英威腾变频器恒压控制图及参数设置

英威腾变频器恒压控制图及参数设置
英威腾变频器恒压控制图及参数设置

英威腾变频器变频恒压控制

恒压控制参数设置:

变频器参数设定;

P0、03=1

P0、06=15、00

P3、01=2

P5、01=1

P5、16=10、00

P6、02=4

恒压控制器参数设定:在刚上电倒计时没有结束时按F1才能修改参数。

F1=00

F2=01

F3=00

F4=(压力设定值)用户要求的压力值如:1、5Kg就设定为1、5

F5= (压力上限)高于用户要求压力的1Kg如上的1、5Kg,F5设定为2、5Kg F6=00(控制器校零)比如现在F6显示的就是-2,此时就设定成00

F7=(压力校正)如果现在显示的压力与实际压力表显示的压力不一样用F7校成一样的。

F8=10、00

F9=15

注:变频恒压控制供水系统可以做到无人值守自动供水,用水量大时频率增高,用水量少时频率下降始终保持压力恒定,不会出现工频供水时用水量少时管道压力大爆管的可能,在用水量少时变频器低频率运行或休眠(停机)。使用变频恒压供水后即节能又降低水泵的机械磨损。

由于此用户井深50米需要加装输出电抗器。此电路为工频,变频两用控制,在变频器出现故障时可以用SA开关切换到工频运行解决零时用水问题。待变频器修好后再切换到变频运行。

英威腾变频器维修中遇到的故障代码及解决方法

英威腾变频器维修中遇到的故障代码及解决方法 内容来源网络,由深圳机械展收集整理! 更多变频器及自动化技术,就在深圳机械展-自动化展区! 1、逆变单元故障(OUT) 此故障包括OUT1、OUT2、OUT3,它们分别代表逆变单元U相、V相、W相故障。此故障一般只出现在驱动光耦使用PC929的机器中,代表驱动板有1270系列、1290AV03、1250AVS系列、1258AVS系列等。 【检修思路】OUT故障一般分有上电跳OUT;运行跳OUT;带载加载跳OUT。此原因一般都是因为检测电路检测到逆变管VCE电压异常输出告警信号,当控制板检测到此信号后马上停止驱动输出并显示出故障代码。当然不排除因保护电路本身异常导致的误保护。值得注意的是在某些情况下会因为开关电源输出不稳定影响驱动电路供电导致机器无规律跳OUT故障,如因散热风扇启动电流过大,每次运行风扇启动瞬间即跳OUT。检修时需注意区分。 (1)对于上电跳OUT故障:此问题一般都是因为保护电路本身不良或者驱动部分,模块门极有明显的短路、断路情况。可以通过屏蔽相应相OUT保护信号判断。如果屏蔽后其它一切正常,则说明问题是因保护电路本身不良引起。屏蔽后运行,如果有三相不平衡,则说明驱动电路或者模块有问题。 (2)对于运行跳OUT故障:此问题一般都是驱动电路和模块本身不良引起。首先可以用万用表电阻档测试驱动电路相关部位及模块门极有无明显短路、断路现象。屏蔽相关相OUT 保护信号运行,测试驱动波形是否正常(无示波器时可使用万用表交流电压档对比测试各路驱动波形)。重点关注波形的形状、幅度、死区时间等,最后检测IGBT是否损坏。对比其它相测试驱动门极结电容是否正常(万用表电容档)。 (3)对于带载加载跳OUT故障:此情况相对前两种来说检修难度稍大。首先,检测保护电路本身是否有元件性能不良。正确检测前提下,对怀疑有问题的二极管、贴片电容采取替换法代换之(注意判断控制板上OUT信号检测电路是否正常,可用替换法)。第二,对比检测驱动电路驱动光耦供电是否正常,门极驱动电阻是否变值。第三,不加载测试驱动波形是否正常。最后仔细判断,测试IGBT本身是否有问题。

