固体激光器的特点及应用

固体激光器的特点及应用
固体激光器的特点及应用

第一章引言

激光是人类在上个世纪所创造的最杰出的技术成就之一。自上世纪60年代,梅曼发明了全球首台激光器以来,激光技术的发展至今已经硕果累累,并且已经在人类社会的各行各业中普遍应用。

从固体激光器的出现到今天,一直都特别的备受大家的关注。因为它具有峰值功率高,输出能量大,以及结构紧凑耐用等特点,所以在各个方面都有广大的用途,具有不可估量的价值。有了这些优异的特点,固体激光器在科学研究、国防军工、工业生产、医疗健康等领域获得了大量的运用,使我们的日常生活越来越美好。

目前激光器的研究重点方向是使器件的体积愈来愈小、器件的重量愈来愈轻、效率愈来愈高、光束质量愈来愈好、可靠性愈来愈高、寿命愈来愈长、运转愈来愈敏捷的全固态激光器。全固态激光器的应用扩展到了我们生活的各个领域,它是应用领域中基础的、特别重要的核心器件,已经成为了我们日常活动中不可或缺的帮手。它的结构、输出功率、转换效率以及光束质量都取得了非常大的进步,具有强大的生命力。

全固态激光器汇聚了半导体激光器和固体激光器的特点,具有体积小、效率高、光束质量好、可靠性高、寿命长、运转灵便等优点,所以是前途光明的激光研究方向,它通过变频获得宽波段输出、便于模块化和电激励等应用优势,已经在科研、医疗、工业加工、军事等领域获得了广泛的应用,是新一代性能卓越的绿色、节能光源[1]。

现如今,激光技术在各个领域的广泛应用,已经是企业向信息化转型的不可缺少的推动力量,而且推动了一个完整的高新技术链条的有序成长。根据国外的相关资料统计,国外的激光产业发展状况呈现出繁荣昌盛的景象,市场需求不断上涨,每年以百分之二十以上的速度上升。如今,我国的激光市场发展稳定、增长速度飞快。根据统计报告,我国的激光产品在1999年的市场销售额仅为14.13亿,2005年达到了47.75亿。所以固体激光器的发展呈现出非常好的趋势,具有非常广阔的市场,有很大的发展空间。

第二章激光与激光器

2.1激光

2.1.1激光(LASER)

它是指在受激辐射的作用下把光变强的现象,英语称号为Laser。

2.1.2激光产生的条件

激光产生的条件有三个:

1)具备能够实现能级跃迁的工作介质,叫做激活介质,它能让上、下两个能级

之间处于粒子数反转的状态;

2)有提供光反馈的光学谐振腔,其作用一是延长工作物质的长度,使工作物质进行持续的受激辐射,达到给光子加速这个目标;二是能够对于激光的发射方向进行干涉现象;三是对于输出的波长进行控制。

3)有能够使工作物质从低级向高级转化所需要的能量,从而能够使得激光达到发生的条件。

2.1.3激光的特性

激光产生的机理与普通光源的发光有区别,所以激光具备不同于普通光的特性:高度的方向性、单色性、相干性和高亮度[2]。

单色性是指光的强度依照其频率进行排列的方式。这个指标可以通过频谱分布的宽度进行衡量,频谱越宽,说明其性能越差。

方向性是指光能够按照要求在某个位置进行分布。这样我们就可以使光在很远的距离也能够有很高的强度,这是光传播距离的指标,方向性越好,说明其照射的距离越远。

单色亮度是衡量光源的发光能力的指标,它的物理意义是单位截面、频宽和立体角内,光源的发射功率。

2.2激光器的发明与发展

上世纪20年代,Albert Einstein的光子受激辐射原理为激光的出现提供了巨大的帮助,这个原理是指处于高能态的光子受到低能态的光子作用,转变成低能态,并且产生第二个,同之前的光子一起发射[3]。

1951年,汤斯提出了微波激射器的概念。1954年,美国科学家汤斯和俄国科学家普罗霍罗夫得到了氨分子的粒子束发转现象,不久之后他们又发现了微波的受激发射。

1956年,荷兰物理学家Bloembergen创造了通过光泵浦三能级原子系统能够将粒子束进行反向排列的概念。

1958年,美国物理学家Schawlow和Townes通过谐振腔的作用得到了激光器以及俄国科学家普罗霍罗夫也研制成功了振荡器和放大器,这两个发明对于激光的发现提供了非常伟大的帮助。

