烃类油(煤油、变压器油等)作捕收剂,松油、二甲酚、高级脂肪醇作起泡剂。伴生硫化矿的抑制剂有氰化钠、硫化钠、诺克斯(Nokes)等。当矿石含Mo0.09%~0.3%时,选出的钼精矿钼品位为47%~55%,回收率80%~90%。典型选矿厂金堆城钼业公司第三选矿厂位于中国陕西省华县。1984年投产,生产规模1.5万t/d,为中国最大的钼矿选厂。矿石中主要金属矿物为辉钼矿,其次为磁铁矿、黄铜矿,以及方铅矿、闪锌矿、辉铋矿和锡石等。脉石矿物主要为石英、长石,其次有萤石、白云母、黑云母、绢云石、方解石等。选矿工艺流程由破碎、粗选与精选三部分组成;破碎为三段一闭路;粗选为一次粗选、二次精选、二次扫选;精选为一段再磨,九次精选。原矿钼品位0.118%,精矿钼品位46.87%,回收率80.66%。 小寺沟铜钼矿选矿厂位于中国河北省平泉县。1971年建成,经几次扩建与改建,1991年生产规模达3000t/d。小寺沟矿石属细脉浸染斑岩铜钼矿,主要金244属矿物为辉钼矿、黄铁矿、黄铜矿,其次为闪锌矿、辉铜矿、斑铜矿、方铅矿。脉石矿物主要为石英、长石,其次为绢云母、白云母、绿泥石等。选矿工艺流程由三段一闭路碎矿,铜钼混合浮选,铜钼分离浮选工艺构成。产品有钼精矿与铜精矿。1987年指标:原矿含Mo0.064%,含CuO.129%;镅精矿含Mo46.67%,回收率74.96%;铜精矿含Cul6.15%,回收率50.91%。 相关词条: 钼矿石选矿原矿和产品的运输

钼矿的选矿工艺与药剂

书山有路勤为径,学海无涯苦作舟 钼矿的选矿工艺与药剂 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。钼矿的选矿:辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的SMoS 结构和层内极性共价键SMo 形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在SMoS 层间,亲水的SMo 面占很小比例。但过磨时,SMo 面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。 钼矿的选矿:钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15 毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离: 钼矿的选矿药剂:一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁; 用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量

铜镍矿石选矿工艺常见四种基本流程介绍

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 铜镍矿石选矿工艺常见四种基本流程介绍 镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和加工方法完全不同。硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿.. 镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和加工方法完全不同。 硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿石时,常采用浮选硫化铜矿物的捕收剂和起泡剂。确定浮选流程的一个基本原则是,宁可使铜进入镍精矿,而尽可能避免镍进入铜精矿。因为铜精矿中的镍在冶炼过程中损失大,而镍精矿中的铜可以得到较完全的回收。 铜镍矿石浮选具有下列四种基本流程。 1.直接用优先浮选或部分优先浮选流程:当矿石中含铜比含镍量高得多时,可采用这种流程,把铜选成单独精矿。该流程的优点是,可直接获得含镍较低的铜精矿。 2.混合浮选流程:用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍。 3.混合—优选浮选流程:从矿石中混合浮选铜镍,再从混合精矿中分选出含低镍的铜精矿和含铜的 镍精矿。该镍精矿经冶炼后,获得高冰镍,对高冰镍再进行浮选分离。 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

红土镍矿处理方法综述

和Mg之后。然而,在地壳中镍的含量很低,不到0.01%,其丰度排在第24位。 地球上有四种含镍矿物: ⑴硫化镍矿——镍黄铁矿、镍磁黄铁矿和针硫镍矿等 ⑵氧化镍矿——主要指红土镍矿 ⑶含砷镍矿——红镍矿、砷镍矿和辉镍矿等 ⑷深海含镍锰结核 深海含镍锰结核的数量现在还无法估计,由于开采成本太高,暂无法利用这种含镍资源。目前,世界各国正在研制海底机器人,为开采海底锰结核做前期准备工作。 含砷镍矿在地球上的储量很少,是一种次要的含镍资源。主要的炼镍原料是硫化镍矿和红土镍矿。 根据目前的炼镍技术水准,硫化镍矿含镍高于3%的被称为富矿,可不经选矿而直接冶炼;含镍较低的硫化镍矿需经过选矿进行富集,产出品位较高的硫化镍精矿再进行冶炼。红土矿很难用选矿方法来富集,通常是用冶炼的方法直接处理。 1.3 开发和利用红土镍矿资源的重要意义 ⑴陆地上镍资源总量中硫化镍矿和红土镍矿的比例约为3:7,未来镍冶金工业的发展主要以红土矿为原料; ⑵硫化镍矿日趋枯竭,中国的硫化镍矿的年产量以10%的速度递减; ⑶红土镍矿埋藏在地表附近,开采成本低,不需要选矿,随着冶炼技术水