PLC变频恒压供水的背景和意义

PLC变频恒压供水的背景和意义泵站担负着工农业和生活用水的重要任务,运行中需 大量消耗能量,提高泵站效率:降低能耗,对国民经济有重 大意义。我国泵站的特点是数量大、范围广、类型多、发展 速度快,在工程规模上也有一定水平,但由于设计中忽视动 能经济观点以及机电产品类型和质量上存在的一些问题等 等原因,致使在技术水平、工程标准以及经济效益指标等方 面与国外先进水平相比,还有一定的差距。目前,大量的电 能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电 量在这类负载中占了相当的比例。这一方面是由于我国居民 多,用水量大,造成用电量大:另一方面是因为我国供水设 备工作效率低,控制方式不够科学合理。造成不必要的能量 浪费。因此,研究提水系统的能量模型,找出能够节能的控 制策略方法,这里大有潜力可挖,是减少能耗,保障供水的 一个很有意义的工作。 以变频器为核心结合PLC组成的控制系统具有高可靠性、 强抗干扰能力、组合灵活、编程简单、维修方便和低成本等 诸多特点,变频恒压供水系统集变频技术、电气技术、防雷 避雷技术、现代控制、远程监控技术于一体。采用该系统进 行供水可以提高供水系统的稳定性和可靠性,方便地实现供 水系统的集中管理与监控;同时系统具有良好节能性,这在 能量日益紧缺的今天尤为重要,所以研究设计该系统,对于

提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。 国内外研究概况 变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。即1968年,丹麦的丹佛斯公司发明并首家生产变频器(丹佛斯是传动产品全球五大核心供应商之一)后,随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像瑞典、瑞士的ABB集团推出了HVAC变频技术,法国的施耐德公司就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循坏方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 学生姓名阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计内容 (4) 二、设计要求 (4) 三、设计内容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC 一、设计内容 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计是电气工程及其自动化专业《交流调速》课程的实践性环节,其主要目的是培养学生初步掌握交流调速系统的设计方法及理论知识的应用能力。本课程设计的基本任务是提高学生在调速系统设计方面的实践技能,培养学生综合运用知识,分析和解决实际问题的能力。通过控制系统的设计,初步掌

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.360docs.net/doc/af18342375.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.360docs.net/doc/af18342375.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

恒压供水变频柜

恒压供水变频柜 恒压供水变频柜变频控制原理 用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比,节能效果十分显着(可根据具体情况计算出来)。其优点是: 1、起动平衡,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击; 2、由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命; 3、可以消除起动和停机时的水锤效应; 一般地说,当由一台变频器控制一台电动机时,只需使变频器的配用电动机容量与实际电动机容量相符即可。当一台变频器同时控制两台电动机时,原则上变频器的配用电动机容量应等于两台电动机的容量之和。但如在高峰负载时的用水量比两台水泵全速供水量相差很多时,可考虑适当减小变频器的容量,但应注意留有足够的容量。 恒压供水变频柜的特点: 1.节能,可以实现节电20%-40%,能实现绿色用电。 2.占地面积小,投入少,效率高。 3. 配置灵活,自动化程度高,功能齐全,灵活可靠。 4. 运行合理,由于是软起和软停,不但可以消除水锤效应,而且电机轴上的平均扭矩和磨损减小,减少了维修量和维修费用,并

且水泵的寿命大大提高。 5. 由于恒压供水变频柜直接从水源供水,减少了原有供水方式的二次污染,防止了很多传染疾病的传染源头。 6. 通过通信控制,可以实现无人值守,节约了人力物力。 恒压供水变频柜性能特点: 1、恒压供水变频柜具有强大的贮能保压能力,特别是在夜间时应付少量供水时,可以大大节约电能。 2、调节容积(水泵每启动一次可供用户使用的水量)大.泵每启动一次,可以长时间地维持管网压力,设备启动次数少,运行费用低 3、恒压供水变频柜设备采用国际领先的补气技术 气压罐的补气采用微电脑电子检测、限量补气与排气技术,随时保证罐内气体有一定容积,根本解决了气体长期失效带来的水泵频繁启动问题,填补了国际、国内在该问题上的技术空白。 4、恒压供水变频柜的现场条件,无塔自动上水器可采取以下不同的配置 (1)、恒压供水变频柜的水源是自备井: 1)潜水泵+控制系统+气压罐 2)潜水泵+水池(水箱)+控制系统+气压罐 (2)恒压供水变频柜的水源是自来水: 1)离心管道泵+控制系统+气压罐 2)离心管道泵+水池(水箱)+ 控制系统+气压罐

