镉污染土壤植物修复研究进展

镉污染土壤植物修复研究进展
镉污染土壤植物修复研究进展

镉污染土壤植物修复研究进展

熊愈辉(湖州师范学院生命科学学院,浙江湖州313000)

摘要综述近年来土壤镉污染及植物修复的相关研究成果,分析土壤镉的背景值、污染物的来源和我国农业土壤镉污染现况,阐述镉污染土壤植物修复的机理、种质资源及调控措施。

关键词镉;土壤污染;重金属;植物修复

中图分类号X173文献标识码 A 文章编号0517-6611(2007)22-06876-03

R e se a rch A dv an c e in So il Ph y to rem e d ia tion Po llu ted b y Ca dm ium

X I ONG Yu-h u i(S ch oo l o f L ife S cien ce,H u zh ou T e ach e rs C o llege,H u zh ou,Z h e jian g313000)

A b s tra c t R e se arch advan ce in cadm i umpo llu ted so il an d ph y to rem ed ia tion w as sum m a r ized in recen t yea rs.T h e cadm iumback g rou nd va l u e s an d con-tam in a tive sou rce as w e ll as cu r ren t s itu a tion o f cadm iumpo llu tion o f fa rm i n g so il in C h in a w e re an a lyzed.F u r th e rm o re,th e m ech an ism,p lan t resou rce s an d regu la tive m ea su re s fo r ph y to rem ed ia tion o f cadm i umpo llu ted so il w e re e l u c i da ted.

K e y w o rd s C adm ium;S o il po llu tion;H eav y m e ta l;P h y torem ed ia tion

土壤是人类赖以生存的环境要素之一。世界面临的粮食、资源和环境等问题都与土壤密切有关。自20世纪20年代起,随着电解工业的发展,镉(C d)产量明显增加,由C d产生的环境污染问题也随之出现。特别是20世纪60年代末在日本富山县神通川流域发现了“骨痛病”,人们开始认识到土壤中的C d容易通过食物链的富集作用进入人体,进而威胁人类生命健康。从此,有关土壤C d污染的成因、危害与治理等问题引起了全世界的高度关注,并开始进行相关研究。笔者就近年来有关土壤C d污染及植物修复的主要研究成果进行概要总结和评述。

1土壤Cd污染

1.1 土壤Cd的背景值土壤中元素的背景值是指土壤在未受到人为因素影响或影响较小的情况下,土壤中某元素的含量。C d是一种稀有分散金属,土壤C d的背景值取决于成土的母质,它在地壳中各类岩石的平均含量约为0.1~0.2 m g/k g。其中,火成岩含C d范围为0.001~1.8m g/k g,变质岩为0.04~0.1m g/k g,沉积岩为0.3~11.0m g/kg。全世界土壤C d含量范围为0.01~

2.00m g/kg,中值为0.35m g/k g[1]。我国土壤类型众多,全国41个土类C d背景值差异明显,C d含量变化范围在0.017~0.332m g/k g。其中石灰土C d背景值最高,达到0.332m g/kg;绿洲土、水稻土和高山漠土C d背景值次之;再次是灰褐土和黑垆土等,其背景值均大于0.100 m g/k g。C d背景值较低的土类主要是栗钙土、灰色森林土、砖红壤、赤红壤和红壤,均在0.060m g/k g以下,其他各土壤类型C d的背景值接近于全国土壤C d背景的平均值,为0.070~0.080m g/k g[2]。此外,我国各区域间土壤C d的背景值呈现了一定的区域分异的规律性:西部地区>中部地区>东部地区;北方地区>南方地区[3]。从行政区域来看,土壤中C d 背景值以贵州省最高,为0.332m g/kg[4];而浙江、江苏、内蒙古、福建和广东等省区土壤C d背景值较低,均在0.060m g/k g 以下。虽然各地区C d背景值有较大差异,但一般情况下土壤中自然存在的C d不至于对人类造成危害,造成危害的土壤C d大都是人为因素引入的。

基金项目国家自然科学基金项目(20277035)。

作者简介熊愈辉(1965-),男,安徽芜湖人,博士,副教授,从事植物营养与环境生态学的研究。

收稿日期2007-04-121.2土壤C d污染的来源作为土壤污染物的外源C d主要来源于采矿、冶炼、电镀、化工、废物焚化处理等行业排放的废水、废气、废渣,以及含C d化肥、农药和杀虫剂等。其中,6%来自C d生产工业,57%来自以C d为原料的工业,37%来自其他行业。人类活动每年向土壤中排放C d2.132万t,其中,来自农业和动物废物0.22万t、木材生产废物0.11万t、城市垃圾0.42万t、城市污水和有机废物0.018万t、金属制造产生的废水0.004万t、矿物灰0.72万t、肥料和杀虫剂0.02万t、工厂废弃物0.12万t、大气沉降物0.5万t[5]。

1.3农业土壤Cd污染现况随着工农业生产的发展,我国土壤C d污染呈加重的态势,尤其是农业土壤C d污染状况令人担忧。据统计,我国农田C d污染面积1980年为9333 hm2,1989年为13333hm2,在各类C d污染农田中有5%~10%的面积严重减产[6]。2001年农业部对全国24个省市320个重点污染区548万hm2农田进行调查监测,结果表明,全国污染区大田类产品中污染物超标面积占污染区农田总面积的20%。其中,重金属是土壤与农产品中的主要污染物,占污染物超标农产品总面积和总产量的80%,而C d污染农产品超标面积达27.86万hm2[7]。有些地区的C d超标现象相当严重,如沈阳市张士灌区因污水灌溉使2533hm2农田遭受C d污染(土壤C d含量≥1.0m g/kg),其中严重污染面积(所产稻米的C d含量≥1.0m g/k g)占13%。此外,陕西、河北、湖南、浙江、江西、广东等部分地区农田土壤C d污染情况均比较严重,有此地区土壤C d含量超过200m g/k g,所产稻米、小麦的C d含量在1.0m g/kg以上[8-14]。我国农田C d污染主要来源于工矿企业排放的废水、废气及污水灌溉。除沈阳张士灌区外,江西大余因污灌而造成的C d污染面积高达5500hm2,其中严重污染面积占12%。由于污灌导致土壤中的作物受C d污染的地区还有:上海的川沙灌区、广东的广州和韶关地区、广西的阳朔、湖南的衡阳等。除污灌外,导致我国农业土壤C d污染的途径还有施用污泥等固体垃圾、磷肥等农用化学品以及大气沉降物等。从这些研究报告来看,我国农田土壤C d污染不仅面积大,而且污染程度较重,部分污染区的农产品C d含量超过国家食品卫生标准几倍以上。说明土壤C d污染已经危及到我国食品安全,治理任务已刻不容缓。

安徽农业科学,Jou rn a l o f A n h u i A g ri.S ci.2007,35(22):6876-6878责任编辑庆瑢责任校对俞洁

2植物修复

2.1 植物修复重金属污染土壤的机理植物修复(P hy to re-m ed ia t ion)是一种新兴的环境治理技术。它是以植物忍耐和超量富集某种或某些化学元素的理论为基础,利用植物清除土壤中的污染重金属的一类环境整治技术[15]。与传统的物理、化学工程技术相比,植物修复具有如下特点:一是适用范围广。既可用于清除土壤中重金属污染物,也可用于清除污染土壤周围的大气、水体中污染物。二是实施原位修复。它是在不破坏土壤生态环境,保持土壤结构和微生物活性的状况下去除污染物,能增加土壤有机质含量,改善土壤结构,提高土地生产力,同时兼有保持水土、美化环境的作用。三是投入成本低。植物修复所需人力物力投入少,易于管理,同时可回收贵重金属,有一定的经济效益。

植物对重金属污染土壤的修复主要基于两种机理:一是植物固定(Ph y tos tab ilisa t ion)。是利用植物根系的吸附作用或通过根系的分泌活动,使土壤中的重金属移动性降低,生物有效性下降,降低其迁移和生物毒性。在这一过程中,土壤中重金属含量并不减少,但形态发生了变化[16]。二是植物提取(P hy toex t ra ct ion)。是利用特殊的植物吸收土壤中的重金属,也称为植物萃取。其基本策略在是在污染土壤上种植对污染重金属耐性强,吸收和富集量大的植物,利用植物根系吸收重金属并将其转移到地上部,通过连续地收获植物地上部,从而降低土壤中重金属的含量,达到土壤修复的目的。对于C d污染土壤,植物提取修复是目前研究最多、也最具发展前景的植物修复方式之一。植物修复重金属污染土壤的效果取决于土壤、重金属和植物3者之间的关系。其中植物提取重金属的能力以及土壤重金属的含量与有效性是两个关键因素。植物修复C d污染土壤的研究大都围绕着这两方面而展开。