1960年,在前人激光理论基础上,美国物理学家Maiman研发了全球首台激光器。

1965年,人类历史上首台CO2激光器在美国被顺利研发成功,这是有史以来世界上首台可以生产大功率的激光器。紧接着两年后X射线激光器也被顺利的研发出来。现在我们生活的各个领域对激光技术基本上都有普遍的运用。

而对于我国激光器具体的研制成功的发展情况,由下表2.1可以清晰的看到:

2.3激光器的类型

自上世纪60年代激光器发明至今,有关这方面的科学技术已经得到了很大的进步,现在各行各业都有激光技术的成功运用。激光器的类型较多,我们可以遵循以下的分类手段将其类别:

1)工作物质:按照这种方式我们可以将其主要分为固体、气体、染料、半导体、光纤以及自由电力等六种激光器。

2)激励方式:按照这种方式可以将其分为光泵式、化学以及核泵浦三种激光器[4];

3)运转方式:按照这种方式可以将其分为连续、单脉冲、锁模以及可调谐等四类激光器。

4)按输出波长的长度为标准来对其进行区别,包括红外激光器、可见激光器、紫外激光器和X射线激光器四类。

如下表2.2所示:

表2 .2 激光器的分类

分类方式

工作物质

激励方式

运转方式

输出波长

气体激光器 固体激光器

半导体激光器 染料激光器 光泵式激光器 核泵浦激光器 化学激光器

化学激光器 其他激光器

连续激光器 单次脉冲激光器 锁模激光器

可调谐激光器 红外激光器 可见激光器 紫外激光器

X 射线激光器

第三章固体激光器

3.1固体激光器的工作原理和基本结构

这种激光器的作用原理是工作物质通过能量吸收后达到激发态,为了能够使得粒子束反转以及保持这种状态提供体检,进而使得光放大然后输出。这类激光器的结构如下图3.1所示:

1)工作物质aa

工作物质是激光器能够产生作用不可缺少的关键构成成员,它包括激活粒子和基质两种构成成分。激光中的很多重要的性能参数都是由激活粒子能级构造作用而成,基质主要是对物质的性能产生影响。

2)泵浦系统

泵浦系统工作的时候需要的前提工作条件有两个必要条件:一是泵浦的发光效率一定要满足系统的运行;二是对于受激辐射光的属性一定要和工作物质的光谱属性相一致。

我们还有经常使用的泵浦源有:太阳能、惰性气体等和激光二极管等。现在惰性气体是最经常使用的泵浦源,而在小型的功率器件中太阳能这类的泵浦源经常用到,现在我们在这方面的技术正在朝着LD泵浦的方向迈进,它的优良特点比较明显:具有很强的光转换率、功率大、稳定性好、安全可靠、使用时间长以及体积小等,现在它已经是固体激光发展中最有发展前景的泵浦源。

LD激光器可以分为端面、侧面、边面以及混合泵等分类形式[5],图3.2为端面和侧面的泵浦结构图。

激光器的分类

激光器的分类 自从上世纪60年代以来,激光器已经发展出了众多类型,主要包括不同的工作介质、不同的脉宽,因此我们按照激光器的工作介质和输出脉冲两个思路对目前主要的激光器进行分类,并且介绍相关的激光术语。 按激光工作介质,激光器可以分为固体激光器、气体激光器、半导体激光器、光纤激光器、染料激光器和自由电子激光器。 固体激光器(晶体,玻璃):在基质材料中掺入激活离子而制成,都是采用光泵浦的方式激励。 1)钕玻璃激光器:在玻璃中掺入稀土元素钕做工作物质, 输出波长:λ=1.053μm 2)红宝石激光器: 输出波长:λ=694.3nm, 输出线宽:?λ=0.01~0.1nm 工作方式:连续,脉冲 3)掺钕钇铝石榴石(Nd:YAG):YAG晶体内掺进稀土元素钕,