变频恒压供水控制系统设计完整

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示:

PLC 图1 恒压供水变频控制系统原理图 三、系统设备选型 1主要电气元件参数指标 水泵:35KW,三相异步电动机 恒压设定点:1.0Mpa 压力变送器:0-1.6Mpa,两线制,4-20mA电流输出 变频器:VVVF变频器 (1)水泵 根据设计要求水泵正常供水20m3/小时,最大供水量35m3/小时,扬程45m。参考相关资料选择型号为IS50-32-125(扬程50m,流量50 m3/小时)的水泵即可满足要求。 (2)远传压力表 由于远传压力表具有价格低、有数据读取表盘等优点,结合具体

变频器恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (4) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (5) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (15) 4 PLC编程及变频器参数设置 (16) 4.1 PLC的I/O接线图 (16) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21) 4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。

英威腾变频器说明书介绍

英威腾变频器说明书介绍 英威腾位于素有"深圳硅谷"美誉的高新技术产业园,始创于2002年,是集研发、制造和销售于一体的专业变频器制造商,公司坚持在创新中不断发展,在短短的几年时间内迅速成长为国内变频器行业的领先品牌。 在吸收国外先进技术的基础上,结合近十年变频推广的应用经验和当今电力电子最新控制技术,英威腾目前已开发研制出了CHV、CHE、CHF等几大系列、上百种规格型号的高性能变频器,形成了覆盖高、中、低端市场丰富的产品线,并在石化、钢铁、建材、油田、化工、纺织、印刷、塑胶、机床、矿山等行业领域大量成功应用。 公司还在全国建立了系统的营销网络,在无锡、北京、西安、济南、沈阳、上海、武汉、泉州等地设立了二十余个办事处,与上百家渠道商建立了合作联盟,上千家用户建立了长期合作关系,产品并远销亚、非、欧美等海外国家地区。 折叠编辑本段常见种类 变频器是新系列高性能矢量变频器,可广泛应用于异步电机和同步电机的调速控制。产品依托32位DSP,采用国际领先的矢量控制算法,实现高性能、高精度的电机驱动控制,在提高产品的可靠性和环境的适应性同时,强化了客户易用性和行业专业化的设计,功能更优化、应用更灵活、性能更稳定。 适用范围广

适用异步电机和永磁同步电机的矢量控制,有效减少用户库存,无需考虑电机类型兼容问题,不再需要为不同的电机分别备不同变频器的库存。 性能优异 良好的控制性能:1:200的调速比(SVC)、0.25Hz/150%的启动转矩、多种制动模式,无需制动电阻就可以实现的快速磁通制动模式。 环境适应性强 紧凑型结构设计、独立风道设计、多种安装方式,大幅度提升的功率密度,有效缩小用户安装体积要求,满足苛刻的用户安装条件。全独立风道设计,有效提升变频器的防护效果,适应各种复杂的用户现场环境。兼容底板安装和法兰安装两种安装模式,适应不同的用户需求。 功能丰富 两套电机参数、V·F分离设置、虚拟端子功能、转速追踪、继电器延时输出等 ;两套电机参数,满足客户不同电机共用一台变频器,有效降低客户设备投入;V·F分离功能,满足各种变频电源客户需求,实现V/F曲线的灵活设置。