准的提高,处理红土镍矿的成本不断降低; ⑷选择合适的生产方法,处理红土镍矿可不产生二氧化硫烟气污染; ⑸中国是镍的消费大国,同时又是贫镍国。 由以上事实可知,我国开发红土镍矿资源有着非常重要的意义。目前,世界各国,特别是发达国家,都在积极开发或准备开发红土镍矿资源。 2 红土镍矿的特点 2.1 红土镍矿的地质结构 红土镍矿是由多雨的热带和亚热带的橄榄岩(Peridotite)和蛇纹石(Ser pentine)这样一些超级岩石的风化而形成的。红土镍矿床通常是分层存在于地表以下0~40米范围,矿床的地质结构为:覆盖层;褐铁矿层;过渡层;腐泥层;橄榄岩层。有价元素镍和钴主要分布在褐铁矿层,过渡层和腐泥土矿层。因此,人们通常将红土镍矿床分为三个矿层: ⑴褐铁矿层(Lateritic ore layer) 褐铁矿层离地表最近,主要矿物包括褐铁矿(Laterite)、针铁矿(Goet hite)、水铝矿(Gibbsite)和铬铁矿(Chromite)。矿石的化学成分和矿物组成很均匀,镍的含量较低,通常含有一定数量的钴,结晶性差,粒度较细。 ⑵腐泥矿层(Saprolitic ore layer) 腐泥矿层埋藏较深,正好在基岩之上,主要含有石英(Quartz),滑石(T alc),蛇纹石(Serpentine),橄榄石(Olivine)和硅镁镍矿(Garnierite)等矿物。矿石含镍量最高,但其化学成分和矿物组成极不均匀。 ⑶过渡矿层(Transition ore layer)

钼矿有哪些选矿方法

书山有路勤为径,学海无涯苦作舟 钼矿有哪些选矿方法 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的SMoS 结构和层内极性共价键SMo 形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在SMoS 层间,亲水的SMo 面占很小比例。但过磨时,SMo 面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15 毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离:一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理:次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出;方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。

(冶金行业)黄金选矿与加工技术

(冶金行业)黄金选矿与加 工技术

黄金选矿和加工技术 2010-03-13 金在矿石中的含量极低,为了提取黄,需要将矿石破碎和磨细且采用选矿方法预先富集或从矿石中使分离出来。黄选矿中使用较多的是重选和浮选,重选法在砂生产中占有十分重要的地位,浮选法是岩矿山广为运用的选矿方法,目前我国80%左右的岩矿山采用此法选,选矿技术和装备水平有了较大的提高。 (壹)黄破碎和磨矿 据调查,我国选厂多采用颚式破碎机进行粗碎,采用标准型圆锥碎矿机中碎,而细碎则采用短头型圆锥碎矿机以及对辊碎矿机。中、小型选厂大多采用俩段壹闭路碎矿,大型选厂采用三段壹闭路碎矿流程。 为了提高选矿生产能力,挖掘设备潜力,对碎矿流程进行了改造,使磨矿机的利用系数提高,采取的主要措施是实行多碎少磨,降低入磨矿石粒度。 (二)重选 重选在岩矿山应用比较广泛,多作为辅助工艺,在磨矿回路中回收粗粒,为浮选和氰化工艺创造有利条件,改善选矿指标,提高的总回收率,对增加产量和降低成本发挥了积极的作用。山东省约有10多个选厂采用了重选这壹工艺,平均总回收率可提高2%~3%,企业经济效益好,据不完全统计,每年可得数百万元的利润。河南、湖南、内蒙古等省(区)亦取得好的效果,采用的主要设备有溜槽、摇床、跳汰机和短锥旋流器等。从我国多数黄矿山来见,浮—重联合流程(浮选尾矿用重选)适于采用,今后应大力推广阶段磨矿阶段选别流程,提倡能收、早收的选矿原则。

