课程设计报告(psk调制解调)

课程设计报告(psk调制解调)
课程设计报告(psk调制解调)

长沙理工大学

《通信原理》课程设计报告

李柳

学院计算机与通信工程专业通信工程

班级通信1203 学号201254080308 学生姓名李柳指导教师吴志敏

课程成绩

完成日期2015年1 月4日

课程设计成绩评定

学院计算机与通信工程专业通信工程

班级通信1203 学号201254080308

学生姓名李柳指导教师吴志敏

课程成绩完成日期2015年1 月4日指导教师对学生在课程设计中的评价

指导教师对课程设计的评定意见

课程设计任务书

计算机与通信工程学院通信工程专业

基于MATLAB的PSK调制解调实现

学生姓名:李柳指导老师:吴志敏

摘要利用MATLAB集成环境下的M文件,编写程序来实现PSK的调制解调,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。

关键词数字调制解调分析与仿真Matlab

1 引言

现代通信的发展趋势为数字化,随着现代通信技术的不断开发,数字调制技术已日趋成熟,在各个领域都得到了广泛的应用和认同。数字通信系统较模拟通信系统而言,具有抗干扰能力强、便于加密、易于实现集成化、便于与计算机连接等优点。因而,数字通信更能适应对通信技术的高要求。MATLAB是一种使用简便的、特别适用于科学研究和工程计算的高级语言,与其他计算机语言相比,它的特点是简洁和智能化,具有极高的编程和调试效率。通过使用MATLAB工具箱函数对数字调制进行仿真,更能直观彻底的掌握数字通信,数字调制的原理。有助于我们的学习和研究,加深对知识的理解和运用。

1.1课程设计目的

要求熟练使用MATLAB集成环境下的M文件,编写程序来实现PSK的调制解调。通过实现PSK调制解调的课程设计,更加熟练的掌握MATLAB的编程语言,熟练使用条件控制,循环等语句以及函数的调用等关于MATLAB的知识。同时加深对PSK调制与解调的理论知识的理解,增强matlab的软件的使用方面和各种编码解码的能力,对以后其他的软件的使用和其他方式的调制解调能更好的理解等。

1.2课程设计要求

能够理解并掌握PSK调制解调的原理,能够熟练的利用MATLAB中的M文件编写PSK的调制解调程序并绘制出PSK信号解调前后在时域和频域的波形,观察其频谱的变化;在此基础上对信号进行叠加噪声,绘制出解调前后的时域波形,改变噪声功率进行解调,分析噪声对信号传输的影响。

1.3课程设计步骤

在M文件中编写程序产生数字基带信号,对信号进行数字调制,再已调信号进行解调,绘制调制解调前后信号在时域的波形和频谱,然后在已调信号上叠加噪声并解调,改变噪声功率,观察解调前后时域波形,分析噪声对信号传输的影响。

(1)利用正弦信号产生方波,作为基带信号。

(2)基带信号与载波相乘得到PSK信号。

(3)通过带通滤波器,相乘器,低通滤波器的到解调信号。

(4)叠加噪声信号再次进行解调,改变噪声功率再进行解调。

(5)分析对比解调前后的时域波形,解释噪声对信号传输的影响。

2 PSK调制解调原理

调制和解调的基本原理是利用信号与系统的频域分析和傅里叶变换的基本性质,将信号的频谱进行搬移,使之满足一定需要,从而完成信号的传输或处理。调制与解调又分模拟和数字两种,在现代通信中,调制器的载波信号几乎都是正弦信号,数字基带信号通过调制器改变正弦载波信号的幅度、频率或相位,产生幅度键控(ASK)、相位键控(PSK)、频率键控(FSK)信号,或同时改变正弦载波信号的几个参数,产生复合调制信号。相移键控(PSK):一种用载波相位表示输入信号信息的调制技术。移相键控分为绝对移相和相对移相两种。以未调载波的相位作为基准的相位调制叫作绝对移相。以二进制调相为例,取码元为“1”时,调制后载波与未调载波同相;取码元为“0”时,调制后载波与未调载波反相;“1”和“0”时调制后载波相位差180°。

2.1 PSK调制原理

PSK信号用载波相位的变化来表征被传输信息的状态,通常规定0相位载波和π相位载波分别表示传“1”和传“0”。设二进制单极性码为an,其对应的双极性二进制码为bn,则2PSK信号的一般时域信号可以表示为:

S2psk(t)= [ bn g(t-nTs)]cosωct

式中bn=-1(当an=0时,概率为P)

bn=1(当an=1时,概率为1-P)’

则时域信号可以变为:

S2psk(t)= [ g(t-nTs)]cos(ωct+π),当an=0时

S2psk (t )= [ g(t-nTs)]cos (ωct+0) 当an=1时 由此可知2PSK 信号是一种双边带信号,功率谱为:

P2PSK (?)= ?s=P (1-P )[|G (?+ ?s )|2+|G (?- ?s )|2]

+ ?s2(1-P )2|G (0)|2[δ(?+ ?s)+ δ(

?- ?s)] 2PSK 信号的带宽为B2PSK=(?c+Rs )-(?c-Rs )= 2Rs 式中Rs 为码元速率。

2.2 PSK 解调原理

2PSK 信号的解调通常采用相干解调法,其原理框图如下:

2PSK 的调制方框图 图2.1

图2.2

相干解调也叫同步检波,它适用于所有线性调制信号的解调。实现相干解调的关键是接收端要恢复出一个与调制载波严格同步的相干载波。相干解调是指利用乘法器,输入一路与载频相干(同频同相)的参考信号与载频相乘。

3 仿真实现过程

3.1 PSK信号的产生

利用正弦波产生基带数字信号(双极性),再与载波信号直接相乘的方法。

x = cos(wfc_t);

x(x>0)=1;

x(x<0)=-1; 利用正弦波产生双极性基带数字信号;

car=sin(2*pi*fc*t); 载波;

psk=x.*car; 载波与基带信号相乘进行载波调制;

如图3.1为基带信号与已调制信号。

图3.1

3.2 PSK解调实现

(1)构建带通滤波器,将已调信号通过带通滤波器得到滤波信号。

Hz=0.135*(z+1).*(z-1)./(z.^2-(p)); 利用此系统响应函数构建带通滤波器。

faskn=filter(b,a,ask); 利用filter函数得到滤波信号;

(2)将通过带通滤波器的信号与载波信号相乘。可以用一下程序语句进行操作,从而实现乘法器的功能。

cm=faskn.*car; 解调

(3)将经过乘法器的信号通过低通滤波器进行滤波。

p=0.72;

gain1=0.14;%gain=(1-p)/2

Hz1=gain1*(z+1)./(z-(p)); 利用此系统响应函数构建低通滤波器。

so=filter(b1,a1,cm); 利用filter函数得到滤波信号;

(4)设置判决电平,设置为最佳判决电平0,将信号通过判决器得到解调输出信号。下图是未叠加噪声的调制解调图形:

图3.2

对比基带信号,已调信号,解调输出信号,参考《通信原理》教程,已调信号的带宽等于2倍的基带信号带宽(即fbw=2fm),由得出的各个信号的时域波形可知满足要求,对比基带信号和解调输出信号的频谱图可以看出,两者都出现两个边带的频谱。

图3.3

分析:由上图可知基带信号与解调信号基本相同,并未出现失真,只是存在一定延时。说明相干解调的方法能实现PSK信号的解调无失真输出。

3.3叠加噪声的PSK解调

在实际的信号传输过程中,系统外部干扰以电磁波或经电源串进系统内部而引起噪声。如电气设备,天体放电现象等引起的噪声。同时由光和电的基本性质所引起的噪声,电器的机械运动产生的噪声,器材材料本身引起的噪声,系统内部设备电路也能引起噪声。这些噪声有些是不可避免的,所以我们在研究信号的传输是一定要叠加上噪声,这样才有实际意义。下面是对叠加上大信噪比和小信噪比之后的信号的调制与解调做分析。

信号叠加上大信噪比的噪声之后,信号在幅度上有微弱变化,在经过带通滤波器之后,与上图为叠加噪声的对比可以发现,几乎已经一样,在通过乘法器和低通滤波器之后仍能恢复出原基带信号。

叠加小噪声之后的图形:

图3.4

叠加上大信噪比的噪声之后,由于叠加的上的噪声信号由randn(size(t))函数产生,是完全随机的信号,叠到已调信号上会把信号的波形完全打乱。

如图3.5噪声信号和加噪声之后的已调信号:

图3.5

下图3.6是叠加大噪声情况下的基带信号经调制解调之后的信号的时域频域波形:

图3.6

4 遇到的问题及解决办法

在此次课程设计中,我认为我的难点在于带通与低通滤波器的构建上,在构建带通滤波器的过程中因为参数的设置不正确算出的系统函数不正确,导致调制信号通过带通滤波器,乘法器和低通滤波器之后无法得到无失真的解调信号。解决方案:调整滤波器的参数,带通滤波器的中心频率:fc=2×10e-5;所以可以求的通带截至频率为:f1=fc-fm=1.8×10e-5和f2=fc+fm=2.2×10e-5;由这些参数可以求的的低通滤波器的系统函数为:Hz=0.135×(z+1)(z-1)./(z.^2+0.8547) ;调整之后的解调系统能够符合要求。另外,就是各种函数的调用的问题,因为一开始没有仔细的查阅资料,对MATLAB中的已有可直接调用的函数了解不多,致使做了许多繁重的工作,使整个设计显得复杂。