变频恒压供水设备工作原理及原理图片

变频恒压供水设备工作原理及原理图 变频恒压供水设备工作原理这一相关知识,由兴崛供水为您全面讲述并提供工作原理图。 变频恒压供水设备工作原理:交流电动机的旋转速度与输入电的频率成正比,变频调速供水设备就是基于上述原理,采用压力传感器、可编程控制器、变频器及水泵电机构成以及设定压力为基准的闭环自动调节系统,具有控制水泵恒压供水的功能;通过压力传感器按受管网的压力信号,经微机与设定压力进行比较运算,输出调节参数送给变频器控制其频率的变化。用水量多时,频率提高,电机泵转数加快;反之频率降低,电机泵转数下降,既能保证用户用水又节省电能。 变频恒压供水设备一台变频器控制多台水泵”的多泵控制系统。在这里兴崛供水利用PLC设计一套变频调速恒压供水系统,该系统可根据管网瞬间压力变化自动调节某台水泵的转速和多台水泵的投入及退出,使管网主干管出口端保持在恒定的设定压力值,并满足用户的流量需求,使整个系统始终保持高效节能的最佳状态。可实现恒压变量、双恒压变量等控制方式,多种启停控制方式,该系统可以通过人意修改参数指令(如压力设定值、控制顺序、控制电机数量、压力上下限、PID值、加减速时间等);具有完善的电气安全保护措施,对过流、过压、欠压、过载、断水等故障均能自行诊断并报警。 兴崛变频恒压供水设备是非常理想的一种节能供水设备,节能效果好,结构紧凑,占地面积小,运行稳定可靠,使用寿命长,方案设计灵活,供水压力可调,流量可大可小,完全可以取代水塔、高位水箱及各种气压式供水设备,可彻底免除水质的二次污染。全自动变频恒压供水设备亦用于改造原有老式泵房设备,改造后同样可以达到高效节能、自动恒压供水的目的。 变频恒压供水设备组成: 变频恒压供水设备主要由水泵机组、测压稳压罐、压力传感器、变频控制柜等组成,能

变频恒压供水系统组成及工作原理

变频恒压供水系统组成及工作原理变频恒压供水最简单的方式:一台变频器,一个电接点压力表。变频器是电子元件,没有机械运动;水泵总的转速还是跟水量成比例的。另外,供水系统对水压没精度要求,况且压力波动不会超过0.02MPa(设定0.3MPa时)。变频器在恒压供水系统中的应用变频恒压供水主要有分为:恒压变流量和变压变流量两大类。 一、变频恒压供水系统组成 系统为变频恒压的供水系统,分为冷水、热水两大供水系统,系统为1拖1的恒压供水,两台电机为互备,可选择使用1#泵或2#泵运行,KM3、 KM8为手动工频运行选择,作为变频的维修系统备用,KM2 ,KM3、 KM7,KM8为机械互锁的接触器,保证选择变频运行和工频运行的正确切换。 变频恒压供水的基本原理:以压力传感器和变频器组成闭环系统,根据系统管网的压力来调节电机的转速,实现高峰用户的水压恒定,和低峰时的变频的休眠功能,得到恒压供水和节能的目的。 二、系统硬件参数 热水系统: 电机参数: Pe=15kw Ue=380v Ie=26.8A Ne=1490rpm 变频器型号: 6SE64430-2AD31-8DA0 Pe=18.5kw Ie=38A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5Mpa 冷水系统: 电机参数: Pe=22kw Ue=380v Ie=39.4A Ne=2940rpm 变频器型号: 6SE64430-2AD33-7EA0 Pe=30.5kw Ie=62A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5MPa 三、PID闭环控制功能原理及调试方法 变频器的内置PID功能,利用装在水泵附近的主出水管上的压力传感器,感受到的压力转化为4-20mA电信号作为反馈信号。根据变频恒压的层高设定压力值作为给定值,变频器内置调节器作为压力调节器,调节器将来自压力传感器的压力反馈信号与出口压力给定值比较运算,其结果作为频率指令输送给变频器,调节水泵的转速使出口压保持一定。即当用水量增加,水压降低时,调节器使变

