6(1)二次型及其矩阵表示、标准形 - 复制

二次型的标准型

§2 标准形 一、二次型的标准型 二次型中最简单的一种是只包含平方项的二次型 2 222211n n x d x d x d +++ . (1) 定理1 数域P 上任意一个二次型都可以经过非化线性替换变成平方和(1)的形式. 易知,二次型(1)的矩阵是对角矩阵, ().000000 ,,,212 1212 222211?????? ? ????????? ??=+++n n n n n x x x d d d x x x x d x d x d 反过来,矩阵为对角形的二次型就只包含平方项.按上一节的讨论,经过非退化的线性替换,二次型的矩阵变到一个合同的矩阵,因此用矩阵的语言,定理1可以叙述为: 定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定理2也就是说,对于任意一个对称矩阵A 都可以找到一个可逆矩阵C 使 AC C ' 成对角矩阵. 二次型),,,(21n x x x f 经过非退化线性替换所变成的平方和称为 ),,,(21n x x x f 的标准形. 例 化二次型 32312121622),,,(x x x x x x x x x f n -+= 为标准形. 二、配方法 1.,011≠a 这时的变量替换为

????? ????==-=∑=-. , , 222 11 1111n n n j j j y x y x y a a y x 令 ??? ? ? ? ? ? ?--=--100010 111 11121111 n a a a a C , 则上述变量替换相应于合同变换 11AC C A ' → 为计算11AC C ',可令 ()??? ? ? ??==nn n n n a a a a A a a 22221112,,,α. 于是A 和1C 可写成分块矩阵 ??? ? ??-=???? ? ?' =--11 1111111,n E O a C A a A ααα, 这里α'为α的转置,1-n E 为1-n 级单位矩阵.这样 .111 1 1111111 11 11111111 1111111 1111??? ? ??'-=???? ??-???? ? ?'-=???? ??-???? ??'? ??? ??'-=' --------αααααααααa A O O a E O a a A O a E O a A a E a O AC C n n n 矩阵αα'--1 111a A 是一个)1()1(-?-n n 对称矩阵,由归纳法假定,有 )1()1(-?-n n 可逆矩阵G 使 D G a A G ='-'-)(1 111αα 为对角形,令 ??? ? ??=G O O C 12,

线性代数第六章二次型试的题目及问题详解

第六章 二次型 一、基本概念 n 个变量的二次型是它们的二次齐次多项式函数,一般形式为 f(x 1,x 2, …,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+ …+2a 1n x 1x n + …+a nn x n 2 =21 2n ii i ij i j i i j a x a x x =≠+∑∑. 它可以用矩阵乘积的形式写出:构造对称矩阵A ???? ?? ? ????????? ??==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f M ΛM M M Λ Λ ΛΛ212 122221112112111 21),,(),,( 记[]T x x x X Λ,,21=,则f(x 1,x 2,…,x n )= X T AX 称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩. 注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T =,此时二次 型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此, 也把二次型f 称为对称阵A 的二次型。 实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定 为实数,则称为实二次型.大纲的要求限于实二次型. 标准二次型 只含平方项的二次型,即形如2 222211n n x d x d x d f +++=Λ 称为二次型的标准型。 规范二次型 形如2 21221q p p p x x x x ++--+ΛΛ的二次型,即平方项的系数只 1,-1,0,称为二次型的规范型。 二、可逆线性变量替换和矩阵的合同关系 对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数 ?? ???? ?+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x ΛM ΛΛ22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵 c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … … c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可 逆线性变量替换.变换式可用矩阵乘积写出:CY X =

中级计量经济学讲义_第二章第一节数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)