2.2Cd富集的植物资源按照富集能力的大小,可用于

C d污染土壤修复的植物资源可分为3类。一是C d超积累植物。植物修复主要依赖于超积累植物(H y pe ra ccum u la to r)。它是指对重金属有较强的耐性,在富含重金属的土壤上能够良好地生长而不发生毒害现象,其地上部所积累的C d>100 m g/kg,N i或C u>1000m g/k g,Zn或M n>10000m g/k g(以干重计)的植物,同时该植物的地上部重金属含量与根系重金属含量比值应大于1[17]。利用超积累植物比普通植物高出几十倍到几百倍的富集重金属能力可显著提高污染土壤的修复效率。到目前为止,世界各地已发现的超积累植物共400多种,其中主要是N i超积累植物,而C d超积累植物却比较少见,公认的C d超积累植物只有遏蓝菜属(T h la sp i)的少数几种植物。但遏蓝菜属植物生长缓慢、植株矮小、地上部生物量小,在实际应用中受到限制。因此,寻找其他C d超积累植物是C d污染土壤植物修复技术所要解决的首要问题。二是C d富集植物。这类植物对C d也有较强的耐性和富集能力,虽然地上部C d含量达不到超积累植物的定义标准,或者地上部与根部C d含量之比小于1,但其生物量较大,更具有实际应用价值。蕨类是吸收土壤中C d能力最强的植物之一,日本发现的小犬蕨(A sp lenu itr n yokoscence)对C d有很强的耐受性,叶片C d含量达到1000m g/k g时仍能良好生长,其最

高C d含量可达1200m g/kg[18]。向日葵(H eliant hus annuus)是人们较早认识的C d富集植物,在C d污染的土壤上种植1个月,植株内平均含C d量可达50m g/kg[19-20]。此外,对C d耐性和富集能力较强的植物还有叶下珠(Phy ll an t hus serpen ti n),麦瓶草(S ilen e vu lga ris),长叶莴苣(L ac tuca sa tiva),田旋花(C onv olvu lu s a rv en sis),风滚草(S a lso la ka li),大麻(C anna b is sativa),以及C d积累型玉米(Z ea m ay L.)、紫羊茅(Fest uca rubra)和烟草(N.tob acum)等[21-25]。十字花科芸苔属植物印度芥菜(B r assica juncea)是近年来筛选出的一种生长快、生物量大的C d富集植物,对于C d污染土壤的修复被公认为有很大的潜力。在含有0.1μg/m l C d的营养液中培养,其地上部C d含量超过100m g/kg(干重),单株C d积累量大大高于遏蓝菜(Th l asp i caenclescens)[26]。温室栽培试验结果表明,印度芥菜根和叶中的最高C d含量可达300、160m g/kg[27]。但印度芥菜生长有其很强的地域性,我国很难在大范围内种植此植物。苏德纯[28]和王激清[29]等从我国各地挑选了30多个芥菜型油菜品种进行C d耐性和吸收潜力的水培和土培试验,从中筛选出了2个具有C d吸收积累特征,同时具有较高生物量的芥菜型油菜基因型品种,在C d含量相同的土培和水培条件下,它们的生物量和地上部C d含量均显著高于印度芥菜或与之相当,具有良好的应用前景。三是某些普通植物。已发现蒲公英(T a raxa cum m ong o licum)、龙葵(S olanumn i-grum)、小白酒花(C ony za canad en sis)和狼把草(B id en s trip a rtite)对C d单一及复合污染均有较强的耐性和积累能力,并且地上部与根系C d含量之比大于1[30],有进一步研究和应用价值。四是香根草(V etiveria z izau io id es)、苎麻(B ueku veria n iv es)、杨树(P opu lu s sp p)、棉花、红麻、兰麻、蚕桑和柳属(S a lix)的某些植物[31-33]对C d都有不同程度的耐受性和吸收能力,可种植于C d污染土壤,对土壤C d有吸收和固定作用。由于这些植物吸收的C d不进入食物链,因而既可净化环境,又可取得一定的经济效益。

2.3 促进植物富集Cd的调控措施适当的调控措施一方面可以活化土壤C d,提高土壤C d的植物有效性,另一方面可促进植物生长,增强光合、呼吸等代谢活动,促进植物对C d 的吸收。研究表明,土壤pH值变化影响植物对重金属的吸收。B row n等[34]通过盆栽试验研究了不同pH处理的C d污染花园土和山地土,结果发现,Thlasp i caenclescen的吸C d量随土壤pH值下降而增加。此外,施肥可以提高植物修复提取C d的能力。施氮可以增加土壤C d活性,促进植物C d吸收[35]。而且,氮肥种类不同,作用程度也不同。向营养液中加入氨态氮的促进效应大于施用硝态氮[36]。在C d污染土壤上施用钾肥对作物的吸C d也有促进作用[37]。以硫酸盐和磷酸盐作为肥料可以显著提高印度芥菜(Bjun cea)地上部对C d的富集量。研究还表明,向土壤中施加人工合成的螯合剂(ED T A,D TPA,E GT A、柠檬酸等)能够活化土壤中的重金属,提高重金属的生物有效性,促进植物吸收[38]。骆永明[39]发现,向C d污染土壤中加入ED T A等螯合剂,植物吸收的C d量明显增加,并且不同的螯合剂对于重金属还表现出一定的特异性,对于印度芥菜施用EG TA效果最好。T u rgu t 等研究表明,ED T A和柠檬酸能提高土壤溶液中C d含量,促

7

786

35卷22期熊愈辉镉污染土壤植物修复研究进展

进向日葵(H eli anthus annuus)对C d的吸收。但也有一些研究结果表明,E DT A施入土壤后降低了C d的有效性,抑制了植物对C d的吸收。其原因可能是ED T A施入土壤后与C d离子形成了稳定的络合物,降低土壤溶液中C d离子活度,不利于植物吸收[40]。由此看来,螯合剂对植物C d吸收的影响可能因土壤条件和植物种类而异,不能一概而论。

3结语

目前,在我国工业化进程中,如何保护好有限的土地资源,最大限度地减少由环境污染而导致的土地资源的损失,是环境保护工作中的一项紧迫任务。C d污染土壤的植物修复工程量小,所需费用低,比较适合我国的国情。但现已发现的C d超积累植物生长缓慢,生物量小,用于土壤修复期限较长。而且,目前我国还缺乏有自主知识产权的C d超积累植物品种。我国疆土辽阔,地势和气候差异大,植物种质资源丰富,为筛选新的C d超积累植物提供了良好的基础。我国的一些学者已开始这方面的研究工作,并有了初步成果,今后还应加强这方面工作,尽快选育出若干个适合我国不同地域特点的C d超积累植物,为我国植物修复实践服务。

有关植物超积累重金属的机制还不十分清楚,尤其是对C d超积累机理的研究报导相对更少。因此,今后应加强超积累植物对C d的耐性、吸收、转运和富集机理的理论研究,在分子水平上阐明这些过程的调控机制,以完善植物修复C d污染土壤的理论体系。在此基础上,应通过基因工程技术和栽培驯化两条途径,加快对现有C d富集植物种质资源的改造,克服其生长缓慢、植株矮小的缺点,培育出生长迅速、植株高、生物产量大的品种。相信通过多方面的共同努力,若干年后我国土壤C d污染的状况会得到控制和缓解。参考文献

[1]鲁如坤,熊礼明,时正元.关于土壤-作物系统中镉的研究[J].土壤,

1992,24(3):129-132.

[2]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出

版社,1990:98-100.

[3]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,

1995:67-69.

[4]宋春然,何锦林,谭红,等.贵州省农业土壤重金属污染的初步评价

[J].贵州农业科学,2005,33(2):13-16.

[5]N R IA G UJ O,P A C Y N AJ M.Q u an ti ta tiv e a sse s sm e n t o f w o r ldw id e co n tam in a-

t iono f a i r,w a te r an d so il w itht race m e ta ls[J].N a tu re,1998,333:134-139.

[6]王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护,

1997,16(6):274-278.

[7]中国社会科学院环境与发展研究中心.中国环境与发展评论:第1卷

[M].北京:社会科学文献出版社,2001:32.

[8]吴燕玉,周启星,田均良.制定我国土壤环境标准(汞、镉、铅和砷)的探

讨[J].应用生态学报,1991,2(4):334-349.