变频恒压供水工作原理

变频恒压供水工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

变频恒压供水工作原理 产品工作原理: 全自动变频调速供水设备是应用先进的现代控制理论,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置。该设备通过安装在水泵出水总管上的远传压力表(内为一滑动电阻),将出口压力转换成0-5V电压信号,经A/D转换模块将模拟电压信号转换成数字量并送入可编程序控制器,经可编程内部PID运算,得出一调节参量并将该参量送入D/A转换模块,经数摸转换后将得出模拟量传送变频器,进而控制其输出频率的变化。设备采用多泵并联的供水方式,用户用水量的大小决定了投入运行的水泵的数量,当用水量较小时,单台泵变频工作,当用水量增加,水泵运行频率随之增加,如达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵。反之,当用水量减少,则降低水泵运行频率直至设定下限运行频率,如供水量仍大于用水量,则自动停止工频运行泵同时变频泵转速增加。当用水量降至某一程度时(如夜间用水很少时),变频主泵停止工作,改由辅泵及小型气压罐供水。 产品特点: ※采用先进的供水专用变频器 ※最新供水专利技术 ※全中文人机界面,操作简单 ※RS485远程通讯 ※压力控制精度5‰ ※压力频率全数字显示 ※一次水高、低水位报警 ※供水压力过压、欠压保护 ※系统故障自诊断 ※水泵过载、过流保护 ※水泵软启动,软切换 ※适用于各种泵站 ※故障水泵自动切除运行系统 ※体积小,安装调试方便 ※全部进口低压电器集成,运行更安全可靠 ※优化的控制软件更利于系统节能运行 变频恒压供水控制器采用最新微电脑设计处理器设计制造配备液晶中文显示,参数显示、设定一目了然,故障时弹出供货商公司名称及2个服务电话(可按要求设置),多达75个功能参数项、9种应用宏选择,能满足五台以下的所有运行程序,其主要特点有: 1.外部接线简单:用户只需通过菜单设置,即可使控制器适用于不同的供水控制系统;无需改变复杂的外部接线。 2.可靠性:由于控制器已将各种功能模块集成于内部,外部配件少,、进一步降低了整个系统出现故障的机会。 3.调试简单方便:丰富而完美的汉字提示。使一般的操作人员无需经过复杂的培训,也能对各种操作应用自如。

变频一拖一-五台联动恒压供水控制系统

增压泵变频一拖一,五台联动恒压供水控制系统 1.1 变频恒压供水系统的理论分析 1.1.1 电动机的调速原理 水泵电机多采用三相异步电动机,而其转速公式为: (1?s) n=60f p 式中:f表示电源频率,p表示电动机极对数,s表示转差率。 根据公式可知,当转差率变化不大时,异步电动机的转速n基本上与电源频率f成正比。连续调节电源频率,就可以平滑地改变电动机的转速。但是,单一地调节电源频率,将导致电机运行性能恶化。随着电力电子技术的发展,已出现了各种性能良好、工作可靠的变频调速电源装置,它们促进了变频调速的广泛应用。 1.1.2 变频恒压供水系统的节能原理 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。 在供水系统中,通常以压力或者流量为控制目的,常用的控制方法为阀门控制法和转速控制法。 阀门控制法是通过调节阀门开度来调节流量,水泵电机转速保持不变。其实质是通过改变水路中的阻力大小来改变流量,因此,管阻将随阀门开度的改变而改变,但扬程特性不变。由于实际用水中,需水量是变化的,若阀门开度在一段时间内保持不变,必然要造成超压或欠压现象的出现。 转速控制法是通过改变水泵电机的转速来调节流量,而阀门开度保持不变,是通过改变水的动能改变流量。因此,扬程特性将随水泵转速的改变而改变,但管阻特性不变。变频调速供水方式属于转速控制。其工作原理是根据用户用水量的变化自动地调整水泵电机的转速,使管网压力始终保持恒定,当用水量增大时电机加速,用水量减小时电机减速。

西门子S7-200通过自由口和英威腾变频器通讯

西门子S7-200通过自由口需要控制英威腾变频器的正负转停止和故障复位,运行频率控制以及分二次读取运行速度等12条变频器信息。程序略微变动适应所有Modbus RTU需要控制。 下面是程序,可以直接导入程序后写入PLC试验 ORGANIZATION_BLOCK 主程序:OB1 TITLE= BEGIN Network 1 // 主程序,初始化并查执各变频器指令 // 一.功能介绍 // 该程序专为英威腾CHF系列变频器编写。英威腾CHF系列变频器内置国际标准的MODBUS 通信协议。程序运行时,变频器作为MODBUS协议从站接收来自CPU224 PLC的通信指令,实现起停、频率给定、监控等功能。 // CHF系列矢量变频器在与CPU224通信前须做好以下准备工作: // 1.确认己安装好CHF系列变频器的通讯卡,并将卡上的端口跳线置于RS485端; // 2.用一根带9针阳性插头的串口通信电缆连接在CPU224 PLC的自由通信口端,电缆另一端的第5、3、8线分别接在CHF变频器RS485通讯卡的GND、485+、485一端子上,其余线屏蔽不用; // 3.预先设置变频器以下参数: // PC.00=1 //变频器通讯地址为1 // PC.01=3 //通讯波特率9.6K // PC.02=1 //通讯数据偶校验8位数据位1位停止位 // P0.03=2 //变频器的运行指令采用通讯方式 // P3.01=7 //变频器的A频率设定采用通讯方式(注意P3.04/P3.05对P3.01通讯频率的影响)// 二.程式结构说明 // 该程序由1个主程序3个子程序及2个中断程序组成。子程序里包含了变频器的起停、复位、查询功能指令,由主程序调用。中断程序为发送及接收指令提供中断支持。

