机械零件的疲劳强度

机械零件的疲劳强度
机械零件的疲劳强度

第3章 机械零件的疲劳强度

基本要求:

1.了解疲劳曲线及极限应力曲线的来源、意义及用途,能从材料的几个基本机械性能(01,,,σσσσ-s B )及零件的几何特性,绘制零件的极限应力简化线图。

2.理解疲劳极限应力图的来源及意义,

3 影响机械零件疲劳强度的主要因素,会查用附录中的有关线图及数表。

4. 会用公式计算稳定变应力时的安全系数。

* 重点:机械零件疲劳强度计算

# 难点:非稳定变应力时的安全系数的计算

计算准则:

1.安全-寿命设计:

在规定的工作期间内,不允许零件出现疲劳裂纹,一旦出现,即认为失效。 2.破损-安全设计:

允许零件存在裂纹并缓慢扩展,但须保证在规定的工作周期内,仍能安全可靠的工作。

3.1 疲劳断裂特征

变应力下,零件的强度失效形式:疲劳断裂。

疲劳断裂过程:1) 疲劳源的产生;2)微裂纹的扩展直至断裂。

疲劳断裂截面:

疲劳断裂有何特征:

1)断口处无明显塑性变形

2)断裂时,最大应力远低于材料的强度极限,甚至比材料的屈服极限还低;

3)疲劳断裂是疲劳损伤的积累,初期零件表层形成微裂纹,随N 的增大裂纹扩展,扩展到断截面不足承受外载,发生断裂。

故变应力下,零件的极限应力既不能取材料的强度极限也不能取屈服极限。应取疲劳极限。

影响疲劳断裂的主要因素:应力σ和应力循环次数N 。(疲劳曲线σ—N 曲线)

3.2 疲劳曲线和疲劳极限应力图 3.2.1 疲劳曲线

1.概念:

1) 疲劳极限(rN σ或rN τ):循环特性为r 的变应力,经过N 次循环后, 材料不发生破坏的应力最大值。

2) 疲劳曲线()N N --τσ或:表示循环次数N 与疲劳极限间关系的关系曲线。

2.典型的疲劳曲线,如图3.2(以N -σ为例)

(1)有限寿命区)(0N N <

低周循环疲劳区:)10(1043

极限几乎与N 无关。

高周循环疲劳:)10(1043>N ;

043)10(10N N <≤,疲劳极限随N 的增加而降低。 疲劳曲线方程:

043)10(10N N <≤:

??

?

??'====C N N C N N m r

m rN

m r m rN 00ττσσ (3.1)

若已知r r N τσ、和0,则N 时的疲劳极限为:

????

?

???

?

??=====m N r N r m rN r N r m

rN N N k k N N k N N 0

00

τττσσσ (3.2)

式中 m -随材料和应力状态而定的指数;试验常数-'C C ,。

图 3.2 疲劳曲线

10( )N o N

σr

σrN 0

寿命系数-N k 。

(2)无限寿命区)(0N N ≥:疲劳曲线为水平线,疲劳极限不再随N 的增加而变化。

即常数=rN σ。

大多数钢的疲劳曲线类似图3.2,有些材料的疲劳曲线没有无限寿命区, 如有色金属和高强度合金钢。

3.关于疲劳曲线方程的几点说明:

(1)循环基数0N :与材料有关。钢的硬度越大,0N 越大。如钢:<=350HB ,

76010~10=N ;>350HB, 7701025~1010??=N . (2)指数m 。

可由疲劳方程求得。r

rN N

N m σσlg lg lg lg 0--=

m 的平均值,可知:如钢,拉应力弯曲应力和切应力时m =9。

(3)多数钢的疲劳曲线类似图3.2,当需作疲劳曲线时,可仿图3.2作. (4) 不同r 时的疲劳曲线形状相似,见图3.4。但r 愈大,rN σ也愈大。

3.2.2疲劳极限应力图

疲劳极限应力图用来表示材料在相同N 和不同的r 下的疲劳极限。 坐标:a m σσ-

1 .塑性材料的极限应力图如图3.6, 简化的应力图如图3.8.

2.脆性材料、低塑性材料的极限应力图如图

3.7

图 3.8 塑性材料简化疲劳极限应力图

σ

3.3 影响机械零件疲劳强度的主要因素

影响因素很多,有应力集中、零件尺寸、表面状态、环境介质、加载顺序和频率等。

3.3.1 应力集中的影响

零件受载时,在几何形状突变处(如圆角、孔、凹槽等)要产生应力集中,对应力集中的敏感还与零件的材料有关。用有效应力集中系数σk 、τk 来考虑应力集中对疲劳强度的影响。

钢的强度极限愈高,敏感系数q 值愈大,对应力集中愈敏感,见图3.10。铸铁q =0,τσK K =

若在同一截面上同时有几个应力集中源,采用其中最大有效应力集中系数进行计算。

3.3.2 尺寸的影响

零件尺寸的大小对疲劳强度的影响可以用尺寸系数σε、τε来表示。钢、铸铁的尺寸系数各见图3.11,3.12.。

尺寸愈大,对零件疲劳强度的不良影响愈显著。

3.3.3 表面状态的影响

零件加工表面质量对疲劳强度的影响可以用表面状态系数σβ、τβ来表示。 图3.13钢的强度愈高,表面愈粗糙,表面状态系数愈低,疲劳强度愈低。所以用高强度钢时表面应有较高的加工质量。

3.3.4 综合影响系数

试验证明:应力集中、零件尺寸和表面状态都只对应力幅有影响,对平均应力没有明显影响。为此,将此三个系数合并为一综合影响系数

??

??