上课材料之二: 第二章 数学基础 (Mathematics) 第一节 矩阵(Matrix)及其二次型(Quadratic Forms) 第二节 分布函数(Distribution Function),数学期望(Expectation)及方差(Variance) 第三节 数理统计(Mathematical Statistics ) 第一节 矩阵及其二次型(Matrix and its Quadratic Forms) 2.1 矩阵的基本概念与运算 一个m ×n 矩阵可表示为: v a a a a a a a a a a A mn m m n n ij ? ???? ???????== 2122221 11211][ 矩阵的加法较为简单,若C=A +B ,c ij =a ij +b ij 但矩阵的乘法的定义比较特殊,若A 是一个m ×n 1的矩阵,B 是一个n 1×n 的矩阵,则C =AB 是一个m ×n 的矩阵,而且∑==n k kj ik ij b a c 1 ,一般来讲,AB ≠BA ,但如下运算是成立 的: ● 结合律(Associative Law ) (AB )C =A (BC ) ● 分配律(Distributive Law ) A (B +C )=AB +AC 问题:(A+B)2=A 2+2AB+B 2是否成立? 向量(Vector )是一个有序的数组,既可以按行,也可以按列排列。 行向量(row ve ctor)是只有一行的向量,列向量(column vector)只有一列的向量。 如果α是一个标量,则αA =[αa ij ]。 矩阵A 的转置矩阵(transpose matrix)记为A ',是通过把A 的行向量变成相应的列向量而得到。 显然(A ')′=A ,而且(A +B )′=A '+B ', ● 乘积的转置(Transpose of a production ) A B AB ''=')(,A B C ABC '''=')(。 ● 可逆矩阵(inverse matrix ),如果n 级方阵(square matrix)A 和B ,满足AB=BA=I 。 则称A 、B 是可逆矩阵,显然1 -=B A ,1 -=A B 。如下结果是成立的:

化二次型为实用标准形地几种方法

化二次型为标准形的几种方法 摘要 二次型是代数学要研究的重要容,我们在研究二次型问题时,为了方便,通常将二次型化为标准形.这既是一个重点又是一个难点,本文介绍了一些化二次型为标准形的方法:正交变换法,配方法,初等变换法,雅可比方法,偏导数法.正文详细介绍了几种方法的定义以及具体步骤,并举出合适的例题加以说明.其中,偏导数法与配方法又相似,只是前者具有固定的步骤,而配方法需要观察去配方. 关键词:正交变换法配方法初等变换法雅可比方法偏导数法

reduce the quadratic forms to the standard forms Abstract:Quadratic is the important content should study algebra, in our studies of quadratic problem, for convenience, will usually be quadratic into standard form. This is both a key is a difficulty, this paper introduces some HuaEr times for the standard form of orthogonal transform method, method: match method, elementary transformation, jacobian method, partial derivative method. The text introduces several methods defined and concrete step, simultaneously gives appropriate examples to illustrate. Among them, the partial derivative method and match method and similar, but the former has the fixed steps, and match method need to observed to formula. Keywords:orthogonal transform method match method elementary transformation jacobian method partial derivative method

化二次型为实用标准型的方法

化二次型为标准型的方法 二、 二次型及其矩阵表示 在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 2 2 ax 2bxy cy f ++=. (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方 向转轴) '' '' x x cos y sin y x sin y cos θθ θθ ?=-??=+?? (2) 把方程(1)化成标准方程。在二次曲面的研究中也有类似的情况。 (1)的左端是一个二次齐次多项式。从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。现在就来介绍它的一些最基本的性质。 设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的二次齐次多项式 22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++ 称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。 设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式 11111221n n 22112222n n 33113223n n n n12n22nn n x c y c y ...c y x c y c y ...c y x c y c y ...c y ...........x c y c y ...c y =++??=++?? =++???=++?? (4) 称为由12n x ,x ,...,x 到12n y ,y ,...,y 的一个线性替换,。如果ij c 0≠,那么线性替换(4)就称为非退化的。 在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。另 ij ji a =a ,i

二次型化为标准形的几种方法

2015届本科毕业论文 题目:二次型化为标准型方法 所在学院:数学科学学院 专业班级:数学与应用数学11-2班 学生姓名:赵江南 指导教师:艾合买提 答辩日期:2015年5月5日

目录 1 引言.............................................. 错误!未定义书签。 2 关于二次型定义 ................................... 错误!未定义书签。 3 二次型化为标准型的方法 ........................... 错误!未定义书签。 正交变换法 ...................................... 错误!未定义书签。 . 配方法 ......................................... 错误!未定义书签。 . 初等变换法 ..................................... 错误!未定义书签。 . 雅可比方法 ..................................... 错误!未定义书签。 . 偏导数法 ....................................... 错误!未定义书签。 4. 小结 ............................................ 错误!未定义书签。参考文献 .......................................... 错误!未定义书签。致谢 .............................................. 错误!未定义书签。