[9]李继云,任尚学,陈代中.镉和铬对陕西某些地区土壤污染的调查报告

[J].农业环境保护,1988,7(5):30-33.

[10]陈学成.河北省农田土壤镉污染研究[J].农业环境保护,1992,11(5):

202-205.

[11]何电源,王凯荣,胡荣桂.农田土壤污染对作物生长和产品质量影响

的研究[J].农业现代化研究,1991,12(S):1-8.

[12]姜理英,杨肖娥,叶海波,等.炼铜厂对周边土壤和作物体内重金属含

量及其空间分布的影响[J].浙江大学学报:农业与生命科学版,2002, 28(6):689-693.

[13]刘立群.赣南土壤污染的防治途径[J].资源开发与保护杂志,1990,6

(2):100-102.[14]何述尧,胡学铭,黄惠芳.浅论广州土壤环境C d、A s、H g元素的残留

[J].农业环境保护,1991,10(2):71-72.

[15]S A L T D E,B L A Y L O C K M,K U M A R NP B A,e t a l.P h y to rem ed ia tio n:a

n o v e l s tra te gyfo r th e rem o va l o f to x ic m e ta ls fromth e en v ironm en t u s in g p lan ts [J].B io te ch n o lo gy,1995,13:468-474.

[16]L A SA T M M.P h y toe x tra ct ion o f to x ic m e ta ls:A r ev iew o f b io lo g ica l m e ch a-

n ism s[J].J E n v iro n Q u a l,2002,31:109-120.

[17]SH E NZ G,ZH A O FJ,M C G RA TH S P.U p ta k e an dtran spo r t o f Z in c inth e

h y pe r accum u la to r T h lasp i cae ru lescen s a n d th e n on-h yp e ra ccum u la to r T h lap i

o rh ro leucum[J].P lan t C e ll E n v iro n,1997,20:898-906.

[18]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M].北京:

中国环境科学出版社,1998:129-160.

[19]T U R G U T C,P E P E K M,C U T R IG H T TJ.T h e e ffec t o f E D T A an d ci tr ic a c id

onph y to rem e d ia t iono f C d,C r an d N i fromso i l u s in g H e lian thu s ann uu s[J].

E n v iro n P o l lu,2004,131:147-154.

[20]T U RG U T C,P E P E K M,C U T R IG H T TJ.T h e e f fe ct o f ED T A on H e lian thu s

annuu s u p tak e,se le ct iv ity,a n d tran s lo ca t ion o f h e a v y m e ta ls w h e n g r ow nin O h io,N ew M ex ico a n d C o lom b ia so i ls[J].C h em o sph e re,2005,58:1087-1095.

[21]魏树和,周启星,王新,等.杂草中具重金属超积累特征植物的筛选

[J].自然科学进展,2003,13(12):1259-1265.

[22]G A R D E A-T O R R E SD E YJ L,P E R A L T A-V ID E AJ R,M O N T E S M.B io accu-

m u la tiono f ca dm ium,ch rom iuma n d cop pe r b y C o n vo lvu lu s arv en sis L:Im pa c t on p la n t g row than d u p ta k e o f n u tr i tio n a l e lem en ts[J].B io re so u rce T ech n o lo g y, 2004,92(3):229-235.

[23]D EL A R O S A G,P E R A L T A-V ID EAJ R,M O N T E S M.C adm iumu p ta k e a n d

tra n s loca tio nin tum b lew ee d(S a lso la k a li),a p o ten tia l C d-h y pe raccum u la to r de se r t p la n t spe cie s:IC P/O E S an d X A S s tu d ie s[J].C h em o sph e re,2004,55

(9):1159-1168.

[24]C IT T ER IOS,R E P R IN T A,SA N T A G O S T IN O A.H ea v y m e ta l to le ran ce an d a c-

cum u la tiono f C d,C r a n d N i by C annab is sativ a L[J].P lan t an d S o il,2003, 256(2):243-252.

[25]夏立江,王宏康.当代环境科学技术丛书:土壤污染及其防治[M].上

海:华东理工大学出版社,2001:45-46.

[26]E B B S S D,L A S A T MM,BR AD Y DJ,e t a l.P h y toe x tra ct iono f cadm iuma n d

z in c f roma con tam in a te d so il[J].J E n v iro n Q u a l,1997,25:1424-1430. [27]苏德纯,黄焕忠.油菜作为超积累植物修复镉污染土壤的潜力[J].中

国环境科学,2002,22(1):48-51.

[28]王激清,茹淑华,苏德纯.用于修复土壤超积累镉的油菜品种筛选[J].

中国农业大学学报,2003,8(1):67-70.

[29]蒋先军,骆永明,赵其国.镉污染土壤植物修复及其ED T A调控研究I:

镉对富集植物印度芥菜的毒性[J].土壤,2001,33(4):197-201. [30]魏树和,周启星,王新.18种杂草对重金属的超积累特性研究[J].应

用基础与工程科学学报,2003,11(2):152-160.

[31]林匡飞,张大明,李秋洪.苎麻吸镉特性及镉土的改良试验[J].农业环

境保护,1996,15(1):1-4,8.

[32]王凯荣,龚惠群,王久荣.栽培植物的耐镉性与镉污染土壤的农业利

用[J].农业环境保护,2000,9(4):196-199.

[33]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,

1997,18(3):72-76.

[34]B RO W N S L,CH AN E Y R L,A N G L E J S.P h y to rem ed ia tion po ten t ia l o f

T h lasp i cae r u lescen s an d b ladd e r cam p io nfo r z in c an d cadm ium-con tam in a te d so il[J].J E n v ir on Q u a l,1994,23:1151-1157.

[35]G R AN T CA,B A IL E YL D,T H ER R IENMC.E f fe ct o f N,Pan d K C1fe r ti liz-

e r ong ra in y ie ld a n d C d co n cen tra tio n o

f m a l tin

g ba r le y[J].F e r t ilize r R e-

se a rch,1996,45:153-161.

[36]李波,青长乐,周正宾.肥料中氮磷和有机质对土壤重金属行为的影

响及在土壤治理中的应用[J].农业环境保护,2000,19(6):375-377.

[37]衣纯真,付桂平,张福锁,等.施用钾肥(K C l)的土壤对作物吸收累积

镉的影响[J].中国农业大学学报,1996,1(5):79-84.

[38]W A SA Y S A,B AR R IN G T O NS F,T O K U N AG AS.R em ed ia tio no f so il po llu te d

by h e a vy m e ta ls u s in g sa lts o f o rg an ic a cid s an d ch e la t in g a ge n ts[J].E n v iro n T e ch,1998,19(4):269-380.

[39]骆永明.强化植物修复的螯和诱导技术及其环境风险[J].土壤,2000,

32(2):57-61.

[40]W O L T E R B E E K HT,M E E R A V A N D ER,B RU IN MD E.T h e u p tak e a n d d is-

tr ibu t io n o f cadm ium intom a to p la n ts a s a ffe cted by e th y le n e d iam in e te tra ace tic

a cid an d2,4-d in i trop h en o l[J].E n v iro n P o l lu t,1988,55:301-315.

878

6安徽农业科学2007年

植物修复案例

拿什么拯救重金属污染土壤? “土壤中毒”不是耸人听闻,而是正在发生的事实。 在广西、云南、湖南等一些受到重金属污染区的土地上,原本正常生长的农作物会被超标的重金属毒死,人们难觅蔬菜和粮食的踪影。随着经济社会的发展,中国的土壤重金属污染日益严重。环保部此前估算的数据显示,全国每年因重金属污染的粮食高达1200万吨,造成的直接经济损失超过200亿元。国土资源部也称,目前全国耕种土地面积的10%以上已受重金属污染。 中国科学院地理科学与资源研究所陈同斌研究员告诉记者,因矿产资源采掘不当而使废弃采矿地大量裸露,并通过水流等途径污染农田,造成土壤中的重金属含量严重超标,直接影响到农作物的产量和品质,威胁人类健康。 他说,土壤污染问题的“弱势”,跟其隐蔽性和滞后性有关。大气污染、水污染和废弃物污染等问题一般都比较直观。比较典型的重金属污染物有砷、镉、汞、铬、铅、镍、锌、铜等,尤其是砷中毒的事件,我国每年都有报道。 但土壤的安全,又涉及人们的米袋子、菜篮子,事关人们的生命健康。因此,污染土壤的修复迫在眉睫。 ——谁来拯救—— 土壤重金属污染是全球面临的一个亟待解决的环境问题,传统污染土壤的修复方法不能从根本上解决问题。陈同斌研究员说,像淋洗法修复土壤,用化学溶剂对受污染土壤进行清洗,把重金属洗去,