???=

=

ττττσσσσβεβεk k k k D D )()( (3.7) 计算时,零件的工作应力幅要乘以综合影响系数或材料的极限应力幅要除

以综合影响系数。

3.4

许用疲劳极限应力图

3.4.1 许用疲劳极限应力图

图3.17为许用极限应力图。工作应力点),(a m C σσ必须落在安全区内。

3.4.2 工作应力增长规律

常见的规律(如图3.18):

1)C r ==

max

min

σσ,如转轴的弯曲应力; 2)C m =σ,如车辆减震弹簧,由于车的质量先在弹簧上产生预加平均应力,车辆运行中的振动又在弹簧产生对称循环应力;

3)C =min σ,如气缸盖的螺栓联接。

常将第一种称为简单加载;后两种称为复杂加载。 极限应力点C 1的确定。 3.5

稳定变应力时安全系数的计算

疲劳强度计算方法: 1) 应力法; 2) 安全系数法

3.5.1

以塑性材料为例,

1.图解法,如图3.19

σ

常数

图3.18三种工作应力增长规律

图 3.19 常数时安全系数计算简图

当工作应力点C 落在疲劳安全区:

OC C O HC OH C G OG S a m a

m '=

+'+=+'+'='=

σσσσσσσmax max HC

C G S a a

a '=

'=

σσσ 因r =常数,由三角形相似,故a S S σσ= 当工作应力点C 1落在塑性安全区:

1

111

11OC C O MC C L OM OL MC OM C L OL S a m s

'=

'==+'+=+=σσσσ 上述图解法也适用于求切应力时的安全系数。

2.解析法

若C 落在疲劳安全区,

由A` B`两点坐标,求得A`E 直线方程式:

02

)()(20)(0

1

01--=

'-'---σσ

σσσσσσσN D

N D N m a D N k k k k k k k ????

???-=

'-='?--00

112)(1

)(σσσψσψσσσσσσm D D N a

k k k

代入上式:

a

a m

m

σσσσ'='

a

m

D N a

k k σσψσσσσ+='-)(1

[]

[]????

?

????-=≥=+=≥=+='=-----0

111112)(S :)(τττψττ

τψττσσσψσσσστττττσ

σσσa

a

a

a

S k k k S k k k S ae

N m a D N ae

N m a D N a a 同理 (3.11) 式中 为等效系数τσψψ,

当量对称循环变应力-ae ae τσ, 当C 落在塑性安全区

[][]???

?

?

??≥+=≥+=

a

a

a

a S S S m

a s

m a s

ττσ

στττσσσS

(3.12) 注:(1).对塑性材料,为安全计,疲劳强度和屈服强度安全系数都计算;

(2) 对脆性材料和低塑性材料,式(3.11)也适用,不必验算屈服强度安

全系数.

3.5.2 复合应力状态时的安全系数

1.塑性材料

塑性材料零件 在对称循环弯扭复合应力状态,疲劳强度安全系数:

[]S S S S S S ≥+=2

2

τ

στσ (3.19)

[][]??

???

??≥+=≥+=

S S S s

s

2max

2max 2max 2max 3S 4τσστσσ (3.20)

2低塑性和脆性材料(弯扭复合应力) 建议

[]S S S S S S ≥+=

τ

στ

σ (3.21)

因非对称循环应力可以折算成当量对称循环应力,故式3.19、3.21也适用于非对称循环复合应力安全系数计算。

3.5.3 许用安全系数(见2.2.4和有关各章)

3.6 规律性非稳定变应力时的机械零件的疲劳强度

3.6.1 疲劳损伤积累假说

假说:在每一次应力作用下,零件寿命就要受到微量的疲劳损伤,当疲

劳损伤积累到一定程度达到疲劳寿命极限时,便发生疲劳断裂。

线性疲劳损伤积累计算提出:应力每循环一次,造成零件一次寿命损伤,

故其总寿命损伤率

∑='='+???+'+'=n

i i i n

n N N N N N N N N F 122

11

零件达到疲劳寿命极限时,理论上F =1。试验表明:F =0.7~2.2 零件表面有残余压应力的F 可能大于1;表面有残余拉应力的F 可能小

于1,为计算方便,通常取1。

注:在进行疲劳寿命计算时,可以认为:小于疲劳极限r σ的应力对疲劳

寿命无影响。

3.6.2等效稳定变应力和寿命系数

非稳定变应力下零件的疲劳强度计算:先将非稳定变应力成单一的与其F 相等的等效稳定变应力v σ(简称等效应力),然后再按稳定变应力进行疲劳强度计算。

常取等效应力v σ等于非稳定变应力中作用时间最长的和(或)起主要作用的应力,例如图3.22b 中取1σσ=v ,对应v σ的等效循环次数v N 和材料

发生疲劳破坏时的极限循环次数'

v N 。

根据总寿命损伤率应相等的条件,可列出:

'='+???+'+'v

v n

n N N N N N N N N 22

11

已知1σσ=v 时,'

='1N N v ,上式各项的分子和分母相应乘以

m v m

m σσσ,...,,21,利用C N i m i ='σ可得:

i m

n

i v

i v N N )(

1

∑==σσ (3.23) 设等效循环次数v N 时的疲劳极限为rv σ,由0N N m r v m

rv σσ=,可得:

,0r N r m

v

rv k N N σσσ== m n

i i m

v

i m v N N N N N

k ∑==

=1

0)(

σσ

(3.24)

,0

r N r m

v

rv k N N τττ== m n

i i m

v

i m v N N N N N k ∑==

=1

0)(

σσ

式中 系数。

等效循环次数时的寿命-N k 注:计算时系数等效循环次数时的寿命N k ,也可将式(3.24)中变应力换为相应的载荷,但应注意它们间的换算关系:受拉(压)、弯、扭时,