输出波长:λ=1064nm,914nm,1319nm 工作方式:连续,高重复率脉冲 连续波可调谐钛蓝宝石激光器: 输出波长:λ=675~1100nm 气体激光器:在单色性/光束稳定性方面比固体/半导体/液体激光器优越,频率稳定性好,是很好的相干光源,可实现最大功率连续输出,结构简单,造价低,转换效率高。谱线丰富,多达数千种(160nm--4mm)。 工作方式:连续运转(大多数) 1)氦-氖激光器: 常用的为λ=632.8nm 根据选择的工作条件激光器可以输出近红外,红光,黄光,绿光 (λ=3.39μm,1.15μm) 2)CO2激光器:λ=10.6μm 3)氩离子气体激光器:λ=488nm,514.5nm 4)氦-镉激光器:波长为325nm的紫外辐射和441.6nm的蓝光 5)铜蒸汽激光器:波长510.5nm的绿光和578.2nm的黄光 6)氮分子激光器:紫外光,常见波长:337.1nm,357.7nm 半导体激光器:由不同组分的半导体材料做成激光有源区和约束区的激光器;体积最小,重量最轻,使用寿命长,有效使用时间超过10万小时。工作物质包括GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟),CdS(硫化镉)。 输出波长范围:紫外,可见,红外 DFB半导体激光器,

固体激光器原理固体激光器

固体激光器原理-固体激光器 固体激光器发展历程 固体激光器发展历程 固体激光器用固体激光材料作为工作物质的激光器。1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。 这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:(1)过渡金属离子;(2)大多数镧系金属离子;(3)锕系金属离子。这些掺杂到固体基质中的金属离子的主要特点是:

具有比较宽的有效吸收光谱带,深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。用作晶体类基质的人工晶体主要有:刚玉 、钇铝石榴石、钨酸钙、氟化钙等,以及铝酸钇、铍酸镧等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;http://具有良好的光谱特性、光学透射率特性和高度的光学均匀性;具有适于长期激光运转的物理和化学特性。晶体激光器以红宝石和掺钕钇铝石榴石为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。

工作物质 固体激光器的工作物质,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。这种工作物质一般应具有良好的物理-化学性质、窄的荧光谱线、强而宽的吸收带和高的荧光量子效率。 玻璃激光工作物质容易制成均匀的大尺寸材料,可用于高能量或高峰值功率激光器。但其荧光谱线较宽,热性能较差,不适于高平均功率下工作。常见的钕玻璃有硅酸盐、磷酸盐和氟磷酸盐玻璃。80年代初期,研制成功折射率温度系数为负值的钕玻璃,可用于高重复频率的中、小能量激光器。 晶体激光工作物质一般具有良好的热性能和机械性能,窄的荧光谱线,但获得优质大尺寸材料的晶体生长技术复杂。60年代以来已有300种以上掺入各种稀土金属或过渡金属离子氧化物和氟化物晶体实现了激光振荡。常用的激光晶体有红宝石(Cr:Al2O3,波长6943

固体激光器原理及应用

固体激光器原理及应用

————————————————————————————————作者: ————————————————————————————————日期:

编号 赣南师范学院学士学位论 文 固体激光器原理及应用 教学学院物理与电子信息学院 届别2010届 专业电子科学与技术 学号 060803013 姓名丁志鹏 指导老师邹万芳 完成日期 2010.5.10

目录 摘要 ............................................................................... 错误!未定义书签。关键词 ........................................................................... 错误!未定义书签。Abstract ....................................................................... 错误!未定义书签。Key words ................................................................... 错误!未定义书签。1引用2? 2激光与激光器 ........................................................ 错误!未定义书签。 2.1?激光 ........................................................................ 错误!未定义书签。 2.2激光器 ............................................................... 错误!未定义书签。3?固体激光器 .............................................................. 错误!未定义书签。3.1?工作原理和基本结构 ........................................ 错误!未定义书签。3.2?典型的固体激光器?错误!未定义书签。 3.3典型固体激光器的比较?错误!未定义书签。 3.4固体激光器的优缺点?错误!未定义书签。 4固体激光器的应用?错误!未定义书签。 4.1?军事国防?错误!未定义书签。 4.2?工业制造?错误!未定义书签。 4.3医疗美容?错误!未定义书签。 5结束语 .................................................................... 错误!未定义书签。参考文献 ....................................................................... 错误!未定义书签。