这是比较彻底的解决办法,但是淋洗法除了耗费巨大和工程量大之外,还存在二次污染的问题。相对来说,借助植物特殊功能修复污染土壤的植物技术以其安全、廉价的特点正成为全世界研究和开发的热点。 陈同斌主持的“重金属污染土壤的植物修复技术”课题小组,在国际上率先开发出砷污染土壤的植物修复技术,并建立了第一个植物修复示范工程。他们的研究证实,蕨类植物蜈蚣草对砷具有很强的超富集功能,其叶片含砷量高达千分之八,大大超过植物体内的氮磷养分含量。 “植物修复可以细分成植物富集、植物稳定、植物阻隔等很多类型。但是目前植物修复的重点方向主要集中在以去除重金属为目的的植物萃取技术。植物修复萃取技术首先需要筛选和培育特种植物,特别是对重金属具有超常规吸收和富集能力的植物——俗称‘超富集植物’,种植在污染的土壤上,让植物把土壤中的污染物吸收起来,再将植物中的重金属元素加以回收利用。”陈同斌说,“大部分植物吸收的重金属都集中在根部,而超富集植物地上部分的吸收量要高于根系的吸收量。能成为超富集植物,一是植物在有毒重金属污染胁迫下生物量不能减少;二是植物吸收的重金属含量应该高于土壤中的含量。这样的超富集植物才具有实用价值,可以推广应用。” ■专家释疑 陈同斌:中国科学院地理科学与资源研究所环境修复中心主任,首席研究员、博士生导师、国家杰出青年基金获得者,是我国植

大气环境中汞污染的研究进展-物探与化探

大气环境中汞污染的研究进展 黄永健,周蓉生,张成江,汪云亮 (成都理工大学三系,四川成都 610059) 摘要:总结了大气环境中汞污染的研究进展,包括大气环境中汞的来源、汞在大气环境中的化学演化和环境效应;介绍运用环境地球物理方法在成都市大气颗粒汞研究的初步结果;并就我国汞污染研究提出有关建议。关键词:汞污染;大气环境;环境地球物理 中图分类号:P632 文献标识码:A 文章编号:1000-8918(2002)04-0296-03 汞污染问题已经引起国际环境、卫生界的极大关注,不同领域的科学家对汞及其化合物的环境地球物理、环境地球化学研究给予高度的重视[1,2]。笔者在文中系统回顾了近年来大气环境中汞污染的研究概况,介绍了成都地区大气颗粒汞的初步研究结果,并对我国所应开展的下一步工作提出建议。 1 大气环境中汞的来源 大体上说来,汞主要通过自然和人为因素的排放而进入大气[3],人为排放的约占3/4,其中燃煤释 放的汞占全球人为排放总量的60%[4]。 我国是世界第一产煤大国,能源结构中煤的比例高达75%,而且由于我国燃煤技术普遍落后,燃煤释放的汞对环境生态系统的污染更为严重。据估算[5],全国煤炭的平均汞含量为0.22×10-6,主要燃煤行业中大气汞的排放因子为64.0%~78.2%,1995年全国燃煤排放汞302.9t ,其中向大气排汞量为213.8t ,1978~1995年全国燃煤大气排汞量的年平均增长速度为4.8%,累计排汞量为2493.8t ,包括汞排放在内的燃煤所引起的污染是我国面临的重要环境问题。 我国南方地区(如贵州、湖南、四川)分布着世界级的汞矿群,层控型矿床的含矿层及其相邻地层(厚达数千米)汞含量远高于地壳克拉克值[6],技术落后的资源开发型乡镇企业的迅猛发展也加重了环境汞的负荷。其它的如采金、金属冶炼、制碱工业、燃油等也是重要的汞污染源[7]。 2 汞在大气环境中的演化 2.1 气态汞的大气物理、化学过程 汞有3种价态:Hg 0、Hg 2+ 2 和Hg 2+,在大气环境中存在的主要化学形式有:几乎不溶解的气态形式的元素Hg 0、可溶性的二价无机汞化合物、甲基汞和二甲基汞,以及与大气颗粒物相联系的颗粒汞。其中Hg 0是最主要的存在形式,占总量的90%以上[8],颗粒汞一般不足10%。 以上所有的汞元素种类都经历着进入大气、转化并最终移出大气的循环过程。人为或自然来源而进入大气环境的Hg 0,在水、气和固相中都有可能与大气中的氧化剂如O 3、H 2O 2和卤族元素等发生化学反应,形成二价汞,同时二价汞又会还原成为Hg 0,目前研究较为完善的是Hg 0在大气水相中的 化学变化过程[8~10]。Lindqvist [9]建立了汞在云层中的化学变化的模型,概括了Hg 0和Hg 2+在云层水中的化学转变过程;Hall [10]通过实验研究,计算出在200℃条件下大气中的Hg 0与O 3反应生成Hg 2+的反应速率;Selgneur [8]在现有的动力学、热力 学的数据基础之上,对汞的大气化学过程进行了有效的模拟,结果表明: 1.Hg 0在大气中的停留时间约为0.5~1.5a ; 2.自工业时代以来,汞的沉降速度至少增加了50%以上,如考虑到沉降颗粒的再发射,则沉降速率至少为原来的3倍。 大气环境中汞含量的增加将导致汞的干湿沉降 收稿日期:2002-03-10 基金项目:国家自然科学基金资助项目(编号:49974040)  第26卷第4期物 探 与 化 探 Vol.26,No.4 2002年8月 GEOPHYSICAL &GEOCHEMICAL EXPLORA TION Aug.,2002

绿化植物修复大气铅污染能力的比较

筑龙网 W W W .Z H U L O N G .C O M 绿化植物修复大气铅污染能力的比较 摘要:大气污染是人类所面临的环境危机之一,依据绿化植物对大气污染的修复能力来选择城市绿化植物是减轻大气污染的重要途径和方法。植物叶片内大气污染物含量既可反映出大气污染的水平,以可反映出绿化植物对大气污染的修复吸滞能力。研究结果表明:城市绿化树种对大气污染具有很强的吸收修复能力,并依树种的不同具有明显差异。修复大气铅污染能力强的树种有:桑树、黄金树、榆树、旱柳 。 关键词:绿化树种;大气铅污染;植物修复能力 Comparison of ability of plant remediation for air Pb pollution PAN Wen-xue 1, WANG You-gui 2 Abstract:Air pollution is one of environmental crisis in the face of human beings To seclect urban planting tree species according to ability of plant remediation for air pollution is a very important approach and means to redu ce air pollrtion .Content of air pollutants of leaves of planting trees can show degree of air pollution ,ability of remediation ,and absorbability of plantig trees for air pollutants .The studying results shows planting trees bave a high ability of restoration and absorbability,which varies with plant species.The plants that have high restoration abiliy for sulfur include Morus alba,Catalpa speciosa,Ulmus pumila,Salix matsudana. Key words:planting tree ;air Pb pollution;plant remediation ability 0 引言 在区域经济的工业发展区,由于金属治炼、汽车尾气排放、板材业生产用胶的废气排放等对大气环境的污染愈来愈来重,人们长期生活在铅污染的环境中,对人们的身体健康造成了严重的危害,干扰了人们的正常生存环境。据调查资料显示,现代人体内的平均含铅量已大大超过1000年前古人的500多倍以上。有效地防止铅污染,是当今科学家解决城市大气污染所面临的日益严重和亟待解决的环境污染之一,而且已成为人类社会可持续发发展的主要障碍,受到各国普遍关注和重视。利用绿化植物修复技术来治理大气污染是近年来国际上正在加强探索、研究和迅速发展的前沿性新课题。 大气污染的绿化植物修复是利用植物地大气污染物的吸附、吸收、转化、同化和降解等功能,形成和发展经济、高效、持续和安全的大气污染绿色修复理论和技术,实现了污染大气环境的生物修复[1]。植物对污染物吸收净化能力愈大,则对污染的修复能力考核成绩也就越强。借助于叶片的化学分析测得的叶片内大气污染物含量,既可反映出大气污染的水平又能反映出植物对大气污染的吸收净化量,即反映植物对污染的修复能力[2]。然而,植物对大气环境污染物的耐受能力与适应性千差万别的,同一种植物对不同类型的污染物和不同种植物对同一类型污染物的净化能力各异[3-6]。不同城市绿化植物,在生态功能上的差异,使其修复污染的能力有显著的不同,依据植物对大气污染的净化修复能力来选择城市绿化植物,从而建立不同类型