,)(i i i F ∞τσ或,)(v v v F ∞τσ或对于接触强度,两圆柱体接触时,,2

1i Hi F ∞σ 21

v

Hv F ∞σ

3.6.3规律性非稳定变应力时安全系数的计算步骤

1取等效应力用的应力最长和(或)起主要作非稳定变应力作用时间=v σ i σ,

并取v σ的应力幅av σ和平均应力mv σ相应地等于i σ的应力幅ai σ和平均应力 mi σ。

2 求等效循环次数v N ;

3求等效循环次数时的寿命系数N k 和疲劳极限rv σ; 4 按等效应力计算疲劳强度安全系数;

5 按最大非稳定变应力计算塑性材料屈服强度安全系数。

最全机械零件的强度.完整版.doc

第一篇总论 第三章机械零件的强度 3-1 某材料的对称循环弯曲疲劳极限σ-1=180MPa,取循环基数N0=5?106,m=9,试求循环次数N分别为7000,2500,620000次是时的有限寿命弯曲疲劳极限。 3-2 已知材料的力学性能为σS=260MPa,σ-1=170MPa,ψσ=0.2,试绘制此材料的简化极限应力线图(参看图3-3中的A’D’G’C)。 3-3 一圆轴的轴肩尺寸为:D=72mm,d=62mm,r=3mm。材料为40CrNi,其强度极限σB=900MPa,屈服极限σS=750MPa,试计算轴肩的弯曲有效应力集中系数kσ。 3-4 圆轴轴肩处的尺寸为:D=54mm,d=45mm,r=3mm。如用题3-2中的材料,设其强度极限σB=420MPa,试绘制此零件的简化极限应力线图。 3-5 如题3-4中危险截面上的平均应力σm=20MPa,应力幅σa=900MPa,试分别按:a)r=C;b)σm=C,求出该截面的计算安全系数S ca。 第二篇联接 第五章螺纹联接和螺旋传动 5-1 分析比较普通螺纹、管螺纹、梯形螺纹和锯齿形螺纹的特点,各举一例说明它们的应用。5-2 将承受轴向变载荷的联接螺栓的光杆部分做得细些有什么好处? 5-3 分析活塞式空气压缩机气缸盖联接螺栓在工作时的受力变化情况,它的最大应力,最小应力如何得出?当气缸内的最高压力提高时,它的最大应力、最小应力将如何变化? 5-4 图5-49所示的底板螺栓组联接受外力F∑的作用。外力F∑作用在包含x轴并垂直于底板接合面的平面内。试分析底板螺栓组的受力情况,并判断哪个螺栓受力最大?保证联接安全工作的必要条件有哪些? 5-5 图5-50是由两块边板和一块承重板焊成的龙门起重机导轨托架。两块边板各用4个螺栓与立柱相联接,托架所承受的最大载荷为20kN,载荷有较大的变动。试问:此螺栓联接采用普通螺栓联接还是铰制孔用螺栓联接为宜?为什么? 5-6 已知一个托架的边板用6个螺栓与相邻的机架相联接。托架受一与边板螺栓组的垂直对称轴线相平行、距离为250mm、大小为60kN的载荷作用。现有如图5-51所示的两种螺栓布置型式,设采用铰制孔用螺栓联接,试问哪一种布置型式所用的螺栓直径较小?为什么?

浅谈机械零件的强度(

第三章 机械零件的强度 § 3 – 1 材料的疲劳特性 一、交变应力的描述 静应力,变应力 max ─最大应力; min ─最小应力 m ─平均应力; a ─应力幅值 2 min max σσσ+= m 2 min max σσσ-= a max min σσ= r r ─应力比(循环特性)

【注意】 1)已知任意两个参数,可确定其他三个参数。一般已知 max,r; 2) max, min指代数值; a为绝对值; 3)-1≤r ≤ +1; a=0,r =+1,为静应力 r = -1 对称循环应力r=0 脉动循环应力r=1静应力 二、疲劳曲线(σ-N曲线) 1.材料的疲劳极限:σr N 在一定应力比为г的循环变应力作用下,应力循环N 次后,材料不发生疲劳破坏时,所能承受的最大应力σmax。 2.疲劳寿命:N 材料疲劳失效前所经历的应力循环次数。

σ-N疲劳曲线 г不同或N不同时,疲劳极限σrN不同。即σrN与r、N 有关。疲劳强度计算中,就是以疲劳极限作为σlim。 即σlim=σrN。通过实验可得,疲劳极限σrN与循环次数N之间关系的曲线,如上图所示。 AB段曲线:N<103,计算零件强度时按静强度计算。(σrN≈σs) BC段曲线:103

N D 与材料有关,有的相差很大,因此规定一个常数。 N 0?循环基数 当N >N D 时,σrN =σr ∞=σr (简记) 疲劳曲线以N 0为界分为两个区: 1)有限寿命区 把曲线CD 段上的疲劳极限σr 称为有限疲劳极限(条件~)。 当材料受到的工作应力超过σr 时,在疲劳破坏之前,只能经受有限次的应力循环。即寿命是有限的。 【说明】 不同应力比г时的疲劳曲线具有相似的形状。但г↑,σrN ↑。 2)无限寿命区 当N >N 0时,曲线为水平直线,对应的疲劳极限是一个定值,——称为持久疲劳极限,用0rN σ表示 (简写为σr )。在工程设计中,一般认为:当材料受到的应力不超过σr 时,则可以经受无限次的循环应力而不疲劳破坏——即寿命是