5 结束语

通过这段时间的亲身经历,我感觉自己学到了:收集、整理资料、共同协作、分析及处理问题等许多方面的知识。在作设计的过程中,我有许多不懂得地方,在老师的指导下我一步步的解决问题完成论文,在完成过程中老师指导我去怎么选择资料,如何去利用网络资源,在这个学习的过程中,我了解到MATLAB的实用价值,更深的理解数字调制技术的调制原理。对三种键控方式的调制原理也理解的更加透彻。同时也深感用计算机仿真电子通信系统,具有广泛的适应性和极高的灵活性。在硬件试验中改变硬件的参数设置就意味着重做硬件,而在软件中只需对相应的参数进行重新设置,同时利用MATLAB简单编程的特点,可以实现较为复杂的系统,因此MATLAB在通信系统仿真方面具有强大的功能和优越性!在课程设计的过程中明显觉得自己对MATLAB软件的不熟练,很多函数不会使用,还需要查阅参考书才能正确使用。而且再做到最后的时候才发现matlab中的y=dmod(x,Fc,Fd,Fs,method…)函数可以直接进行PSK的调制,而z=ddemod(y,Fc,Fd,Fs,method…)函数也可直接对已调信号进行解调,不再需要设置低通,带通滤波器,也不需要设置判决器就可直接调制解调,而自己的设计的解调做了很多繁重的工作,由于时间紧迫,所以没有进行优化。在以后的学习或者其他设计中,应该提前做好充足的准备,对要做的东西有足够的了解之后再开始进行,其次以后在工作中要脚踏实地,在学术上要严谨,在思维上要活跃,在学业上要勤奋刻苦,不能懵懂的就以为自己已经会了。

最后我真诚感谢这期间老师给予我的全力帮助,细心指导以及对我的严格要求,是她在我遇到问题时,不辞辛苦帮我解决,感谢她在设计和任务安排上长时间的指导。

参考文献

[1] 黄文梅, 熊桂林, 杨勇.信号分析与处理—MATLAB语言及应用. 长沙: 国防科技大学出版社, 2000.

[2] 唐向宏, 岳恒立, 郑雪峰. MATLAB及在电子信息类课程中的应用.北京:电子工业出版社, 2006, 8.

[3] 邓华. MATLAB通信仿真及应用实例详解. 人民邮电出版社, 2003.

[4] 樊昌信徐炳祥等.通信原理(第5版).北京.国防工业出版社.2005

[5] 程佩青数字信号处理教程(第四版)清华大学出版社

[6]王兴亮.《数字通信原理与技术》(第二版).西安电子科技大学出版社.2000

附录一:未叠加噪声PSK调制解调程序清单

%程序名称:PSK.m

%程序功能:实现PSK调制解调

%程序作者:李柳

%========================================

clear all; close all;

fs=8e5;%抽样频率

fm=20e3;%基带频率

n=2*(6*fs/fm);

final=(1/fs)*(n-1);

fc=2e5; % 载波频率

t=0:1/fs:(final);

Fn=fs/2;%耐奎斯特频率

%用正弦波产生方波

wfc_t=2*pi*fm*t;

x = cos(wfc_t );

% 方波

x(x>0)=1

x(x<0)=-1;

figure(1)

subplot(221); plot(t,x); axis([0 2e-4 -2 2]); title('基带信号'); grid on

car=sin(2*pi*fc*t);%载波

ask=x.*car;%载波调制

subplot(222); plot(t,ask); axis([0 200e-6 -2 2]); title('PSK信号'); grid on fBW=40e3; %编码后的PSK信号频率

f=[0:3e3:4e5];

w=2*pi*f/fs; z=exp(w*j);

BW=2*pi*fBW/fs; %通带带宽

a=.8547;%BW=2(1-a)/sqrt(a)

p=(j^2*a^2);

Hz=0.135*(z+1).*(z-1)./(z.^2-(p)); %带通滤波器的系统函数

subplot(223); plot(f,abs(Hz)); title('带通滤波器');grid on;