第一台激光器——红宝石固体激光器

第一台激光器——红宝石固体激光器摘要:本文主要回顾了第一台激光器的研制历程,介绍了红宝石激光器的工作原理和它的发明者梅曼先生。 一、发展历程 1917年,爱因斯坦(Einstein)在气体平衡计算的工作中,发现在自然界存在着两种发光形式:一种是自发辐射,一种是受激辐射。前者指的是自然光的发光形式,而第二种正是产生激光的基础理论。激光的定义就是:“利用辐射的受激辐射实现的光放大”( Light amplification by the stimulated emission of radiation )。爱因斯坦的观点被当时的第一次世界大战的枪炮声所淹没,对于受激辐射这一重妥概念的意义没有被人们及时认识到. 1921年,发明磁控管,从此开始了微波的研究。 1927年,狄拉克(Dirac)根据感应辐射的属性提出创制星子书瞬浮的建议。 1934年,克赖克汤和威廉}i} i}i}于振荡器发现了电磁波和分a:.的相互作用。这是最旱期的电磁波谱学实验。 30年代,一些科学家建立的量子力学理论,使爱因斯坦的这两种发光形式的物理内容得到更为深刻的阐明。同时,近代光谱学的发展,也为激光光的出现奠定了的理论基础. 1944年,扎沃依斯基发现了电子的顺磁共振,打下了对微波波段电子顺磁能级研究的基础. 1945年第二次世界大战结束以后,大扰物理学家问到大学工作,在大学里建起了强大的新设备.他们开始着手进行微波波谱学山研究。当时,韦伯(Webber )、法布里肯特、巴索夫(tacos)和普罗霍洛夫(11po1。二。。)以及汤斯("l}ow'nes)等科学家分别提出了用受激辐射获得放大的设想。这是激光理论发展的重要起点. 1946年在美、英两国几乎同时发现氨谱线中的精细结构和超精细结构。 关于波谱学最显著的成果是发现氢原子谱-的兰姆位移。这是哥伦比亚大学的兰姆( Larnb)和另一同事的共同成果。他们曾具休地论述了观测净受激发射(负吸收)的可能性,明确指出了粒子数反转能够在何种状态实现,并针对一定的入射波,粗略计算了它的增益。 作为激光的物理基础—受激辐射早在1917年就为人所知.可是,从1917年到1950年30多年来,在实验上却一直没有人去证明这个过程的存在.人们以为,要想在小于一亿分之一秒的时间里进行原子受激发射的宏观观察是难于做到的。但在后来激光器制成后.实验工作并不象人们最初所设想的那样艰难。从1940年观察到离子数反转到激光器,这中间仅仅一步之差,可是这“一步”却一直走了20年. 人类对电磁波的利用和无线电技术的发展,使社会和生产急需把这种利用由无线电波段向微波波段扩展,这就导致了微波放大理论及其器件的产生. 1951年,美国的汤斯提出了利用受激辐射获得放大的原理首先获得微波放大的设想.同年,普塞耳(I'urcell)和庞德(Pound)用核磁共振所进行的一次实验,造成了粒子数反转,进一步确认了受激辐射过程,给微波放大器的产生带来了希望。其后,汤斯进行了两年半的艰苦工作,干1953年末和果尔登(Gordon )、

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

激光器的分类介绍

激光器的分类介绍 实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。在同一类型的激光器中又包括有许多不同材料的激光器。如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。最常用而范围广的有CO2laser及Nd:YAG激光。有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。如红宝石激光。而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。 (一)固体激光器 实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。 在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。由于工作物质很复杂,造价高。当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长 1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。 固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。聚光腔是使光源发出的光都会聚于工作物质上。工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。工作物质有2条主要作用:一是产生光;二是作为介质传播光束。因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。 (二)气体激光器 工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。 气体激光器大多应用电激励发光,即用直流,交流及高频电源进行气体放电,两端放电管的电压增压时可加速电子,带有一定能量,在工作物质中运动的电子

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

激光的原理及激光器分类

激光器的原理及分类 一、基础原理 量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。在微观世界里,各种粒子都有其固有的能级结构。当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。 二、自发辐射、受激辐射 1、自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量=E2-E1。过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的射向四面八方,并且频率不同、偏振状态和相位不同。 2、受激辐射 在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很