机械设计机械零件的强度

第三章 机械零件的强度 §3T 材料的疲劳特性 、交变应力的描述 静应力,变应力 max ——最大应力; 平均应力; max r ——应力比(循环特性) 【注意】 1) 已知任意两个参数,可确定其他三个参数。一般已 max , r ; 2) max , min 指代数值;a 为绝对值; 3) -1 r + 1 ; a =0, r =+1 ,为静应力 min max min 2

r = -1对称循环应力

疲劳曲线(-N 曲线) 1.材料的疲劳极限:r N 在一定应力比为 r 的循环变应力作用下,应力循环 N 次后,材料不发生疲劳破坏时,所能承受的最大应力 max 。 2.疲劳寿命:N 材料疲劳失效前所经历的应力循环次数。 有关。疲劳强度计算中,就是以疲劳极限作为 lim 即lim = rN 。通过试验可得,疲劳极限 rN 与循环次数N 之 间关系的曲线,如上图所示 6 ( 6 A B \ /T 、 1 r 不同或N 不同时,疲劳极限rN 不同 。即rN 与r 、N —N 疲劳曲线

AB段曲线:N 103,计算零件强度时按静强度计算。 (rN s) BC段曲线:103N 104,零件的破坏为塑性破坏属于低周疲劳破坏。特点:应力高,寿命低。 CD段曲线:r N随N的增大而降低。但是当N超过某一次数时(图中N D),曲线趋于水平。即r N不再减小。 N D与材料有关,有的相差很大,因此规定一个常数。 当N N D时,rN= r = r (简记) 疲劳曲线以N o为界分为两个区: 1)有限寿命区 把曲线CD段上的疲劳极限r称为有限疲劳极限(条件?)。当材料受到的工作应力超过r时,在疲劳破坏之前,只能经受有限次的应力循环。即寿命是有限的。 【说明】

机械零件的强度

机械零件的强度 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

沈阳工业大学备课用纸 第三章机械零件的强度 1.强度问题: 静应力强度:通常认为在机械零件整个工作寿命期间应力变化次数小于103的通用零件,均按静应力强度进行设计。 (材料力学范畴) 变应力强度:在变应力作用下,零件产生疲劳破坏。 2.疲劳破坏定义:金属材料试件在交变应力作用下,经过长时间的试 验而发生的破坏。 3.疲劳破坏的原因:材料内部的缺陷、加工过程中的刀痕或零件局部 的应力集中等导致产生了微观裂纹,称为裂纹源,在交变应力作用下,随着循环次数的增加,裂纹不断扩展,直至零件发生突然断裂。4.疲劳破坏的特征: 1)零件的最大应力在远小于静应力的强度极限时,就可能发生破坏; 2)即使是塑性材料,在没有明显的塑性变形下就可能发生突然的脆性断裂。 3)疲劳破坏是一个损伤累积的过程,有发展的过程,需要时间。 4) 疲劳断口分为两个区:疲劳区和脆性断裂区。 §3-1 材料的疲劳特性 一、应力的分类 1、静应力:大小和方向均不随时间改变,或者变化缓慢。 2、变应力:大小或方向随时间而变化。 1)稳定循环变应力: 以下各参数不随时间变化的变应力。 ?m─平均应力; ?a─应力幅值 ?max─最大应力; ?min─最小应力r ─应力比(循环特性) 描述规律性的交变应力可有5个参数, 但其中只有两个参数是独立的。 沈阳工业大学备课用纸 r = -1 对称循环 应力 r=0 脉动循环应 力 r=1 静应力

2)非稳定循环变应力: 参数随时间变化的变应力。 (1)规律性非稳定变应力:参数按一定规律周期性变化的称为。 (2)随机变应力:随机变化的。 二、疲劳曲线 1、σ-N 曲线:应力比r 一定时,表示疲劳极限N γσ(最大应力)与 循环次数N 之间关系的曲线。典型的疲劳曲线如下图示: 大多数零件失效在C 点右侧区域,称高周疲劳区N>104 高周疲劳区以N 0为界分为两个区: 有限寿命区(CD): N <N 0,循环次数N,对应的极限应力 N γσ 。 N γσ ——条件疲劳极限。 曲线方程为 m N N C γσ?= 曲线可分为AB BC CD D 右 四个区域。 其中: AB 区最大应力变化不大,可按静应力考虑。 BC:为低周疲劳(循环次数少) 区。N<104 。也称应变疲劳(疲劳破坏伴随塑性变形) M-材料常数 N 0-循环基数 沈阳工业大学备课用纸 ?-N 疲劳曲线

机械零件的强度.

机械零件的强度.

第一篇总论 第三章机械零件的强度 3-1 某材料的对称循环弯曲疲劳极限σ -1=180MPa,取循环基数N =5?106,m=9,试 求循环次数N分别为7000,2500,620000 次是时的有限寿命弯曲疲劳极限。 3-2 已知材料的力学性能为σS=260MPa,σ -1=170MPa,ψ σ=0.2,试绘制此材料的简化极 限应力线图(参看图3-3中的A’D’G’C)。3-3 一圆轴的轴肩尺寸为:D=72mm,d=62mm,r=3mm。材料为40CrNi,其强度极限σ B =900MPa,屈服极限σ S =750MPa,试计算轴 肩的弯曲有效应力集中系数k σ。 3-4 圆轴轴肩处的尺寸为:D=54mm,d=45mm,r=3mm。如用题3-2中的材料,设其强度极 限σ B =420MPa,试绘制此零件的简化极限应力线图。 3-5 如题3-4中危险截面上的平均应力σ m =20MPa,应力幅σ a =900MPa,试分别按:a) r=C;b)σ m =C,求出该截面的计算安全系 数S ca 。 第二篇联接