土壤中汞污染及其修复技术修订稿

土壤中汞污染及其修复 技术 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

土壤中汞污染及其修复技术 引言:土壤汞污染已经严重危害到人类健康和生态环境,成为一个世界性问题,对其治理的各种修复措施也成为当前研究的一个热点。本文对土壤汞污染的来源、危害和修复措施等方面进行综述,指出了当前存在的问题,并对今后治理的研究方向提出了相关建议。 关键词:汞;危害;来源;修复方法 1引言 随着现代工农业的迅速发展,人口急剧增长,粮食的需求量也相应变大,越来越多种类的农药被广泛应用。此外,工矿企业的发展导致对矿产资源的过度开采使得重金属土壤污染日趋严重,一些地方生产的粮食,蔬菜,水果等食物中的重金属含量超标或接近临界值。这些农产品的重金属能够通过食物链在人或动物体内富集,成为人类生命健康的潜在威胁。2014年4月18日,环保部、国土部两部门联合发布土壤污染状况调查公报。公报显示,全国土壤总的超标率为%,污染类型以无机型为主,其中排名前三的无机污染物依次为镉、汞、砷。其中汞具有很强的神经毒性和致畸作用,且积累效应和遗传毒性明显,已被EPA(美国环保署)列为优先控制污染物之一。土壤一旦被汞污染后可通过食物链在人体内富,并对周边环境安全造成严重危险(。因此,找到合适的汞污染土壤修复技术已成为当前的研究热点。 2汞的危害 汞是生物体的非必需的有害元素,通常情况下呈液态,常温即可能蒸发,其中金属离子在~L就会产生毒性。一般来讲,低含量的汞一定程度上可以促进植物的生长,但是,当汞含量过高时便会在植物体内富集,对植物体产生毒害作用(,主要影响植物根部对营养物质的吸收功能,进而影响地上部分的生长发育,严重的导致枯萎死亡(。 土壤中的汞如果通过食物链进入人体,会对人体机能产生损害作用,其中主要对人体产生毒害作用的是无机汞和有机汞。常见的无机汞有HgS,HgCl 等,可通过食物或者呼吸进入体,虽然不易被吸收,但是对消化道有腐蚀作用,也会造成肾脏损伤。而有机汞容易被消化系统吸收,可侵入人体,与SH基结合而形成硫醇盐,使含SH基的酶失去活性,从而破坏细胞的基本代谢功能。尤其是甲基汞,可以改变细胞的通透性,破坏了细胞与外界正常的物质交换功能,造成细胞坏死。此外,甲基汞还能引起神经系统的损伤,其造成的损伤功能具有遗传性。有机汞中毒的潜伏期较长,病情发展也较为缓慢,日本水俣病就是甲基汞中毒的一个病例。 3土壤中汞的来源 自20世纪50年代在日本熊本县发现首例甲基汞中毒事件以来,不同研究领域的学者都对汞污染问题给予了高度关注(。土壤中汞的来源是多方面的。首先是土壤母质本身含汞。不同母质、母岩形成的土壤其含汞量存在很大差异。另一方面,由于人类工农业生产活动,使汞进入环境,污染大气、水体、土壤。

贵州土壤汞污染生态研究进展

贵州土壤汞污染生态研究进展 贵州省规模汞生产活动已停止,但是土壤汞污染依然严重。文章评述贵州境内土壤汞的污染现状、毒性、污染源、暴露途径及风险评估、治理手段等方面的研究进展及存在问题,并提出下阶段研究的展望。 标签:土壤汞污染;汞暴露;植物修复 引言 世界范围内汞矿山的开采冶炼活动对矿区的水体、土壤、大气、植物及水生动物造成了严重的污染。现在中国成为世界最大的汞使用国和排放国,随着汞资源逐渐枯竭,汞矿生产规模日趋缩小,贵州境内的汞矿山,例如万山、务川、丹寨、铜仁、滥木厂和开阳等,已先后停产闭坑,但是长期的工开采及冶炼、生产对周围的生态环境,尤其是农田土壤造成了严重影响。不同于其他重金属,无机汞在进入环境后,特定条件下会转化成毒性更大、生物有效性更强的甲基汞,通过各种途径进入食物链,构成对人类的危害。 土壤污染具有隐蔽性、滞后性、积累性和地域性,难治理,周期长等特点。土壤一旦遭受汞污染,会对人类健康造成潜在危害。因此,土壤汞污染研究近来备受关注,特别是贵州土壤汞污染研究,在许多方面取得进展。 1 污染现状 受矿山活动影响,矿区土壤汞污染具有含量高、变化范围广及表层污染重等特点。气态汞的挥发及受汞污染水体的灌溉等利用,离矿区较远的土壤也收到不同程度的污染。例如万山汞矿污染农田土壤THg含量最高达790mg/kg,部分土壤MeHg含量超过20?滋g/kg,平均含量为3.14?g/kg,炉渣也显示较强的汞甲基化现象。务川汞矿地区土壤汞含量最高达360mg/kg。而对滥木厂汞矿区地土壤样品的测定数据显示,土壤THg含量最高为850mg/kg。进入土壤中的无机汞在硫酸盐还原菌作用下转化为甲基汞,通过食物链产生生物放大效应而危害人类健康。同一地点不同土地利用类型的土壤中,无论是THg还是MeHg,稻田和菜地的含量均远远高于玉米地和旱田;而旱田的水源主要来自于大气降雨,汞源少且为好养环境,不利于汞甲基化过程的发生;菜地土壤环境类似于旱田,但又有所区别,菜地在蔬菜生长期内会不断被浇灌和施肥,造成土壤有机质含量升高,有机质存在有利于汞的甲基化,故菜地MeHg明显高于旱田。 研究表明,贵州汞矿区大米具有很强的甲基汞积累能力,水稻田土壤中是MeHg的主要来源。甲基汞在水稻植株中分布依次为:稻米>根系>谷壳>茎>叶,相对其他组织,稻米富集甲基汞能力更强,且大米的MeHg含量明显高出玉米机蔬菜类作物,矿区作物中汞含量从高到低依次为辣椒>大米>玉米>红薯。而大米是贵州居民的主食,食用甲基汞污染的大米是人群的主要甲基汞暴露途径,占总暴露的94%-98%。

土壤重金属污染现状及其治理进展

土壤重金属污染现状及其治理进展 摘要:土壤作为人类赖以生存的关键资源,在人类的生产生活中占据着至关重 要的位置。然而,现阶段我国土壤重金属污染问题日渐严重,引起社会各界的广 泛关注。毋庸置疑,土壤重金属污染一方面严重影响农作物的正常产量,另一方 面对人类的身体健康造成了严重的威胁。因此,怎样合理治理土壤重金属污染问 题成为当前重点研究的对象。本文针对现阶段我国土壤重金属污染现状加以分析,并提出相应的解决策略,希望能够保护我国土壤资源的良性发展。 关键词:土壤;重金属污染;污染现状;治理方法 1、何为重金属污染 重金属污染指由重金属或其化合物造成的环境污染。重金属指比重大于 5 的 金属,(一般指密度大于 4.5 克每立方厘米的金属),约有 45 种,如铜、铅、锌、铁、钴、镍、钒、铌、钽、钛、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、 锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并 非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒,汞,镉,铅,砷,铬称为“五毒”元素,含有汞、镉、铬、铅及砷等生物毒性显著的重金属元素 及其化合物对环境的污染较大。 2 重金属污染的特点 2.1重金属污染的特点 重金属产生毒性的浓度范围较低;一般情况下,重金属不能被微生物降解, 只能发生形态的转化;毒性与存在的形态和价态有关;重金属污染多为复合污染,来源较为复杂,常以无机和有机混合物的形式进入环境,同时含有多种金属,共 同产生一定的协同作用或拮抗作用,对生物和生态系统产生影响;重金属通过食 物链进行生物放大,进入人体,对人体产生慢性中毒。 2.2 重金属污染在土壤中的特点 在土壤环境中重金属污染特点可以分为两部分:一是土壤环境中重金属自身 的特点,二是区别与水体和大气等介质中的特点。重金属在土壤中形态变换较为 复杂,多为过渡元素,有着较多的价态变化,且随环境 Eh,pH 配位体[2]的不同 呈现不同的价态、化合态和结合态,毒性与价态和化合物的种类有关,有机态比 无机态的毒性大;重金属在土壤环境不易被察觉,不会降解和消除,迁移转化形 式多样化,分布呈区域性;在生物体内积累和富集,在人体内呈慢性毒性过程。 3土壤重金属污染的现状 根据相关调查研究表明,现阶段我国约有近 20% 的土地已经受到了严重的重 金属污染,其总计面积约为 0.11 亿 km2,其将引起的后果不堪设想。不仅如此, 我国农业粮食产量正在以每年一千万吨产量的速度持续锐减,遭受重金属污染的 粮食产量达到了上千万吨,直接导致经济损失达到 200 亿余元。土壤重金属污染 详细的表现如下: 3.1土壤重金属污染呈现区域性分布 根据可靠数据调查表明,我国土壤重金属污染总体呈现区域性分布的现象。 其中,我国的东、中、西部地区由于区域不同,污染程度存在一定的差异性,以 中部地区污染较为严重,东部与西部地区的污染相对较弱。究其原因在于,中部 地区的煤炭矿区与金属矿区较多,其开采过程中导致土壤受到重金属的污染。