变频恒压供水原理.

变频调速恒压供水系统工作原理设备投入运行前,首先应设定设备的工作压力等相关运行参数,设备运行时,由压力传感器连续采集供水管网中的水压及水压变化率信号,并将其转换为电信号传送至变频控制系统,控制系统将反馈回来的信号与设定压力进行比较和运算,如果实际压力比设定压力低,则发出指令控制水泵加速运行,如果实际压力比设定压力高,则控制水泵减速运行,当达到设定压力时,水泵就维持在该运行频率上。如果变频水泵达到了额定转速(频率),经过一定时间的判断后,如果管网压力仍低于设定压力,则控制系统会将该水泵切换至工频运行,并变频启动下一台水泵,直至管网压力达到设定压力;反之,如果系统用水量减少,则系统指令水泵减速运行,当降低到水泵的有效转速后,则正在运行的水泵中最先启动的水泵停止运行,即减少水泵的运行台数,直至管网压力恒定在设定压力范围内。主泵停止工作,副泵进行供水也为变频恒压供水方式,进一步提高了工作效率,节约了能源。系统构成系统特点高效节能。按需要设定供水压力,根据管网用水量来变频调节水泵转速,使水泵始终在高效率工况下运行,同普通的无塔供水设备相比,节能效果达20%。对电网冲击小,保护功能完善。消除了水泵电机直接起动时对电网的冲击和干扰,并且设备控制系统具有短路、过流、过压、过载、欠压、过热等多种保护功能,大大提高了工作效率,延长了水泵的使用寿命。人机界面触摸面板操作,设定参数灵活方便。可灵活设定频率下限、加速时间、减速时间、换泵时间等各种工作参数,能够显示系统运行时间,查阅各种故障原因。定时唤醒功能。由于系统是根据管网用水量的多少来决定投入运行水泵的台数,所以当用水量长期在某一小范围内变化时就会使得某台水泵长期运行而磨损严重,而其他水泵长期不使用造成生锈,设定本功能后则可方便的解决该问题。对于同流量的多台水泵,为使各泵平均工作时间相同,须设置定时换泵功能。在设定了定时换泵功能后,当一台变量泵连续工作时间超过设定值后,且有变量泵处于“休息”状态,则变频器自动切换启动“休息”时间最长的变量泵,并停止原变量泵,以保证各台水泵运行时间均等,延长水泵使用寿命。换泵时间可任意设定。当变频器发生故障时,能够自动转换至工频运行,确保供水不间断。突然停电后再来电,设备能够自动启动运行。

常用变频器参数设置要点

一、英威腾变频器(INVT系列)参数设定要点 1、按PRGM键进入数据设定,显示功能码0(连续按△键可 依次进入功能码0-9)。 2、按PRGM键进入0-00功能码(连续按△键可依次进入功 能码0-00-03)。 3、再按PRGM键,显示0-00功能码的设定值(可通过△和 ▽键修改设定值)。 4、按PRGM键储存修改后的设定值。 5、按ESC键退出设定菜单。 二、英威腾变频器(CHF型通用系列)参数设定要点 1、在停机状态下,按PRG/ESC编程/退出键,显示P0,进 入一级菜单(连续按△键可依次进入P0-9组一级菜单)。2、按DATA/ENT数据确认键,进入P0.00二级菜单(连续按△键可依次进入P0.00-P0.13二级菜单)。 3、再按DATA/ENT键、进入功能码设定值(三级菜单)。 4、通过△、▽键修改设定值。 5、按DATA/ENT键存入设定参数。 6、按PRG/ESC键返回停机状态。