长,就所谓的亚稳定状态。但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。这就是受激辐射,激光正是利用这一原理激发出来。 二、粒子数反转 通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。这个技术叫粒子数反转。 三、光放大过程 通过粒子数反转后,其中一个粒子首先在外界光场的照射刺激下,对外发出了一个光子,这个光子又刺激其他粒子再次对外发射光子,并且方向相同,波长

激光器的种类及性能参数总结

激光器的种类及性能参数总结 半导体激光器——用半导体材料作为工作物质的一类激光器 中文名称: 半导体激光器 英文名称: semiconductor laser 定义1: 用一定的半导体材料作为工作物质来产生激光的器件。 所属学科: 测绘学(一级学科);测绘仪器(二级学科) 定义2: 以半导体材料为工作物质的激光器。 所属学科: 机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 定义3: 一种利用半导体材料PN结制造的激光器。 所属学科: 通信科技(一级学科);光纤传输与接入(二级学科) 半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。 (1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。 (2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。 (3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。 (4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。 (5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~ 10?左右。 (6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。 工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。 准分子激光器——以准分子为工作物质的一类气体激光器件。 中文名称: 准分子激光器 英文名称: excimer laser 定义:

固体激光器原理及应用

固体激光器原理及应用 摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。本论文先从基本原理和结构介绍固体激光器,最后介绍其在监测,检测,制造业,医学,航天等五个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1激光与激光器 1.1激光 1.1.1激光(LASER) 激光是在 1960 年正式问世的。但是,激光的历史却已有 100多年。确切地说,远在 1893年,在波尔多一所中学任教的物理教师布卢什就已经指出,两面靠近和平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。 1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。激光,又称镭射,英文叫“LASER”,是“Light Amplification by Stimu Iatad Emission of Radiation”的缩写,意思是“受激发射的辐射光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。 1.1.2产生激光的条件 产生激光有三个必要的条件: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分 子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产 生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择 被放大的受激辐射光频率以提高单色性。 1.1.3激光的特点 与普通意义上的光源相比较,激光主要有四个显著的特点:方向性好、亮度极高、单色性好、相干性好。

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

激光器原理及分类

激光器原理及分类 激光器是能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,1960年T.H.梅曼等人制成了第一台红宝石激光器。下面小编为大家介绍下激光器。 一、激光器原理 除自由电子激光器外,各种激光器的基本工作原理均相同。产生激光的必不可少的条件是粒子数反转和增益大于损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。激光器中常见的组成部分还有谐振腔,但谐振腔(见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。 二、激光器分类 可调谐激光器 可调谐激光器tunablelaser是指在一定范围内可以连续改变激光输出波长的激光器(见激光)。这种激光器的用途广泛,可用于光谱学、光化学、医学、生物学、集成光学、污染监测、半导体材料加工、信息处理和通信等。 单模激光器 输出为单横模(一般为基模)、多纵模的激光器。

化学氧碘激光器 化学氧碘激光器是一种机载激光器。机载激光器系统是以改型的波音 747-400F飞机作为发射平台(代号YAL-1A),以产生高能激光的化学氧碘激光器为核心,配置跟踪瞄准系统和光束控制与发射系统,利用激光作为能量直接毁伤目标或使之失效的定向能武器。 二氧化碳激光器 二氧化碳激光器是以CO2气体作为工作物质的气体激光器。放电管通常是由玻璃或石英材料制成,里面充以CO2气体和其他辅助气体(主要是氦气和氮气,一般还有少量的氢或氙气);电极一般是镍制空心圆筒;谐振腔的一端是镀金的全反射镜,另一端是用锗或砷化镓磨制的部分反射镜。当在电极上加高电压(一般是直流的或低频交流的),放电管中产生辉光放电,锗镜一端就有激光输出,其波长为10.6微米附近的中红外波段;一般较好的管子。一米长左右的放电区可得到连续输出功率40~60瓦。CO2激光器是一种比较重要的气体激光器液体激光器 液体激光器也称染料激光器,因为这类激光器的激活物质是某些有机染料溶解在乙醇、甲醇或水等液体中形成的溶液。为了激发它们发射出激光,一般采用