(三)浮选 据调查,我国80%左右的岩矿山采用浮选法选,产出的精矿多送往有色冶炼厂处理。由于氰化法提的日益发展和企业为提高经济效益,减少精矿运输损失,近年来产品结构发生了较大的变化,多采取就地处理(当然也由于选冶之间的矛盾和计价等问题,迫使矿山就地自行处理)促使浮选工艺有较大发展,在黄生产中占有相当的重要地位。通常有优先浮选和混合浮选俩种工艺。近年来在工艺流程改造和药剂添加制度方面有新的进展,浮选回收率也明显提高。据全国40多个选厂,浮选工艺指标调查结果表明,硫化矿浮选回收率为90%,少数高达95%~97%;氧化矿回收率为75%左右;个别的达到80%~85%。近年来,浮选工艺流程的革新改造以及科研成果很多,效果明显。阶段磨浮流程,重—浮联合流程等,是目前我国浮选工艺发展的主要趋势。如湘西矿采用重—浮联合流程,进行阶段磨矿阶段选别,获得较好指标,回收率提高6%之上;焦家矿、五龙矿、文峪矿、东闯矿等也取得壹定的效果。又如新城矿,原流程为原矿直接浮选,由于含泥较高(矿石本身含泥高,再加采矿尾砂胶结充填强度不够,带入部分泥砂)使选矿指标连续下降。经考查试验,采用了泥砂分选工艺流程,回收率由93.05%提高到95.01%,精矿品位135g/t提高到140g/t,稳定了生产。厂峪矿由于原矿品位逐年下降,因此使浮选指标降低,经和沈阳黄学院等单位合作试验研究采用分支浮选工艺,提高了浮选指标和精矿品位。这壹科研成果(于1988年1月黄总X公司通过了技术鉴定),为浮选工艺改造得到了新的启示。当然,浮选法和其他方法壹样不是万能的,不可能对所有含矿石都有效,主要仍要考虑矿石性质,在选择工艺流程时,需进行多方面的论证和试验。 近几年来,为提高分选效果,在工艺不断改进的同时,对药剂添加制度和混

钼矿选矿工艺研究进展-2011

钼矿选矿工艺研究进展 2011-8-4 9:54:56 [导读]叙述了几种钼选矿新工艺,其中包括:矿石经磨碎后,先无捕收剂浮选,得出无捕收剂污染的含碳很低的润滑剂二硫化钼;采用正浮选-反浮选-正浮选工艺分离铜钼精矿,得出高品位、高回收率的钼精矿;用BinghamCanyon选冶联合工艺处理难选的铜钼低品位精矿和采用氧压氧化高铜钼精矿生产低铜钼精矿和电解铜。 一、前言 现代选矿工程正朝着提高资源利用率,扩大可利用资源量和循环再利用资源的方向发展。例如选矿-拜尔法选冶新技术使我国第一大有色金属铝资源的可利用年限从不足10年延长到40年,铜的硫化矿生物冶金新技术可降低可利用铜矿石的品位约20%~40%,可使我国铜矿的可利用资源量增长2倍多。浮选-钼蓝法可有效地利用储量巨大的氧化钼矿,低品位钼精矿-氧压氧化法可使某些难选高氧化率钼矿的可利用率提高15个百分点??。 近年来,传统的选矿工艺面临着挑战,许多研究单位和高等学校通过多年的研究推出许多资源利用高的新奇的选钼工艺和选冶联合工艺。这些工艺的破茧而出十分引人瞩目。 这些新工艺与传统的粗磨粗选,再磨精选,铜钼矿石混合浮选以及简单的铜钼分离比较,显得研究者的匠心独特、细腻,富有创新精神,下面介绍几种,不到之处在所难免。 二、无捕收剂浮选-浮选工艺流程 Amax公司的Deepak.Malhotra等[1~3]研制一种先无捕收剂浮选辉钼矿、粗选尾矿再用强力捕收剂浮选辉钼矿新工艺。 将含Mo0.18%、FeS22.2%、Cu0.007%、Pb0.003%、Zn0.012%的钼矿石,在球磨机中磨至P80=100μm,不加任何辉钼矿的捕收剂,如蒸汽油、柴油和煤油等,只加起泡剂MIBC甲基 异丁基甲醇,经粗选后,得到含Mo约11%的粗精矿,粗选粗精矿钼回收率76.8%,粗精矿经3段砾磨再磨和5次精选,5次精选时,共加水玻璃140g/t,精选尾矿含Mo0.4%,废弃。5次精选精矿含MoS297.5%~98%,和少量含铁硫化物杂质,该最终精矿为润滑剂级二硫化钼,经气流磨磨至0.5~1μm为产品。 这种无捕收剂浮选产出的润滑剂级二硫化钼较用柴油或蒸汽油选出的钼精矿经盐酸—氟氢酸浸出后,再用碱洗后产出的润滑剂级二硫化钼(米特森公司产)含C量要低得多,通常不大于0.7%,其他杂质如Fe、MoO3、油等也比较低。众所周知,目前国内外用煤油浮选出的钼精矿作生产润滑剂级二硫化钼前驱体时,钼精矿含油一般在2%~4%,这种碳氢油在制备润滑剂二硫化钼过程中可转为碳。未转