第五章螺纹联接和螺旋传动 5-1 分析比较普通螺纹、管螺纹、梯形螺纹和锯齿形螺纹的特点,各举一例说明它们的应 用。 5-2 将承受轴向变载荷的联接螺栓的光杆部分做得细些有什么好处? 5-3 分析活塞式空气压缩机气缸盖联接螺栓在工作时的受力变化情况,它的最大应力, 最小应力如何得出?当气缸内的最高压力 提高时,它的最大应力、最小应力将如何 变化? 5-4 图5-49所示的底板螺栓组联接受外力F∑的作用。外力F∑作用在包含x轴并垂直于底 板接合面的平面内。试分析底板螺栓组的 受力情况,并判断哪个螺栓受力最大?保 证联接安全工作的必要条件有哪些?

机械零件的强度计算.

第三章 机械零件的强度计算 第0节 强度计算中的基本定义 一. 载荷 1. 按载荷性质分类: 1) 静载荷:大小方向不随时间变化或变化缓 慢的载荷。 2) 变载荷:大小和(或)方向随时间变化的 载荷。 2. 按使用情况分: 1) 公称载荷(名义载荷): 按原动机或工作机的额定功率计算出的载荷。 2) 计算载荷:设计零件时所用到的载荷。 计算载荷与公称载荷的关系: F ca =kF n M ca =kM n T ca =kT n 3) 载荷系数:设计计算时,将额定载荷放大 的系数。 由原动机、工作机等条件确定。 二. 应力 2.按强度计算使用分 1) 工作应力:由计算载荷按力学公式求得的应力。 2) 计算应力:由强度理论求得的应力。 3) 极限应力:根据强度准则 、材料性质和 应力种类所选择的机械性能极限值σlim 。 4) 许用应力:等效应力允许达到的最大值。[σ]= σlim /[s σ] 稳定变应力 非稳定变应力 对称循环变应力 脉动应力 规律性非稳定变应力 随机性非稳定变应力 静应力 对称循环变应力 脉动应力 σ周期变应力

第1节 材料的疲劳特性 一. 疲劳曲线 1. 疲劳曲线 给定循环特征γ=σlim /σmax ,表示应力循 环次数N 与疲劳极限σγ的关系曲线称为疲 劳曲线(或σ-N )。 2. 疲劳曲线方程 1) 方程中参数说明 a) 低硬度≤350HB ,N 0=107 高硬度>350HB ,N 0=25×107 b) 指数m : c) 不同γ,σ-N 不同;γ越大,σ也越大。… 二、 限应力线图 1) 定义:同一材料,对于不同的循环特征进行试验, 求得疲劳极限,并将其绘在σm -σa 坐标系上,所得的曲线称为极限应力线图。 C N N m m N ==0γγσσr N N k m N N σσσγγ==0 m N N k N 0=整理: 即: 其中: N 0--循环基数 σγ--N 0时的疲劳极限 k N --寿命系数 用线性坐标表示的 疲劳曲线 N D

机械设计 机械零件的强度.doc

第三章 机械零件的强度 § 3 – 1 材料的疲劳特性 一、交变应力的描述 静应力,变应力 max ─最大应力; min ─最小应力 m ─平均应力; a ─应力幅值 2 min max σσσ+= m 2 min max σσσ-= a max min σσ= r r ─应力比(循环特性) 【注意】 1)已知任意两个参数,可确定其他三个参数。一般已 知 max ,r ; 2) max , min 指代数值; a 为绝对值; 3)-1≤ r ≤ +1; a =0,r =+1,为静应力 r = -1 对称循环应力 r =0 脉动循环应力 r =1 静应力

σ-N 疲劳曲线 二、 疲劳曲线(σ-N 曲线) 1.材料的疲劳极限:σr N 在一定应力比为г的循环变应力作用下,应力循环N 次后,材料不发生疲劳破坏时,所能承受的最大应力σmax 。 2.疲劳寿命:N 材料疲劳失效前所经历的应力循环次数。 г不同或N 不同时,疲劳极限σrN 不同。即σrN 与r 、N 有关。疲劳强度计算中,就是以疲劳极限作为σlim 。 即σlim =σrN 。通过试验可得,疲劳极限σrN 与循环次数N 之间关系的曲线,如上图所示。

AB段曲线:N<103,计算零件强度时按静强度计算。(σrN≈σs) BC段曲线:103N D 时,σrN=σr∞=σr(简记) 疲劳曲线以N0为界分为两个区: 1)有限寿命区 把曲线CD段上的疲劳极限σr称为有限疲劳极限(条件~)。 当材料受到的工作应力超过σr时,在疲劳破坏之前,只能经受有限次的应力循环。即寿命是有限的。 【说明】 不同应力比г时的疲劳曲线具有相似的形状。但г↑,σrN↑。