三、康沃CVF系列变频器参数设定要点 1、在初始状态下,按MODE切换键,显示基本运行参数代码 0(如b-0设为1或2时,连续按MOD键可显示L-0中级或H-0高级参数代码)。 2、按△键,改变基本运行参数b-0-14。 3、按ENTER确认键确认修改参数项。 4、改变△、或▽键修改运行参数。 5、按EXTER键确认修改参数。 四、三品SKJ系列变频器编程要点 1、按PROG功能键进入编程状态,显示功能码Pr000(连选 按△和→键,可依次进入显示Pr000-250功能码)。2、按ENTER参数设定键,显示Pr000中内容(可通过←、 →键修改设定值)。 3、按ENTER键确定修改值。 4、按PROG退出编程状态。

英威腾CHE(2.0)说明书

目录 目录 安全注意事项 (3) 1、概况 (4) 1.1 变频器的综合技术特性 (4) 1.2 变频器的铭牌说明 (5) 1.3 变频器系列机型 (5) 1.4 变频器各部件名称说明 (7) 1.5 变频器外形尺寸 (9) 1.6 制动电阻/制动单元选型 (14) 2、开箱检查 (17) 3、拆卸和安装 (18) 3.1 变频器运行的环境条件 (18) 3.2 变频器安装间隔及距离 (19) 3.3 外引键盘的安装尺寸(小) (20) 3.4 外引键盘的安装尺寸(大) (20) 3.5盖板的拆卸和安装 (20) 4、接线 (22) 4.1 外围设备的连接图 (23) 4.2 接线端子图 (24) 4.3 标准接线图 (26) 4.4 断路器、电缆、接触器、电抗器规格表 (26) 4.5主回路的连接 (31) 4.7 符合EMC要求的安装指导 (34) 5 操作 (37) 5.1 操作面板说明 (37) 5.2 操作流程 (39) 5.3运行状态 (41) 5.4 快速调试 (42) 6、详细功能说明 (43) P0组基本功能组 (43)

目录 P1组起停控制组 (46) P2组电机参数组 (48) P3组矢量控制参数 (49) P4组V/F 控制参数 (49) P5组输入端子组 (50) P6组输出端子组 (53) P7组人机界面组 (54) P8组增强功能组 (57) P9组PID控制组 (59) PA组简易PLC及多段速控制组 (61) PB组保护参数组 (62) PC组串行通讯组 (63) PD组补充功能组 (65) PE组厂家功能组 (66) 7.故障检查与排除 (67) 7.1 故障信息及排除方法 (67) 7.2 常见故障及其处理方法 (69) 8 保养和维护 (70) 8.1 日常维护 (70) 8.2 定期维护 (70) 8.3 变频器易损件更换 (71) 8.4 变频器的保修 (71) 9.1 协议内容 (72) 9.2 应用方式 (72) 9.3总线结构 (72) 9.4协议说明 (72) 9.5通讯帧结构 (72) 9.6命令码及通讯数据描述 (74) 附表:功能参数简表 (82)

INVT英威腾变频器说明书CHE说明书(1.3版)

目录 安全注意事项 (5) 1概况 (6) 1.1变频器的综合技术特性 (6) 1.2 变频器铭牌说明 (7) 1.3 变频器系列机型 (7) 1.4 变频器各部件名称说明 (9) 1.5 变频器外形尺寸 (10) 2 开箱检查 (13) 3 拆卸和安装 (14) 安全警告 (14) 3.1 变频器安装运行环境 (15) 3.2 变频器安装间隔及距离 (16) 3.3 外引键盘的安装尺寸 (17) 3.4 盖板的拆卸和安装 (18) 4 接线 (20) 安全警告 (20) 4.1 与外围设备的连接图 (21) 4.2 接线端子图 (22) 4.3 标准接线图 (23) 4.4 断路器、熔断器、电缆、接触器规格一览表 (24) 4.5 主回路的连接 (25) 4.5.1 主回路电源侧的连接 (25) 4.5.2 主回路变频器侧的连接 (25) 4.5.3 主回路电机侧的连接 (26) 4.5.4 回馈单元的连接 (26) 4.5.5 共直流母线的连接 (27) 4.5.6 接地线的连接 (28) 4.6 控制回路的连接 (28) 4.6.1 注意事项 (28) 4.6.2 控制板端子说明 (28) 4.6.3 控制板跳线说明 (29) 4.7 符合EMC要求的安装指导 (29) 4.7.1 EMC一般常识 (29) 4.7.2 变频器的EMC特点 (30) 4.7.3 EMC安装指导 (30) 5 操作