重金属污染土壤的植物修复

立志当早,存高远 重金属污染土壤的植物修复 土壤是环境中特有的组成部分,是最宝贵的自然资源之一。在地球表面,土壤处于大气圈、岩石圈、水圈和生物圈之间的过渡地带,是生态系统物质交换和物质循环的中心环节,是连接地理环境各组成要素的枢纽,是人类赖以生存的必要条件。然而,各种人为因素如工业污泥、垃圾农用、污水灌溉、大气中污染物沉降,大量使用含重金属的矿质化肥和农药等等,使土壤遭受不同程度的破坏,致使原有土壤理化性质退化、丧失耕作价值,并危及食物链安全与人类自身健康。 我国城市与工业废水年排出镉、汞等重金属为2700 吨左右,且相当一部分污染物通过灌溉途径进入农牧业生产环境,污染了耕地。灌溉水源中的镉、汞、铜、锌等重金属一旦进入土壤,就会被农作物吸收,从而残留在农产品中。受污染的水源和农作物还会危及畜禽健康,使畜禽产品受到污染。 在造成环境污染的重金属中,危害最大的是汞、镉、铬、铅、砷等,毒性稍低的是镍、铜、锌、钴、锰、钛、钒、钼、铋等。汞进入人体后被转化为甲基汞,有很强的脂溶性,易进入生物组织,并有很高的蓄积作用,在脑组织中积累,破坏神经功能,无法用药物治疗,严重时能造成死亡。镉进入人体后,主要贮存在肝、肾组织中,不易排出,镉的慢性中毒主要使肾脏吸收功能不全,降低机体免疫力以及导致骨质疏松、软化,引起全身疼痛、腰关节受损、骨节变形,如八大公害之一的骨痛病,有时还会引起心血管疾病等。铅对人体也是累积性毒物,铅能引起贫血、肾炎,破坏神经系统和影响骨骼等。砷是一种类金属,也是传统的剧毒物。 植物修复是一门新兴的环境治理技术。广义的植物修复就是利用植物提取、吸收、分解、转化或固定土壤、沉积物、污泥或地表、地下水中有毒有害

土壤中金属汞的污染与防治

土壤中金属汞的污染与防治 重金属汞是构成地壳的物质, 在自然界中分布非常的广泛。重金属汞在自然环境的各部分均存在着最低含量,如果其含量超过标准, 就会对水体、土壤、人体造成不可估量的污染与危害。 一.土壤中重金属汞的来源 正如同学们所知道的,土壤中的汞归根结底是来自于大自然的,然而人类的生产活动打破了汞在自然界中的平衡,于是就有了土壤中汞的人为来源 1 汞的自然形态来源 天然土壤中汞主要来源于母岩和母质。岩石中平均含汞量0.08mg/kg, 其中页岩含汞量最高(0.4mg/kg), 花岗岩含汞量最低(0.1mg/kg)。 2 土壤中汞的人为来源 与众多的重金属一样,汞来到土壤中也有多种多样的方式,而这些方式同时也是重金属的共性,总的来说这些方式有: 2.1 大气中重金属沉降 大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降和雨淋沉降进入土壤的。 经过自然沉降和雨淋沉降进入土壤的重金属污染,主要以工矿烟囱、废物堆和公路为中心,向四周及两侧扩散;由城市—郊区—农区,

随距城市的距离加大而降低,特别是城市的郊区污染较为严重。此外,还与城市的人口密度、城市土地利用率、机动车密度成正相关;重工业越发达,污染相对就越严重。 此外,大气汞的干湿沉降也可以引起土壤中汞的含量增高。大气汞通过干湿沉降进入土壤后,被土壤中的粘土矿物和有机物的吸附或固定,富集于土壤表层,或为植物吸收而转入土壤,造成土壤汞的浓度的升高。 2.2 农药、化肥和塑料薄膜使用 施用含有汞的农药和不合理地施用化肥,都可以导致土壤中重金属汞的污染。 2.3 污水灌溉 污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。在分布上,往往是靠近污染源头和城市工业区土壤污染严重,远离污染源头和城市工业区,土壤几乎不污染。 2.4 污泥施肥 污泥中含有大量的有机质和氮、磷、钾等营养元素,但同时污泥中也含有大量的重金属,随着大量的市政污泥进入农田,使农田中的重金属的含量在不断增高。 2.5 含重金属废弃物堆积

土壤重金属污染的植物修复

土壤重金属污染的植物修复 【摘要】土壤重金属污染是急需解决的环境问题之一,植物修复对于重金属污染土壤的治理修复具有重要意义。本文介绍了植物修复技术的概念、基本原理、研究现状以及优缺点,并展望了该领域今后的研究方向。 【关键词】植物修复;重金属;超积累植物;土壤 随着工业和农业的发展,重金属对土壤的污染越来越严重。土壤中重金属污染不仅直接影响作物的产量与品质,而且会通过食物链危及人类的健康和安全,如日本的痛骨病事件就是典型的例证。由于重金属污染物在土壤中难迁移,又不能被微生物降解,价态变化复杂,使得治理非常困难[1]。目前,常用的土壤污染修复方法有物理法、化学法和生物法(如客土法、淋溶法、施用化学改良剂等)[2],大多只能暂时缓解重金属的危害,还可能导致二次污染,不能从根本上解决问题。近年来出现的植物修复技术由于成本低、效果良好、环境友好等优点,正成为环境科学领域研究和开发的热点[3,4]。 1.植物修复技术及其机理 植物修复技术是指将某种特定的植物种植在重金属污染的土壤上,该种植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理(如灰化回收)后即可将该种重金属移出土体,达到污染治理与生态修复的目的[5]。根据机理不同分以下4种:植物萃取、植物稳定、植物挥发和植物转化。 植物萃取又称植物提取技术。重金属经植物根系吸收后,继而转移、贮存到植物茎叶,然后收割茎叶,从而达到去除土壤重金属元素的目的。植物萃取技术利用的是一些对重金属具有较强富集能力的特殊植物,要求所用植物具有生物量大、生长快和抗病虫害能力强的特点,并具备对多种重金属较强的富集能力(即超富集植物)[6],植物萃取是目前研究最多且最有发展前景的植物修复方式,此技术的关键在于寻找合适的超富集植物和诱导出超级富集体。 植物稳定是耐性植物利用其自身的机械稳定作用和吸收沉淀作用固定土壤中重金属的方式,包括了分解、沉淀、螯合、氧化还原等多种过程,这些过程可降低重金属的生物有效性,防止其进入水体和食物链。然而植物稳定并没有将环境中的重金属离子去除,只是暂时的固定,使其对环境中的生物不产生毒害作用,并没有彻底解决环境中的重金属污染问题。 植物挥发是指利用植物去除土壤中的一些挥发性污染物的一种方法,即植物将污染物吸收到体内后又将其转化为气态物质,释放到大气中。植物挥发只限于挥发性的污染物(如Se,As和Hg等),应用范围小,且此方法将污染物转移到大气中,对环境有一定的影响。 植物转化是指利用植物的根部及其它部位通过新陈代谢作用等生理过程将