机械零件的强度

机械零件的强度 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

沈阳工业大学备课用纸 第三章机械零件的强度 1.强度问题: 静应力强度:通常认为在机械零件整个工作寿命期间应力变化次数小于103的通用零件,均按静应力强度进行设计。 (材料力学范畴) 变应力强度:在变应力作用下,零件产生疲劳破坏。 2.疲劳破坏定义:金属材料试件在交变应力作用下,经过长时间的试 验而发生的破坏。 3.疲劳破坏的原因:材料内部的缺陷、加工过程中的刀痕或零件局部 的应力集中等导致产生了微观裂纹,称为裂纹源,在交变应力作用下,随着循环次数的增加,裂纹不断扩展,直至零件发生突然断裂。4.疲劳破坏的特征: 1)零件的最大应力在远小于静应力的强度极限时,就可能发生破坏; 2)即使是塑性材料,在没有明显的塑性变形下就可能发生突然的脆性断裂。 3)疲劳破坏是一个损伤累积的过程,有发展的过程,需要时间。 4) 疲劳断口分为两个区:疲劳区和脆性断裂区。 §3-1 材料的疲劳特性 一、应力的分类 1、静应力:大小和方向均不随时间改变,或者变化缓慢。 2、变应力:大小或方向随时间而变化。 1)稳定循环变应力: 以下各参数不随时间变化的变应力。 m─平均应力;a─应力幅值 max─最大应力;min─最小应力r ─应力比(循环特性) 描述规律性的交变应力可有5个参数, 但其中只有两个参数是独立的。 沈阳工业大学备课用纸 r = -1对称循环应r=0脉动循环应r=1静应力

2)非稳定循环变应力: 参数随时间变化的变应力。 (1)规律性非稳定变应力:参数按一定规律周期性变化的称为。 (2)随机变应力:随机变化的。 二、疲劳曲线 1、σ-N 曲线:应力比r 一定时,表示疲劳极限N γσ(最大应力)与 循环次数N 之间关系的曲线。典型的疲劳曲线如下图示: 大多数零件失效在C 点右侧区域,称高周疲劳区N>104 高周疲劳区以N 0为界分为两个区: 有限寿命区(CD): N <N 0,循环次数N,对应的极限应力 N γσ 。 N γσ ——条件疲劳极限。 曲线方程为 m N N C γσ?= 曲线可分为AB BC CD D 右 四个区域。 其中: AB 区最大应力变化不大,可按静应力考虑。 BC:为低周疲劳(循环次数少)区。N<104。也称应变疲劳(疲劳破坏伴随塑性变形) M-材料常数 N 0-循环基数 沈阳工业大学备课用纸 -N 疲劳曲线

第3章机械零件强度习题.

第三章 机械零件的强度 1.何谓静应力、变应力?静载荷能否产生变应力?作用在机械零件中的应力有哪几种类型? 2. 何谓材料的疲劳极限、疲劳曲线?指出疲劳曲线的有限寿命区和无限寿命区,并写出有限寿命区疲劳曲线方程,材料试件的有限寿命疲劳极限σrN 如何计算?说明寿命系数K N 的意义。 3. 影响机械零件疲劳强度的主要因素有哪些?零件的简化极限应力图与材料试件的简化极限应力图一样吗?有何不同? 4. 举例说明哪些零件工作应力的变化规律符合:a) r =常数;b) σm =常数;c) σmin =常数。 5. 两个零件以点、线接触时应按何种强度进行计算?若为面接触时(如平键联接),又应按何种强度进行计算?零件的截面形状一定,当截面尺寸增大时,其疲劳极限值将如何变化? 6. 表面接触疲劳点蚀是如何产生的?根据赫兹公式(Hertz ),接触带上的最大接触应力应如何计算?说明赫兹公式中各参数的含义。 7. 某机械零件,疲劳极限1285MPa σ-=,若其7010=N ,m =6,当应力循环次数分别为41105.2?=N ,5 2102?=N 时,求寿命系数N K 各为多少?疲劳极限又各为多少? 8. 有一机械零件,其1390MPa σ-=,0600MPa σ=,600MPa s σ=,σ 2.5K =,求:(1)材料常数σψ; (2)画出零件的极限应力线图; (3)设工作应力为a 200MPa σ=,m 300MPa σ=,r =常数,试求安全系数ca S 。 9. 某合金钢制造的零件,其材料性能为:s 800MPa σ=,1450MPa σ-=,σ0.3ψ=。已知工作应力为min 80MPa σ=-,max 280MPa σ=,应力变化规律为r =常数,弯曲疲劳极限的综合影响系数σ 1.62K =。若许用安全系数是 [S ] =1.3,并按无限寿命考虑,试校核该零件是否安全。 10. 有一钢制转轴,其危险截面上对称循环弯曲应力在单位时间t 内的变化如题10图.所示,总工作时间300h ,转速n 为150r/min 。若零件材料的疲劳极限1280MPa σ-=,应力集中系数σ2K =,7010=N ,m =9,求此零件的安全系数ca S 。

机械设计题库02_机械零件的强度

机械零件的强度 一 名词解释 (1) 静应力:大小和方向不随转移而产生变化或变化较缓慢的应力,其作用下零件可能产生静断裂或过大的塑性变形,即应按静强度进行计算。 (2) 变应力:大小和方向均可能随时间转移产生变化者,它可以是由变载荷引起的,也可能因静载荷产生(如电动机重量给梁带来的弯曲应力)变应力作用的零件主要发生疲劳失效。 (3) 工作应力:用计算载荷按材料力学基本公式求得作用在零件剖面上的内力:F c p ,,σσσ ,T ,ττ等。 (4) 计算应力:根据零件危险断面的复杂应力状态,按适当的强度理论确定的,有相当破坏作用的应力。 (5) 极限应力:根据材料性质及应力种类用试件试验得到的机械性能失效时应力极限值,常分为用光滑试件进行试验得到的材料极限应力及用零件试验得到的零件的极限应力。 (6) 许用应力:设计零件时,按相应强度准则、计算应力允许达到的最大值ca S σσσ>=]/[][lim 。 (7) 计算安全系数:零件 (材料)的极限应力与计算应力的比值ca ca S σσ/lim =,以衡量安全程度。 (8) 安全系数许用值:根据零件重要程度及计算方法精确度给出设计零件安全程度的许用范围][S ,力求][S S ca >。 二 选择题 (1) 零件受对称循环应力时,对于塑性材料应取 C 作为材料的极限。 A. 材料的抗拉强度 B. 材料的屈服极限 C. 材料的疲劳极限 D. 屈服极限除以安全系数。 (2) 零件的截面形状一定时,当截面尺寸增大,其疲劳极限将随之 C 。 A. 增高 B. 不变 C. 降低 (3) 在载荷几何形状相同的条件下,钢制零件间的接触应力 C 铸铁零件间的接触应力。 A. 小于 B. 等于 C. 大于 (4) 两零件的材料和几何尺寸都不相同,以曲面接触受载时,两者的接触应力值 A 。 A. 相等 B. 不相等 C. 是否相等与材料和几何尺寸有关