5.1.1 面板示意图 (33) 5.1.2 按键功能说明 (33) 5.1.3 指示灯说明 (34) 5.2 操作流程 (34) 5.2.1 参数设置 (34) 5.2.2 故障复位 (35) 5.2.3 参数拷贝 (36) 5.2.4 电机参数自学习 (36) 5.2.5 密码设置 (37) 5.3运行状态 (37) 5.3.1 上电初始化 (37) 5.3.2 待机 (37) 5.3.3 电机参数自学习 (37) 5.3.4 运行 (37) 5.3.5 故障 (38) 5.4 快速调试 (38) 6 功能详细说明 (39) P0 基本功能组 (39) P1 起停控制组 (45) P2 电机参数组 (48) P3 矢量控制组 (49) P4 V/F控制组 (50) P5 输入端子组 (51) P6 输出端子组 (55) P7 人机界面组 (57) P8 增强功能组 (60) P9 PID控制组 (64) PA 多段速控制组 (67) PB 保护参数组 (68) PC 串行通讯组 (71) PD 保留功能组 (74) PE 厂家功能组 (74) 7 故障与排除 (75) 7.1 故障信息及排除方法 (75) 7.2 常见故障及其处理方法 (76) 8 保养与维护 (78) 8.1 日常保养及维护 (78) 8.2 定期维护 (78) 8.3 变频器易损件更换 (79)

变频器恒压供水接线教学教材

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试:

检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。

英威腾CHV160(2.0版)说明书

目录 安全注意事项 (3) 1 概况 (4) 1.1 变频器的综合技术特性 (4) 1.2 供水系统的特性 (5) 1.3 变频器的铭牌说明 (5) 1.4供水专用机的工作框图 (6) 1.5 变频器系列机型 (6) 1.6 供水变频器各部件名称说明 (7) 1.7 变频器及供水卡外形尺寸 (8) 2 开箱检查 (9) 3 拆卸和安装 (9) 3.1 变频器运行的环境条件 (10) 3.2 变频器安装间隔及距离 (11) 3.3 外引键盘的安装尺寸(小) (11) 3.4 外引键盘的安装尺寸(大) (12) 3.5 盖板的拆卸和安装 (12) 4 接线 (13) 4.1 外围设备的连接图 (14) 4.2 接线端子图 (14) 4.3 标准接线图 (17) 4.4 断路器、电缆、接触器、电抗器规格表 (17) 4.5 主回路的连接 (19) 4.6 控制回路的连接 (21) 5 操作 (26) 5.1 操作面板说明 (26) 5.2 操作流程 (29) 5.3 运行状态 (32) 5.4 快速调试 (33) ..

6 详细功能说明: (34) P0组基本功能组 (34) P1组起停控制组 (38) P2组电机参数组 (40) P4组V/F 控制参数 (41) P5组输入端子组 (42) P6组输出端子组 (48) P7组人机界面组 (50) P8组增强功能组 (53) P9组PID控制组 (56) PA组简易PLC及多段速控制组 (59) Pb组保护参数组 (61) PC组串行通讯组 (63) PD组补充功能组 (65) PE组厂家功能组 (65) PF组供水功能组 (65) 8 保养和维护 (75) 8.1 日常维护 (75) 8.2 定期维护 (75) 8.3 变频器易损件更换 (76) 8.4 变频器的保修 (76) 9 通讯协议 (76) 9.1 协议内容 (76) 9.2 应用方式 (76) 9.3 总线结构 (76) 9.4 协议说明 (76) 9.5 通讯帧结构 (77) 9.6 命令码及通讯数据描述 (78) 10、供水卡使用说明 (86) 10.1 型号与规格 (86) 10.2供水卡的优良特性 (86) ..

相关文档
最新文档