第六章二次型总结

第六章二次型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第六章 二次型(一般无大题) 基本概念 1. 二次型: n 个变量12,, ,n x x x 的二次齐次函数 212111121213131122222 232322(,, ,)222222n n n n n nn n f x x x a x a x x a x x a x x a x a x x a x x a x =+++ ++++ ++ + 称为n 元二次型,简称二次型. 其中ij ji a a =,则 ()2 1211112121313112 21212222323222 11223311121121 22221 2 1 2 (,, ,)2n n n n n n n n n n n nn n n n n n n nn n T f x x x a x a x x a x x a x x a x x a x a x x a x x a x x a x x a x x a x a a a x a a a x x x x a a a x x Ax =+++ +++++ ++ +++++???? ??? ? ??= ??? ??????? = 因此,二次型也记AX X f T =,A 称为二次型f 的矩阵,二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵A 例题:写出下列二次型的矩阵:(p 书126例6.1) 2.合同矩阵的定义及性质 2.1合同矩阵定义 设,A B 均为n 阶方阵,若存在可逆矩阵C ,使得T C AC B =,则称矩阵A 与B 合同,记A B ?.实对称矩阵A 与B 合同的充要条件是二次型T x Ax 与 T x Bx 有相同的正,负惯性指数.(A 的正, 负惯性指数:A 的特征值的个数) 合同是矩阵之间的另一种关系,它满足 (1)反身性,即T A E AE =; (2)对称性,即若T B C AC =,则有()11T A C BC --=; (3)传递性,若111T A C AC =和2212T A C AC =,则有()()21212T A C C A C C = 因此,经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的. 在数域P 中要使两个二次型等价,充分必要条件就是它们的矩阵合同.

实验6二次型及其标准形

实验6 二次型及其标准形 一、 实验目的 学习利用Matlab 命令求二次型的秩,化二次型为标准形,判断二次型的正定性. 二、实验原理 (一)预备知识 ? 线性代数中的关于二次型的知识: 1. 二次型的秩就是二次型的矩阵的秩; 2.判别二次型为正定二次型的充要条件是,它的矩阵A 的特征值全为正,或 A 的各阶主子式为正。 ? 本实验所用Matlab 命令提示: 1. 二次型的矩阵为A, 因此用命令rank(A)可以求二次型的秩; 2. d = eig(A)输出方阵 A 的全部特征值组成的列向量d ; 3. 命令[P,D]=eig(A)输出的是对角线上的元素为A 的特征值的对角矩阵D ,以A 的相应的特征向量为列的矩阵P. (二)实验举例 在Matlab 中,我们运用函数[P,D]=eig(A)求出二次型的矩阵A 的特征值矩阵X 和特征向量矩阵P ,所求的矩阵X 即为系数矩阵A 的标准形,矩阵P 即为二次型的变换矩阵. 例1 把二次型222122332343f x x x x x =+++化为标准形. 解 输入: clear

A=[2 0 0;0 3 2;0 2 3]; syms y1 y2 y3 y=[y1;y2;y3]; [P ,D]= eig(A) x=P*y 输出为: P = 0 0 D = 0 0 0 0 0 0 x = [ y2 ] [ -1/2*2^(1/2)*y1+1/2*2^(1/2)*y3] [ 1/2*2^(1/2)*y1+1/2*2^(1/2)*y3] f=[y1 y2 y3]*D*y f =y1^2+2*y2^2+5*y3^2. 由输出结果可知,线性变换x=py 化二次型为标准型22212325f y y y =++.

二次型的矩阵表示

§1 二次型的矩阵表示 一、二次型的定义 1.问题的引入 在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 ax 2+2bxy+cy 2=f (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ? ?????+=-=θθθθcos sin sin cos ' '''y x y y x x (2) 把方程(1)化成标准方程。在二次曲面的研究中也有类似的情况。 (1)的左端是一个二次齐次多项式。从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含有平方项。二次齐次多项式不但在几何中出现,而且在数学的其它分支以及物理、力学中也常常会碰到。这一章就是来介绍它的一些最基本的性质。 2.n 元二次型 设P 是一数域,一个系数在数域P 中的x 1,x 2,…,x n 的二次齐次多项式 f (x 1,x 2,…,x n ) = a 1121x +2a 12x 1x 2+…+2a 1n x 1x n +a 222 2x +… +2a 2n x 2x n +…+a nn x 2n (3)

称为数域P 上的一个n 元二次型,简称二次型。例如 x 21+x 1x 2+3x 1x 2+2x +4x 2x 3+3x 2 3 就是有理数域上的一个三元二次型。为了以后讨论上的方便,在(3)中,x i x j (i