机械零件的强度复习题参考答案

第2章 机械零件的强度复习题 一、选择题 2-1.下列四种叙述中,________是正确的。 A .变应力只能由变载荷产生 B .变应力只能由静载荷产生 C .静载荷不能产生变应力 D .变应力也可能由静载荷产生 2-2.发动机连杆横截面上的应力变化规律如题2-2图所示,则该变应力的循环特性系数r 为________。 A . B .– C . D .– 2-3.应力的变化规律如题2-2图所示,则应力副a σ和平均应力m σ分别为_______。 A .a σ = MPa ,m σ= MPa B .a σ = MPa , m σ= MPa C .a σ = MPa , m σ= MPa D .a σ= MPa , m σ= MPa 2-4. 变应力特性可用max σ、min σ、m σ、a σ和r 五个参数中的任意________来描述。 A .一个 B .两个 C .三个 D .四个 2-5.零件的工作安全系数为________。 A .零件的极限应力比许用应力 B .零件的工作应力比许用应力 C .零件的极限应力比零件的工作应力 D .零件的工作应力比零件的极限应力 2-6.机械零件的强度条件可以写成________。 A .σ≤][σ,τ≤][τ 或 σS ≤σ][S ,τS ≤τ][S B .σ≥][σ,τ≥][τ 或 σS ≥σ][S , τS ≥τ][S C .σ≤][σ,τ≤][τ 或 σS ≥σ][S , τS ≥τ][S D .σ≥][σ,τ≥][τ 或 σS ≤σ][S , τS ≤τ][S 2-7.在进行材料的疲劳强度计算时,其极限应力应为材料的________。 A .屈服点 B .疲劳极限 C .强度极限 D .弹性极限 2-8. 45钢的对称疲劳极限1-σ=270MPa ,疲劳曲线方程的幂指数m = 9,应力循环基数N 0 =5×106次,当实际应力循环次数N =104 次时,有限寿命疲劳极限为________MPa 。 A .539 B .135 C .175 D .417 2-9.有一根阶梯轴,用45钢制造,截面变化处过度圆角的应力集中系数σk = ,表面状态系数 题 2-2 图

机械零件的强度计算复习题

机械零件的强度计算复习题 简答题 1.问:试述零件的静应力与变应力是在何种载荷作用下产生的? 答:静应力只能在静载荷作用下产生,变应力可能由变载荷产生,也可能由静载荷产生。 2.问:零件的等寿命疲劳曲线与材料试件的等寿命疲劳曲线是否相同? 答:两者不同,零件的等寿命疲劳曲线需考虑零件上应力集中对材料疲劳极限的影响。 3.问:疲劳损伤线性累积假说的含义是什么? 答:该假说是:在每一次应力作用下,零件寿命就要受到一定损伤率,当损伤率累积达到100%时(即达到疲劳寿命极限)便发生疲劳破坏。通过该假说可将非稳定变应力下零件的疲劳强度计算折算成等效的稳定变应力疲劳强度。 4.问:机械零件上的哪些位置易产生应力集中?举例说明。如果零件一个截面有多种产生应力集中的结构,有效应力集中 答:零件几何尺寸突变(如:沟槽、孔、圆角、轴肩、键槽等)及配合零件边缘处易产生应力集中。当一个截面有多处应力源时,则分别求出其有效应力集中系数,从中取最大值。 5.问:两个零件以点、线接触时应按何种强度进行计算?若为面接触时(如平键联接),又应按何种强度进行计算? 答:点、线接触时应按接触强度进行计算;面接触应按挤压强度计算。 6.问:零件的截面形状一定,当截面尺寸增大时,其疲劳极限值将如何变化? 答:不变。 7.问:两零件的材料和几何尺寸都不相同,以曲面接触受载时,两者的接触应力是否相同? 答:两零件的接触应力始终相同(与材料和几何尺寸无关)。 选择题 1、零件的形状、尺寸、结构相同时,磨削加工的零件与精车加工相比,其疲劳强度____。 A.较高 B.较低 C.相同 2、某齿轮工作时,轮齿双侧受载,则该齿轮的齿面接触应力按___变化。 A.对称循环 B.脉动循环 C.循环特性r=-0.5的循环 D.循环特性r=+1的循环 3、零件表面经淬火、渗氮、喷丸、磙子碾压等处理后,其疲劳强度____。 A.增高 B.降低 C.不变 D.增高或降低视处理方法而定 4、某齿轮工作时,轮齿单侧受载,则该齿轮的齿面接触应力按___变化。 A.对称循环