Hz(Hz==0)=10^(8);%避免log(0)

subplot(224);

plot(f,20*log10(abs(Hz)));

grid on;

title('Receiver -3dB Filter Response'); axis([1e5 3e5 -3 1]); %滤波器系数

a=[1 0 0.7305];%[1 0 p]

b=[0.135 0 -0.135];%0.135*[1 0 -1]

faskn=filter(b,a,ask);

figure(2)

subplot(321); plot(t,faskn); axis([0 100e-6 -2 2]); title('通过带通滤波后输出');

grid on;

cm=faskn.*car;%解调

subplot(322); plot(t,cm); axis([0 100e-6 -2 2]); grid on;

title('通过相乘器后输出'); %低通滤波器

%================================================================= =

p=0.72;

gain1=0.14;%gain1=(1-p)/2

Hz1=gain1*(z+1)./(z-(p));

subplot(323); Hz1(Hz1==0)=10^(-8);%避免log(0)

plot(f,20*log10(abs(Hz1)));

grid on;

title('LPF -3dB response'); axis([0 5e4 -3 1]);

%滤波器系数

a1=[1 -0.72];%(z-(p))

b1=[0.14 0.14];%gain*[1 1]

so=filter(b1,a1,cm);

so=so*10;%add gain

so=so-mean(so);%removes DC component

subplot(324); plot(t,so); axis([0 8e-4 -3.5 3.5]); title('通过低通滤波器后输出'); grid on; %Comparator

%======================================================

High=1;

Low=-1;

vt=0;%判决电平

len1=length(so);

for ii=1:len1

if so(ii) >= vt

Vs(ii)=High;

else

Vs(ii)=Low;

end

end

V o=Vs;

subplot(325); plot (t,V o); title('解调后输出信号');

axis([0 2e-4 -2 2]) ; grid on;

xlabel('时间(s)'), ylabel('幅度(V)');

figure(3)

F1=fft(x);

subplot(211); plot (t,F1); title('基带信号频谱');

F2=fft(so);

subplot(212); plot (t,F2); title('解调后输出信号频谱');

附录二:叠加大信噪比噪声PSK调制解调程序清单

%程序名称:PSK.m

%程序功能:实现PSK调制解调

%程序作者:李柳

%========================================

clear all; close all;

fs=8e5;%抽样频率

fm=2e4;%基带频率

n=2*(6*fs/fm);

final=(1/fs)*(n-1);

fc=2e5; % 载波频率

t=0:1/fs:(final);

%用正弦波产生方波

wfc_t=2*pi*fm*t;

x = cos(wfc_t );

% 方波

x(x>0)=1;

x(x<0)=-1;

figure(1)

subplot(321); plot(t,x); axis([0 2e-4 -2 2]); title('基带信号'); grid on

car=sin(2*pi*fc*t);%载波

ask=x.*car;%载波调制

subplot(323); plot(t,ask); axis([0 200e-6 -2 2]); title('PSK

信号'); grid on

vn=0.1;

noise=vn*(randn(size(t)));%产生噪音

subplot(322); plot(t,noise); grid on; title('噪音信号');

axis([0 .2e-3 -1 1]);

askn=(ask+noise);%调制后加噪

subplot(324); plot(t,askn); axis([0 200e-6 -2 2]); title('加

噪后信号'); grid on;

fBW=4e4; %已调信号带宽

f=[0:3e3:4e5];

w=2*pi*f/fs; z=exp(w*j);

BW=2*pi*fBW/fs;

a=.8547;%BW=2(1-a)/sqrt(a)

p=(j^2*a^2);

Hz=0.135*(z+1).*(z-1)./(z.^2-(p));

subplot(325); plot(f,abs(Hz)); title('带通滤波器');grid on;

Hz(Hz==0)=10^(8);%avoid log(0)

subplot(326);

plot(f,20*log10(abs(Hz)));

grid on;

title('Receiver -3dB Filter Response'); axis([1e5 3e5 -3

1]); %滤波器系数

a=[1 0 0.7305];%[1 0 p]

b=[0.135 0 -0.135];%gain*[1 0 -1]

faskn=filter(b,a,askn);

figure(2)

subplot(322); plot(t,faskn); axis([0 100e-6 -2 2]); title('

通过带通滤波后输出');

grid on;

cm=faskn.*car;%解调

subplot(323); plot(t,cm); axis([0 100e-6 -2 2]); grid on; title('通过相乘器后输出'); %低通滤波器

%============================================================= p=0.72;

gain1=0.14;%gain=(1-p)/2

Hz1=gain1*(z+1)./(z-(p));

subplot(324); Hz1(Hz1==0)=10^(-8);%avoid log(0)

plot(f,20*log10(abs(Hz1)));

grid on;

title('LPF -3dB response'); axis([0 5e4 -3 1]);