化二次型为标准型

化二次型为标准型公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第二节 化二次型为标准形 若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式 ,2 222211n n y b y b y b +++ 则称之为二次型),,,(21n x x x f 的标准形. 由上节讨论知,二次型AX X x x x f T n =),,,(21 在线性变换CY X =下,可化为.)(Y AC C Y T T 如果AC C T 为对角矩阵 ? ?????????? ?=n b b b B 21 则),,,(21n x x x f 就可化为标准形,2222211n n y b y b y b +++ 其标准形中的系数恰好为 对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵. 内容分布图示 ★ 二次型的标准性 ★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形 ★ 例5 ★ 例6 ★ 定理3 ?4 ★ 用正交变换化二次型为标准形 ★ 例7 ★ 例8 ★ 二次型与对称矩阵的规范形 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回 内容要点: 一、用配方法化二次型为标准形. 定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤: (1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形;

二次型及其矩阵

第五章 二次型 在解析几何中,为了便于研究二次曲线 122=++cy bxy ax 的几何性质,可以选择适当的坐标旋转变换 ???'+'='-'=θθθ θcos sin sin cos y x y y x x 把方程化为标准形式 122='+'y c x m . 这类问题具有普遍性,在许多理论问题和实际问题中常会遇到,本章将把这类问题一般化,讨论n 个变量的二次多项式的化简问题. 第一节 二次型及其矩阵 分布图示 ★ 引言 ★ 二次型的定义 ★ 例1 ★ 二次型的矩阵形式 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 线性变换 ★ 例6 ★ 矩阵的合同 ★ 内容小结 ★ 习题5-1 内容要点 一、二次型的概念 定义1 含有n 个变量n x x x ,,,21 的二次齐次函数 n n n n n n n n n nn n x x a x x a x x a x x a x x a x a x a x a x x x f 1,12232231121122 222221112122222),,,(--+++++++++++= 称为二次型. 当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型.在本章中只讨论实二次型. 只含有平方项的二次型 2 222211n n y k y k y k f +++= 称为二次型的标准型(或法式). 二、二次型的矩阵 取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=于是 ∑== ++++++++++++=n j i j i ij n nn n n n n n n n n n x x a x a x x a x x a x x a x a x x a x x a x x a x a x x x f 1 ,22211222 22212211121122 11121),,,(

第二节 化二次型为标准型

第二节 化二次型为标准形 若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式 ,2 222211n n y b y b y b 则称之为二次型),,,(21n x x x f 的标准形. 由上节讨论知,二次型AX X x x x f T n ),,,(21 在线性变换CY X 下,可化为.)(Y AC C Y T T 如果AC C T 为对角矩阵 n b b b B 21 则),,,(21n x x x f 就可化为标准形,222 2211n n y b y b y b 其标准形中的系数恰好为对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵. 内容分布图示 ★ 二次型的标准性 ★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形 ★ 例5 ★ 例6 ★ 定理 3 4 ★ 用正交变换化二次型为标准形 ★ 例7 ★ 例8 ★ 二次型与对称矩阵的规范形 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回 内容要点: 一、用配方法化二次型为标准形. 定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤: (1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形; (2) 若二次型中不含有平方项, 但是)(0j i a ij ,则先作可逆变换 ),,,2,1(j i k n k y x y y x y y x k k j i j j i i 且 化二次型为含有平方项的二次型, 然后再按(ⅰ)中方法配方. 注:配方法是一种可逆线性变换, 但平方项的系数与A 的特征值无关. 因为二次型f 与它的对称矩阵A 有一一对应的关系,由定理1即得: 定理2 对任一实对称矩阵A ,存在非奇异矩阵C ,使 B AC C T 为对角矩阵. 即任一 实对称矩阵都与一个对角矩阵合同. 二、用初等变换化二次为标准型 设有可逆线性变换为CY X ,它把二次型AX X T 化为标准型BY Y T ,则 B AC C T . 已

二次型及其矩阵表示

第六章 二次型 第一讲 二次型及其矩阵表示、标准形 教 学 目 的:通过本节的学习,使学生了解并掌握二次型的基本概念及其矩 阵表示方法. 教学重点与难点:二次型的矩阵表示 教学计划时数:2课时 教 学 过 程: 一、二次型的概念 定义1:含有n 个变量n x x x ,,,21 的二次齐次函数 22 2 121112221212112323221,1(,, ,)22222n nn n n n n n n n n n f x x x a x a x a x a x x a x x a x x a x x a x x --=+++++ ++++++ (1) 称为二次型. 附:1、当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型; 2、ij a 可以等于0,即(1)式中的各项都存在. 例1 ()2 2 2 12312313,,2454f x x x x x x x x =++-;()123121323,,f x x x x x x x x x =++ 都为实二次型; 二、二次线性与对称矩阵 在(1)式中,取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=令12(,,,)T n x x x x =,则(1) 式可化为 11121121 222212121 2 (,,,)(,, ,).n n T n n n n nn n a a a x a a a x f x x x x x x x Ax a a a x ???? ??? ??? == ??? ??????? 称12(,, ,)T n f x x x x Ax =为二次型的矩阵形式,记为()T f x x Ax =,其中实对称矩阵A 称 为该二次型的矩阵.二次型f 称为实对称矩阵A 的二次型.实对称矩阵A 的秩称为二次型f 的秩,即()()R A R f =.