土壤重金属污染植物修复研究报告现状与发展前景

土壤重金属污染的植物修复研究现状与发展前景①2007-05-27 17:08 土壤重金属污染的植物修复研究现状与发展前景①作者】桑爱云。张黎明。曹启民。夏炜林。王华。【英文作者】 SANG Aiyun1) ZHANG Liming1) CAO Qimin1) XIA Weilin1) WANG Hua2)<1 Tropical Crops Genetic Resources Institute。CATAS。Danzhou。Hainan。 2 College of Agronomy。SCUTA。Hainan 571737)。【作者单位】中国热带农业科学院热带作物品种资源研究所。华南热带农业大学农学院。海南儋州。【刊名】热带农业科学 , Chinese Journal of Tropical Agriculture, 编辑部邮箱2006年01期 桑爱云1>② 张黎明1> 曹启民1> 夏炜林1> 王华2> (1 中国热带农业科学院热带作物品种资源研究所海南儋州571737。 2 华南热带农业大学农学院海南儋州571737> 摘要重金属污染是土壤污染中危害极大的一类, 重金属污染的防治及其修复是目前国际上研究的热点之一。综述了土壤重金属污染及其植物修复的方法, 概述了超富集植物的概念、植物修复的机制和方式, 系统阐述植物修复的应用前景和今后的研究方向。关键词重金属污染。植物修复。超富集植物分类号X5 3 Resear ch Advances and Development Prospect of Phytor emediation in Heavy Metal Contamination Soil SANG Aiyun1> ZHANG Liming1> CAO Qimin1> XIA Weilin1> WANG Hua2> (1 Tropical Crops Genetic Resources Institute, CATAS, Danzhou, Hainan 571737。 2 College of Agronomy, SCUTA, Danzhou, Hainan 571737> Abstr act Heavy metal contamination is extremely harmful in soil contamination. It is one of the research priorities in the world to control and remedy heavy metal contamination. Heavy metal contamination in soil and its phytoremediation are reviewed in this paper. At the same time, the definition of hyper-accumulated plants and the mechanism and measures of phytoremediation are described in detail. The perspectives in research and application of phytoremediation were expounded systematically. Keywords heavy metal contamination 。phytoremediation 。hyper-accumulator 热带农业科学CHINESE JOURNAL OF TROPICAL AGRICULTURE 2006 年 2 月第26 卷第 1 期Feb. 2006 Vol.26, No.1 ① 科技基础性工作和社会公益研究专项( 2004DI B3J073> 资助。

土壤中铅污染及其植物修复技术综述

龙源期刊网 https://www.360docs.net/doc/af15796606.html, 土壤中铅污染及其植物修复技术综述 作者:王丽华唐容刘尉 来源:《南方农业·上旬》2017年第08期 摘要铅是土壤中一种常见的重金属污染物,对动植物生长及人类健康具有极大的潜在隐患,土壤中的铅不易被清除且难以被微生物分解。一些植物对重金属的耐性及积累特性对于修复土壤中铅的污染具有十分重要的作用。综述铅作为土壤重金属的危害,简述植物修复技术的优缺点。介绍植物修复技术之一——草坪草的修复作用,草坪草作为修复植物的优劣,草坪草作为修复植物的应用情况。结合国内外的实际情况,对未来重金属污染中植物修复技术的发展趋勢作了展望。 关键词铅;重金属污染;植物修复技术;草坪草 中图分类号:X53 文献标志码:A DOI:10.19415/https://www.360docs.net/doc/af15796606.html,ki.1673-890x.2017.22.033 知网出版网址:http://https://www.360docs.net/doc/af15796606.html,/kcms/detail/50.1186.S.20170818.1911.012.html 网络出版时间:2017/8/18 19:11:00 近年来,由于工农业的迅速发展,含有重金属的污染物通过各种途径不断进入土壤,造成了土壤大规模的重金属污染,对生态环境造成了不可估量的损失。重金属污染具有隐蔽性、长期性、不可逆转和难处理等特点,受重金属污染的土壤治理和修复成为当下急需解决的生态与环境问题[1]。高浓度或长时间的重金属污染会导致植物光合作用减弱,细胞内酶的活性降 低,细胞膜受损,种子发芽率降低,生长迟缓,产量降低,根系生长受阻等实质性伤害,严重时可造成植株死亡[2]。土壤中重金属对植物的影响可通过食物链间接影响动物及人体的健 康,从而引起各类疾病。 铅是土壤重金属污染中常见的污染源,其来源广泛,长期积累后对动植物及人类的影响较大,其引发的危害成为亟待解决的问题之一。 1 铅的危害 铅是一种有毒性重金属元素,严重影响人类健康及动植物的生存。铅可通过植物的根、茎或者叶进入植物体内,并在其内部积累,当积累量达到一定程度时,将对植物的生长发育和生理生化指标造成不同程度的影响[3-5]。 1.1 对植物生长的影响 土壤中的铅浓度是影响植物生长的主要因素,低浓度的铅对植物的生长具有一定的促进作用,不同植物对铅的需求量不同,例如400 mg·L-1的铅离子溶液能够提高白三叶种子发芽 率,而800 mg·L-1的铅离子溶液则对马蹄金种子的发芽率具有一定的刺激作用[6]。然而,铅

土壤重金属污染的植物修复

土壤重金属污染的植物修复 3 屈 冉1,2  孟 伟1  李俊生 133  丁爱中2 金亚波 3 (1中国环境科学研究院,北京100012; 2 北京师范大学水科学研究院,北京100875; 3 广西大学农学院,南宁530005) 摘 要 土壤重金属污染的危害范围广泛,使用传统的物理和化学修复方法成本高,对环 境扰动大,而利用植物修复的效果较为明显,易于操作。本文论述了土壤重金属污染的单一植物、植物与微生物联合、植物与化学方法相结合的修复方法,着重介绍了重金属超富集植物的研究和植物体内螯合肽(PCs )的合成。生物螯合剂的应用及土壤重金属污染的动物、植物和微生物的联合修复将是未来研究的热点。关键词 土壤污染;重金属;植物修复中图分类号 X131.3 文献标识码 A 文章编号 1000-4890(2008)04-0626-06Research progress on phytore m ed i a ti on of heavy m et a l con t am i n a ted so il 1QU Ran 1,2 , ME NG W ei 1,L I Jun 2sheng 1,D ING A i 2zhong 2,J IN Ya 2bo 3(1 Chinese R esea rch A cade m y of En 2 vironm ental Sciences,B eijing 100012,Ch ina;2 College of W ater Sciences,B eijing N or m al U niver 2 sity,B eijing 100875,Ch ina;3 A g ricultu ral College of Guangxi U niversity,N anning 530005,Chi 2na ).Ch inese Journal of Ecology ,2008,27(4):626-631.Abstract:The conta m inati on har m by s oil heavy metals is extensive .The cost of traditi onal phys 2ical and che m ical re mediati on methods is expensive .Moreover,the disturbance of traditi onal methods on envir onment is severe .It has been p r oven that phyt ore mediati on ismore effective than other methods and easily operated .This paper discussed the phyt ore mediati on technique of single p lants,co mbinati on of p lants and m icr obes,as well as combinati on of p lants and che m ical treat 2ment,and e mphatically intr oduced the research of hyperaccumulati on p lant and the synthesis of phyt ochelatin (PCs ).It is f orecasted that future disquisitive e mphases are the app licati on of bi o 2chelat or al ong with co mbinati on re mediati on of ani m als,p lants and m icr obes .Key words:s oil conta m inati on;heavy metal;phyt ore mediati on . 3国家自然科学基金项目(30440036)和中国环境科学研究院中央级公益性科研院所基本科研业务专项资助项目(30770306)。33通讯作者E 2mail:meng wei@craes .org .cn 收稿日期:2007206224 接受日期:2007212203 土壤是人类及众多生物赖以生存繁衍发展的物 质基础之一。污染物通过水体、大气间接或直接进入土壤中,当其积累到一定程度、超过土壤自净化能力时,土壤的生态服务功能将降低,进而对土壤动、植物以及微生物产生影响。重金属是土壤重要污染物之一。粗略统计,在过去的50年中,排放到全球环境中的Cr 212×104 t 、Cu 9139×105 t 、Pb 7183×105 t 和Zn 1135×106t,其中大部分进入土壤,致使 世界各国土壤出现不同程度的重金属污染(Singh,2003),中国土壤的重金属污染也十分严重(王新和周启星,2004)。土壤中的重金属离子可以作为中 心离子与土壤中的水、羟基、氨以及一些有机质中的某些分子形成螯合物,并在土壤中迁移转化,易于被植物或微生物吸收利用,继而通过食物链进入人体,引起各种生理功能改变,导致各种急慢性疾病,如慢性中毒、致癌和致畸等。因此,有必要开展土壤重金属污染的生态修复。 传统的土壤重金属污染修复技术有排土填埋法、稀释法、淋洗法、物理分离法和化学法等。在20世纪80年代初期,土壤重金属污染的植物修复开始起步,目前关于这方面的研究比较多,是一项有发展前景的修复技术。与传统的处理方式相比,植物修复的主要优点是成本低,处理设施简单,适合大规模的应用,利于土壤生态系统的保持,对环境扰动小, 具有美学价值等特点。植物修复是生物修复(bi ore 2 生态学杂志Chinese Journal of Ecol ogy 2008,27(4):626-631