光纤激光器的分类

光纤激光器的分类 光纤激光器种类很多,根据其激射机理、器件结构和输出激光特性的不同可以有多种不同的分类方式。根据目前光纤激光器技术的发展情况,其分类方式和相应的激光器类型主要有以下几种: (1)按增益介质分类为: a)晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和Nd3+:YAG单晶光纤激光器等。 b)非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。 c)稀土类掺杂光纤激光器。向光纤中掺杂稀土类元素离子使之激活,(Nd3+、Er3+、Yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)而制成光纤激光器。 d)塑料光纤激光器。向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。 (2)按谐振腔结构分类为F-P腔、环形腔、环路反射器光纤谐振腔以及“8”字形腔、DBR光纤激光器、DFB光纤激光器等。 (3)按光纤结构分类为单包层光纤激光器、双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。 (4)按输出激光特性分类为连续光纤激光器和脉冲光纤激光器,其中脉冲光纤激光器根据其脉冲形成原理又可分为调Q光纤激光器(脉冲宽度为ns量级)和锁模光纤激光器(脉冲宽度为ps或fs量级)。 (5)根据激光输出波长数目可分为单波长光纤激光器和多波长光纤激光器。 (6)根据激光输出波长的可调谐特性分为可调谐单波长激光器,可调谐多波长激光器。 (7)按激光输出波长的波段分类为S-波段(1460~1530 nm)、C-波段(1530~1565 nm)、L-波段(1565~1610 nm)。 (8)按照是否锁模,可以分为:连续光激光器和锁模激光器。通常的多波长激光器属于连续光激光器。 按照锁模器件而言,可以分为被动锁模激光器和主动锁模激光器。 其中被动锁模激光器又有: 等效/假饱和吸收体:非线性旋转锁模激光器(8字型,NOLM和NPR) 真饱和吸收体: SESAM或者纳米材料(碳纳米管或者石墨烯)。

激光器

激光基础知识2——激光器 中文名称:激光器 英文名称:laser 定义:产生激光的装置。 应用学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 一、原理 除自由电子激光器外,各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。 工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。 激光器中常见的组成部分还有谐振腔,但谐振腔(见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。 二、激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。

三、激励抽运系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。 ①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成,这种激励方式也称作灯泵浦。 ②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。 ③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。 ④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 四、光学共振腔 通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为: ①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。 ②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。 共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式所决定;而作用②,则是由给定共振腔型对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性所决定的。 五、激光器分类 分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类。 5.1按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:

固体激光器原理及应用

编号 赣南师范学院学士学位论文固体激光器原理及应用 教学学院物理与电子信息学院 届别 2010届 专业电子科学与技术 学号 060803013 姓名丁志鹏 指导老师邹万芳 完成日期 2010.5.10

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1引用 (2) 2激光与激光器 (2) 2.1激光 (2) 2.2激光器 (3) 3固体激光器 (4) 3.1工作原理和基本结构 (4) 3.2典型的固体激光器 (8) 3.3典型固体激光器的比较 (11) 3.4固体激光器的优缺点 (12) 4固体激光器的应用 (13) 4.1军事国防 (13) 4.2工业制造 (15) 4.3医疗美容 (17) 5结束语 (17) 参考文献 (19)

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 Abstract:Solid-state laser is currently one of the most extensive laser,it has some very obvious advantages.The working principle of solid-state lasers and applications were described in the paper and it can enhance the understanding.In this paper, starting with the basic principles and structure of the introduced solid-state laser,and then some typical solid-state lasers and a presentation on its military defense,industrial technology,medical and cosmetic applications in three areas and future development direction were introduced. Key words:Solid-state Laser Basic Principle Basic Structure Application