化二次型为标准型的方法样本

化二次型为标准型的方法 一、 绪论 高等代数是数学专业的一门重要基础课。该课程以线性空间为背景, 以线性变换为方法, 以矩阵为工具, 着重研究线性代数的问题。二次型式多元二次函数, 其内容本应属于函数讨论的范围, 然而二次型用矩阵表示之后, 用矩阵方法讨论函数问题使得二次型的问题变得更加简洁明确, 二次型的内容也更加丰富多彩。本文的中心问题是如何化二次型为标准形, 也就是用矩阵方法把对称矩阵合同与对角矩阵。 二次型是高等代数的重要内容之一, 二次型的基本问题是要寻找一个线性替换把它变成平方项, 即二次型的标准型。二次型的理论来源于解析几何中二次曲线、 二次曲面的化简问题, 其理论也在网络、 分析、 热力学等问题中有广泛的应用。将二次型化为标准型往往是困惑学生的一大难点问题, 而且它在物理学、 工程学、 经济学等领域有非常重要的应用, 因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值。 我们知道, 任一二次型和某一对称矩阵是相互唯一确定, 而任一实对称矩阵都能够化成一对角矩阵, 相应的任一实二次型都能够化为标准型。在高等代数课本中介绍了将实二次型化为标准型的两种方法: 配方法和正交变换法; 另外, 由于任意矩阵能够利用初等变换化为对角矩阵, 因此也可用初等变换法将二次型化为标准型。 经过典型例题, 更能体会在处理二次型问题时的多样性和灵活性, 我们应熟练掌握各种方法。 以下就是几种方法的简单介绍, 而且又提出了一种新的方法: 雅可比喻法。我们在解决二次型问题时可对它们灵活应用。 二、 二次型及其矩阵表示 在解析几何中, 我们看到, 当坐标原点与中心重合时, 一个有心二次曲线 的一般方程是 22ax 2bxy cy f ++=.

化二次型为标准形的方法

化二次型为标准形的方法 内容摘要:高等代数作为我们数学专业的一门重要的基础课。它以线性空间为背景,以线 性变换为方法,以矩阵为工具,着重研究线性代数的问题。二次型式多元二次函数,其内容本属于函数的讨论范围,然而二次型用矩阵表示之后,用矩阵方法讨论函数问题,使得二次型的问题变得更加简洁明确,二次函数的内容也更加丰富多彩。而我们要讨论的是如何化二次型为标准形,也就是用矩阵方法把对称矩阵合同与对角矩阵。二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准形。下面介绍了一些化二次型为标准形的方法:配方法,交变换法,初等变换法,雅可比方法,偏导数法 关键词:二次型 线性替换 矩阵 标准形 导言:二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题。二次型是学中的 一个极其重要的问题,这个问题不仅在数学上,而且在物理学,工程学,经济学领域都有广泛的应用。在研究时为了研究的方便,我们经常要化二次型为标准形。我们知道,任一二次型和某一对称矩阵是相互唯一确定的,而任一实对称矩阵都可以化为一对角矩阵,相应的以实二次型都可以化为标准形,以下就是化二次型为标准形的几种方法,通过典型例题,体会二次型问题时的多样性和灵活性。 化二次型为标准形的方法 一. 配方法 配方法是解决这类问题时另一个常用方法,通过观察对各项进行配方,其实质就是运用非退化的线性替换。使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式和两数的平方差公式逐步的消去非平方项并构造新的平方项。 定理:数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和 222 1122...n n d x d x d x +++的形。 1.如果二次型含有i x 的平方项,那么先把含有i x 的乘积项集中,然后再配方,再对其 余的项同样进行,直到都配成平方项为止,写出前面过程所经过的所有非退化的线性替换,就将二次型化为标准形了。 例 1.上述所给出的方法化二次型23(,,)f x x x =22 1122 23224x x x x x x +++为标准形,写出所用的变换矩阵。 解:原二次型中含有i x 的平方项,先将含有1x 的项集中,利用平方和公式消去12x x , 然后对2x 配平方,消去23x x 项。此过程为

相关文档
最新文档