锑矿选矿工艺流程分析

锑矿选矿工艺流程分析 流程介绍: 提取方法: 锑矿的提取方法除应根据矿石类型、矿物组成、矿物构造和嵌布特性等物理、化学性质作为基本条件来选择外,还应考虑有价组分含量和适应锑冶金技术的要求以及最终经济效益等因素。锑矿石的选矿方法,有手选、重选、重介质选、浮选等。 手选: 锑矿石手选工艺是利用锑矿石中含锑矿物与脉石在颜色、光泽、形状上的差异进行的。该方法虽然原始,且劳动强度较大,但用于锑矿石选矿仍具有特殊意义:因为锑矿物常呈粗大单体结晶或块状集合体晶体产出,手选常能得到品位较高的块锑精矿,适合于锑冶金厂竖式焙烧炉的技术要求;手选能降低选矿生产成本和能耗,因此它在我国广泛使用。据资料统计:我国现生产的18个主要锑选矿厂中,有手选作业的有15座,占83.3%,其中单一硫化锑矿选厂4座,硫化—氧化混合锑矿选厂4座,含锑复杂多金属矿选厂7座。手选选出的块状锑精矿,只需含锑7%以上就可进入竖式焙烧炉直接挥发焙烧,以制取三氧化二锑。手选出含锑高于45%的块状硫化锑精矿,通过熔析法可制取纯净的三硫化二锑(俗称生锑),用于生产。手选除拣出高品位块状锑精矿外,也可以直接丢弃大量废石,以提高入选原矿品位。适合手选的矿石粒度,大都在28~150毫米间。大多数锑选厂采用宽级别手选,只有个别选厂如锡矿山北选厂采用分级成窄级别手选。由于原矿往往含泥,因此洗矿作业常是手选前不可缺少的预备作业。入选原矿经过洗矿然后手选,比不经洗矿直接手选效果要好。 重选: 锑矿石的重选工艺对于大多数锑矿石选厂均适用,因为锑矿物属于密度大、粒度粗的矿物,易于用重选方法与脉石分离。其中:辉锑矿密度为 4.62克/厘米3,而脉石密度介于2.6~2.65克/厘米3之间,其等沉(降)比为2.19 ~2.26,属易选矿石;黄锑华密度为5.2克/厘米3、红锑矿密度为7.5克/厘米3、锑华为5.57克/厘米3,它们与脉石的等沉(降)比分别为2.55~2.63,3.93~4.06和2.76~2.86,这三种锑矿石属于按密度分选的极易选矿石。只有水锑钙,石密度3.14克/厘米3,与脉石等沉(降)比值仅1.29,属于按密度分选较难选矿石,但它在锑矿石中并不算主要成分,不影响重选的使用。总之,不论单一硫化锑矿石或硫化( 氧化混合锑矿石,均具有较好的重选条件。且重选费用低廉,又能在较粗粒度范围内、分选出大量合格粗粒精矿,并丢弃大量脉石,因此,重选仍是当今锑选矿工作者乐于采用的选矿方法。有时,它即使不能直接选出合格锑精矿,然而作为锑浮选作业的预选作业,也常被人接受,特别是浮选在现阶段处理氧化锑矿石的困难很多的情况下,因而重选成了氧化锑矿石的主要选矿方法。 浮选: 浮选是锑矿物最主要的提取方法。硫化锑矿物属易浮矿物,大多采用浮选方法提高矿石晶位。其中:辉锑矿常先用铅盐作活化剂,也有用铜盐或铅盐铜盐兼用的,然后用捕收剂浮选。常用的捕收剂为丁黄药或页岩油与乙硫氮混合物,起泡剂为松醇油或2号油;氧化锑矿则属难浮矿石。

相关文档
最新文档