固体激光器的应用

固体激光器的应用 所谓固体激光器就是用固体激光材料作为工作物质的激光器。1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。距今已有整整五十年了,在这五十年固体激光的发展与应用研究有了极大的飞跃并且对人类社会产生了巨大的影响。固体激光器在军事、加工、医疗和科学研究领域有广泛的用途。 固体激光器从其诞生开始至今一直是备受关注。其输出能量大峰值功率高结构紧凑牢固耐用因此在各方面都得到了广泛的用途其价值不言而喻。正是由于这些突出的特点其在工业、国防、医疗、科研等方面得到了广泛的应用给我们的现实生活带了许多便利。现在激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域它标志着新技术革命的发展。诚然如果将激光发展的历史与电子学及航空发展的历史相比我们不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 一、固体激光器的类别: 固体激光器的工作物质,主要由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。常见的有红宝石(掺铬的刚玉,Cr:Al2O3)、掺钛的磷酸盐玻璃(简称钕玻璃)、掺钛的忆铝石榴石(Nd:YAG)、掺钛的铝酸忆(Nd:Y ALO)、掺钛的氟化忆锂(Nd:YLF)等多种。它们发出激光的波长主要取决于掺杂离子,如掺铬的红宝石,室温下的工作波长为694.3纳米,深红色;又如掺钕的多种晶体和玻璃,工作波长为1微米多,为近红外。 二、固体激光器的构造及原理: 在固体激光器中,能产生激光的晶体或玻璃被称为激光工作物质。激光工作物质由基质和激活离子两部分组成,基质材料为激活离子提供了一个合适的存在与工作环境,而由激活离子完成激光产生过程。常用的激活离子主要是过渡金属离子,如铬、钻、镍等离子以及稀土金属离子,如钕离子等。 固体激光器主要由闪光灯、激光工作物质(如红宝石激光晶体)和反射腔镜片组成,反射镜表面镀有介质膜,一片为全反射镜,另一片为部分反射镜。掺铬红宝石是一种最早发现和使用的激光工作物质。现在已研制成功了数十种可供应用的激光晶体。当采用不同的激活离子、不同的基质材料和不同波长的光激励,会发射出各种不同波长的激光。 早期的固体激光器都是用闪光灯或其他激光器,来完成激光工作物质内原子的受激辐射过程的,这基本上是由一种形式的光能转化为激光能量的过程。如何把电能直接转化为激光的能量,一直是人们梦寐以求的事情。近年来,科学家成功地研制出了半导体激光器,一旦接通电源,便会发出激光。选用不同的半导体材料和不同制造工艺可以制造出功率不同、发射不同波长激光的激光器。半导体激光器的出

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

固体激光器的特点及应用

第一章引言 激光是人类在上个世纪所创造的最杰出的技术成就之一。自上世纪60年代,梅曼发明了全球首台激光器以来,激光技术的发展至今已经硕果累累,并且已经在人类社会的各行各业中普遍应用。 从固体激光器的出现到今天,一直都特别的备受大家的关注。因为它具有峰值功率高,输出能量大,以及结构紧凑耐用等特点,所以在各个方面都有广大的用途,具有不可估量的价值。有了这些优异的特点,固体激光器在科学研究、国防军工、工业生产、医疗健康等领域获得了大量的运用,使我们的日常生活越来越美好。 目前激光器的研究重点方向是使器件的体积愈来愈小、器件的重量愈来愈轻、效率愈来愈高、光束质量愈来愈好、可靠性愈来愈高、寿命愈来愈长、运转愈来愈敏捷的全固态激光器。全固态激光器的应用扩展到了我们生活的各个领域,它是应用领域中基础的、特别重要的核心器件,已经成为了我们日常活动中不可或缺的帮手。它的结构、输出功率、转换效率以及光束质量都取得了非常大的进步,具有强大的生命力。 全固态激光器汇聚了半导体激光器和固体激光器的特点,具有体积小、效率高、光束质量好、可靠性高、寿命长、运转灵便等优点,所以是前途光明的激光研究方向,它通过变频获得宽波段输出、便于模块化和电激励等应用优势,已经在科研、医疗、工业加工、军事等领域获得了广泛的应用,是新一代性能卓越的绿色、节能光源[1]。 现如今,激光技术在各个领域的广泛应用,已经是企业向信息化转型的不可缺少的推动力量,而且推动了一个完整的高新技术链条的有序成长。根据国外的相关资料统计,国外的激光产业发展状况呈现出繁荣昌盛的景象,市场需求不断上涨,每年以百分之二十以上的速度上升。如今,我国的激光市场发展稳定、增长速度飞快。根据统计报告,我国的激光产品在1999年的市场销售额仅为14.13亿,2005年达到了47.75亿。所以固体激光器的发展呈现出非常好的趋势,具有非常广阔的市场,有很大的发展空间。

相关文档
最新文档