根际环境与土壤污染的植物修复研究进展

生态环境 2003, 12(1): 76-80 https://www.360docs.net/doc/af15796606.html, Ecology and Environment E-mail: editor@https://www.360docs.net/doc/af15796606.html, 基金项目:广州市科技计划项目(2001-J-011-01);华南理工大学自然科学基金项目(E52020) 作者简介:张太平(1967-),男,博士,讲师,从事污染生态学与环境生物技术的研究。 根际环境与土壤污染的植物修复研究进展 张太平,潘伟斌 华南理工大学环境科学与工程系,广东 广州 510641 摘要:土壤污染的植物修复通常与植物根际微生物紧密相关,根际微生物群落变化与土壤污染物在根际环境中的动态,可能是对土壤污染成功进行植物修复的基本过程。可见根际环境在土壤污染的植物修复中具有明显的重要作用。文章介绍了有关重金属在根际环境中的动态、有机污染物在根际环境中的降解转化、土壤重金属污染与土壤有机污染的植物修复研究进展。 关键词:根际环境;土壤污染;植物修复 中图分类号:X53 文献标识码:A 文章编号:1672-2175(2003)01-0076-06 根际环境(rhizosphere)是指与植物根系发生紧密相互作用的土壤微域环境,是植物在其生长、吸收、分泌过程中形成的物理、化学、生物学性质不同于土体的、复杂的、动态的微型生态系统。它是土壤圈、水圈、大气圈和生物圈相互作用的结果。从环境科学角度来说,根际环境是重要的环境界面,因而成为当前土壤与环境科学研究中的一个热点[1]。根际环境的研究主要集中在两个方面,一是农业方面,探讨根际的物理、化学和生物环境与作物生长发育、抗逆性和生产力的直接关系;二是环境污染及其治理研究[2]。由于土壤及地下水的污染呈日益加剧的趋势,近年来对土壤重金属及有机污染的植物修复研究日渐增多,其关键之处是根际环境在土壤污染植物修复中的地位与作用,新的研究方法与技术、思路与观点不断涌现。本文就根际环境与土壤污染植物修复近年来这方面的研究进展作一简要评述,以期为该领域的研究提供借鉴。 1 根系分泌、根际微生物相互关系及其在土壤污染生物修复中的地位与作用 根际环境由于植物根系分泌作用的存在致使其pH 、Eh 、微生物等组成一个有异于非根际的特殊生境,根系分泌、根际微生物间存在着复杂的相互关系。14CO 2连续标记植物与密闭根-土壤系统研究表明,植物光合产物的40%以上通过根释放到土壤,称为根际沉降(rhizodeposition),供相关的生物群的代谢利用,包括自由生活的微生物,及其与 植物共生的根瘤菌与菌根真菌[3] 。早已证明,根系分泌物会影响土壤中微生物的数量及群落组成,群落特征也随着根系分泌物的类型而变化。根际环境中的细菌密度比非根际土壤通常大2~4个数量级,并表现范围更广泛的代谢活性[4]。 土壤中微生物的活性及其生物量增长受到底物的限制,特别是碳源,根际环境中碳源的输入明显增加微生物的活性。通过模拟根系分泌物组成成分进行碳源添加实验,测定微生物群落的DNA 分子杂交、(G+C )比例、膜脂,结果表明,微生物群落结构及活性与碳源存在明显的相关性[5]。Compbell 等研究了以根系分泌物中的有机物为唯一碳源培养土壤微生物,对3种不同植被类型9个取样点的土壤样品研究结果表明,根系分泌物对土 壤微生物具有一定的选择性[6] 。Kozdroj 等的研究结果表明,植物根系分泌物明显影响根际微生物群落结构,根系分泌物中的有机成分是引起根际新的细菌群落发展的潜在机制。以植物为基础的土壤污染生物修复通常是由于与植物根际紧密相连的微生物的作用,这种依赖于根际的变化而使土壤中微生物群落发生变化,可能是对土壤污染成功进行生物修复的基本过程[7]。可见根系分泌、根际微生物相互关系在土壤污染生物修复中具有非常重要的地位与作用。 根系分泌物具有各种不同的功能与性质,根系分泌物除促进根际微生物的生长及多样性与活性外,近来的研究发现,根系分泌物也是生物间相生相克关系(allelopathy)的不可缺少的组成成分。最新研究结果表明,根际环境分子信号对捕食者、寄生者、互利共生者寻找猎物或宿主非常重要。最引人注目的是与“定量感应”(quorum sensing)有关的分子信号物质,由不同的微生物释放用于感应其本身种群密度,较高的种群密度导致较高浓度的分子信号物质,引发密度依赖性反应,从而控制种群密度,特别是对病原菌种群密度的控制与植物健康的改善[8]。这进一步加深了对根际微生物与植物相互关

食品中汞的存在形态及其毒性研究进展1

食品中汞的存在形态及其毒性研究进展 摘要:随着汞在工业、农业、医药等方面的广泛应用,由汞及其化合物所造成的环境汞污染问题日益严重,已成为人类生存环境的一大公害。其中汞的化合物通过食物进入人体中,造成含汞化合物在人体各个脏器的聚集,从而产生各种急性、慢性中毒。为了更好的了解汞在食品中的存在形态及其毒性,本文就此研究的新进展进行综述。 关键词:食品;汞化合物;存在形态;毒性 Advances inspeciationand toxicityof mercuryin food Abstract:With themercuryis widely used inindustry, agriculture, medicine and otherfields,mercury pollutionenvironmentalproblems caused bymercury and its compoundswith the benefit ofa serious, has become a majorhazardto human survivalenvironment.Mercury compoundswhichenter the bodythrough food, causing the mercury-containing compoundsgathered invarious organsof the body,resulting ina variety of acuteand chronicpoisoning.In order to betterunderstand the newprogressin thepresenceof mercury in theform offoodand toxicity, thisstudyreviewedin this article. Keywords: Food; mercury compounds; speciation; Toxicity 环境中的汞污染除自然因素释放并因生态环境的改变而引起迁移外,绝大部分是由人为因素所致。随着城市工业的发展与城市化进程的加快,含汞工业废水使河水日益受到污染,通过生物链富集到水生动物体内,土壤用污水灌溉、污泥施肥及施用含汞农药,最终对人体健康产生严重的影响。汞的复杂的生物地球生物化学行为和生态毒性效应已经引起人类的广泛关注,尤其是不同形态的汞有不同的化学行为、生物积累特性和毒性。在所有有毒金属中汞最为人们所关注,也是研究最集中的金属。为了今后更深入地进行研究,现对食品中汞的存在形态及其毒性做一概述。 1.食品中汞的污染来源 地球经一系列的自然过程如火山活动、地热活动及地壳放气作用等将汞释放入大气[1]。姚学良等人[2]通过对成都平原的基底断裂特征进行探索,初步认为我国成都平原的汞污染除人为来源之外,还可能与平原基底断裂的地球放气作用有关,这是造成该区大气汞污染的主要原因。气相汞的转移归宿是土壤,全球通过降水从气相中转入固相或液相的汞平均为33×109mg/d,土壤中的汞污染主要由于汞矿采掘与汞杀虫剂的大量使用有关[3]。土壤中汞及其化合物的存在不仅影响作物生长,减少作物产量,降低作物品质,造成经济损失,而且还会通过食物链在人体内积累,直接危害人体健康。蔬菜是每日必须摄人的一类产品,在汞污染比较严重的地区,居民摄入的不合格蔬菜对其健康存在着很大的隐患。 汞在进一步迁移转化中,特别是在嫌气条件下,无机汞可以被生物甲基化为甲基汞和二甲基汞,并通过水生生物的食物链而富集,给汞的环境污染带来更严重问题[4]。鱼类和贝类含有人体所需的丰富的蛋白质和微量元素,但是它们却极容易吸收汞,居民摄入水体污染严重的水产品,会对其健康存在着很大的隐患[5]。历史上发生在日本和瑞典两起大规模中毒事件都与甲基汞有关。 2.汞的代谢途径

相关文档
最新文档