第二章 机械零件的强度

第二章 机械零件的强度 (一)教学要求 掌握极限应力图和单向稳定变应力时强度计算 (二)教学的重点与难点 极限应力图绘制及应用 (三)教学内容 §2—1 载荷与应力的分类 一、载荷的分类 静载荷:载荷的大小与方向不随时间变化或随时间变化缓慢 变载荷:1)循环变载荷(载荷循环变化) 2)随机(变)载荷——载荷的频率和幅值均随机变化 循环变载荷: a) 稳定循环变载荷——每个循环内载荷不变,各循环周期又相同(往复式动力机曲轴) b) 不稳定循环变载荷——每一个循环内载荷是变动的 载荷:1)名义载荷;2)计算载荷。(如前章所述) 二、应力的分类 1、应力种类 应力 静应力 不稳定变应力——变应力中,每次应力变化的周期T 、m σ和应力幅 变应力 a σ三者之一不为常数 稳定循环变应力——T 、m σ、a σ均不变 不稳定变应力 规律性不稳定变应力 图2-2a 随机变应力—统计 图2-2b 稳定循环变应力的基本参数和种类:(参数间的关系:图示) 2、稳定循环变应力的基本参数和种类 a) 基本参数 最大应力min σ、a m σσ+、最小应力min σ,平均应力m m σσσ+=max ,应力幅a σ 最小应力a m σσσ-=min 平均应力 m σ 2m a x m m σσσ+= 应力幅a σ 2 m a x m m σσσ-= 应力循环特性:max σσγmim = ∴ 11+<<-γ 注意:一般以绝对值最大的应力为max σ 五者中,只要知道两者,其余参数即可知道,一般常用如下的参数组合来描述: ①m σ和a σ;②max σ和min σ;③max σ和m σ

b) 稳定循环变应力种类 -1,max σ=min σ=a σ,m σ=0 , 对称循环变应力 按max σσγmim == 0,min σ=0,m σ=a σ=2 max σ , 脉动循环变应力 11+<<-γ, max σ=m σ+a σ,min σ=m σ-a σ, 不对称循环变应力 +1, 静应力 其中最不利的是对称循环变应力。 注意:静应力只能由静载荷产生,而变应力可能由变载荷产生,也可能由静载荷产生,其实例如图2-4所示——转动心轴表面上a 点产生的应力情况 3)名义应力和计算应力 名义应力——由名义载荷产生的应力)(τσ 计算应力——由计算载荷产生的应力)(ca ca τσ 计算应力中计入了应力集中等影响。机械零件的尺寸常取决于危险截面处的最大计算应力 §2—2 静应力时机械零件的强度计算 静应力时零件的主要失效形式:塑性变形、断裂 一、单向应力下的塑性零件 强度条件: ??? ??? ? =≤=≤τστττσσσ][][][][s s s ca s ea 或 ??? ? ??? ≥=≥=ττσσττσσ][][s s s s ca s ca s s σ、s τ—材料的屈服极限 σs 、τs —计算安全系数 σ][s ,τ][s —许用安全系数 二、复合应力时的塑性材料零件 按第三或第四强度理论对弯扭复合应力进行强度计算 设单向正应力和切应力分别为σ和τ 由第三强度理论:]/[][42 2s s ca σστσσ=≤+= 取2/=s s τσ (最大剪应力理论) 或 由第四强度理论:]/[][42 2s s ca σστσσ=≤+= 3/≈s s τσ 或 (最大变形能理论) ][)(2 22s s s s s ca ≤+= ττσ σσ ][2 2 s s s s s s ca ≤+= τ στσ σs 、τs 分别为单向正应力和切应力时的安全系数,可由式(2-4)求得。 三、脆性材料与低塑性材料

机械零件的强度.

6 第一篇 总论 第三章机械零件的强度 3-1某材料的对称循环弯曲疲劳极限 d -i =180MPa 取循环基数 N 0=5 10, m=9,试求循环 次数N 分别为7000, 2500, 620000次是时的有限寿命弯曲疲劳极限。 3-2已知材料的力学性能为 d s =260MPa d -i =170MPa 。=0.2 ,试绘制此材料的简化极限应 力线图(参看图 3-3中的A ' D' G C )。 3-3 一圆轴的轴肩尺寸为: D=72mmd=62mmr=3mm 。材料为40CrNi ,其强度极限 d B =900MPa 屈服极限d s =750MPa 试计算轴肩的弯曲有效应力集中系数 k d 。 3-4圆轴轴肩处的尺寸为: D=54mm d=45mm r=3mm 如用题3-2中的材料,设其强度极限 d B =420MPa 试绘制此零件的简化极限应力线图。 3-5如题3-4中危险截面上的平均应力 d n=20MPa 应力幅d a =900MPa 试分别按:a ) r=C ; b ) d n=C ,求出该截面的计算安全系数 S ca 。 第五篇联接 第五章 螺纹联接和螺旋传动 5- 1分析比较普通螺纹、 管螺纹、梯形螺纹和锯齿形螺纹的特点, 各举一例说明它们的应用。 5- 2将承受轴向变载荷的联接螺栓的光杆部分做得细些有什么好处? 5- 3分析活塞式空气压缩机气缸盖联接螺栓在工作时的受力变化情况, 它的最大应力,最小 应力如何得出?当气缸内的最高压力提高时,它的最大应力、最小应力将如何变化? 5- 4图5-49所示的底板螺栓组联接受外力 F 的作用。外力 F 作用在包含x 轴并垂直于底 板接合面的平面内。试分析底板螺栓组的受力情况,并判断哪个螺栓受力最大?保证联接安 全工作的必要条件有哪些? 5- 5图5-50是由两块边板和一块承重板焊成的龙门起重机导轨托架。两块边板各用 4个螺 栓与立柱相联接,托架所承受的最大载荷为 20kN ,载荷有较大的变动。试问:此螺栓联接 图5-49底扳顒栓组联接 图龙门起重机导软托架

相关文档
最新文档