%滤波器系数

a1=[1 -0.72];%(z-(p))

b1=[0.14 0.14];%gain*[1 1]

so=filter(b1,a1,cm);

so=so*10;%add gain

so=so-mean(so);%removes DC component

subplot(325); plot(t,so); axis([0 8e-4 -3.5 3.5]); title('通

过低通滤波器后输出');

grid on; %Comparator

High=1;

Low=-1;

vt=0;%判决电平

len1=length(so);

for ii=1:len1

if so(ii) >= vt

Vs(ii)=High;

else

Vs(ii)=Low;

end

end

Vo=Vs;

subplot(326); plot (t,Vo); title('解调后输出信号');

axis([0 2e-4 -2 2]) ; grid on;

xlabel('时间 (s)'), ylabel('幅度(V)');

subplot(321);

plot(f,20*log10(abs(Hz)));

grid on;

title('Receiver -3dB Filter Response'); axis([1e5 3e5 -3 1]); figure(3)

F1=fft(x);

subplot(211); plot (t,F1); title('基带信号频谱');

F2=fft(so);

subplot(212); plot (t,F2); title('解调后输出信号频谱');

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

二进制相移键控(2PSK)调制电路课程设计

前言 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。传统的2PSK (二进制相位键控)调制可采用直接调相法即双极性数字基带信号与载波直接相乘的方法,也可以采用相位选择法即由振荡器和反相器电路来实现调制的方法。对数字信息进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。 相移键控在数据传输中,尤其是在中速和中高速的数传机中得到了广泛的应用。相移键控有很好的抗干扰性,在有衰落的信道中也能获得很好的效果。二进制移相键控(2P SK)方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式,和模拟调制不同的是,由于数字基带信号具有离散取值的特点,所以调制后的载波参量只有有限的几个数值,因而数字调制在实现的过程中常采用键控的方法,就像用数字信息去控制开关一样,根据数字基带信号的两个电平,使载波相位在两个不同的数值之间切换的一种相位调制方式。当两个载波相位相差180度时,此时称为反向键控,也称为绝对相移方式。 本次设计实验旨在将理论和实践地结合。依据所学知识,利用Multisim软件进行实验电路设计和仿真。

目录 一、设计实验目的 (1) 1.掌握二进制相移键控调制的概念。 (1) 二、设计指标 (1) 三、原理框图介绍 (1) 四、单元电路设计 (2) 1.载波发生器模块—555脉冲发生电路 (2) 2.载波倒相器 (5) 3.信码反相器 (5) 4.模拟开关CD4066 (5) 五、整体电路图设计与仿真 (6) 1.整体电路图设计说明 (6) 2.总电路图及仿真结果 (6) 六、设计总结 (8) 参考文献 (8) 附件二:元器件清单 (9)

ASKFSKPSK的调制与解调

2ASK的调制与解调 一、实验目的 1.加深理解2ASK调制与解调原理。 2.学会运用SystemView仿真软件搭建2ASK调制与解调仿真电路。 3.通过仿真结果观察2ASK的波形及其功率谱密度。 二、仿真环境 Windows98/2000/XP SystemView5.0 三、2ASK调制解调原理方框图 1.2ASK调制原理 图1 2ASK键控产生 图2 2ASK相乘法产生 2.2ASK解调原理 图3 2ASK相干解调

四、2ASK调制解调仿真电路

1.仿真参数设置 1)信号源参数设置:基带信号码元速率设为101==T R B 波特,2ASK 信号中心载频设为 Hz f s 20=。(说明:中心载频 s f 设得较低,目的主要是为了降低仿真时系统的抽样 率,加快仿真时间。) 2)系统抽样率设置:为得到准确的仿真结果,通常仿真系统的抽样率应大于等于10倍的载频。本次仿真取10 s f ,即200Hz 3)系统时间设置:通常设系统Start time=0。为能够清晰观察每个码元波形及2ASK 信号的功率谱密度,在仿真时对系统Stop time 必须进行两次设置,第一次设置一般取系统Stop time=6T~8T ,这时可以清楚地观察到每个码元波形;第二次设置一般取系统Stop time=1000T~5000T ,这时可以清楚地观察到2ASK 信号的功率谱密度。 2.2ASK 信号调制与解调的仿真电路图 图4 2ASK 信号调制与相干解调仿真电路 图5 2ASK 信号调制与包络检波仿真电路 五、仿真结果参考

S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 调制信号波 图6 输入信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -2 -1.5 -1 -500.e -3 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 已调信号波形 图7 2ASK 信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -1 -500.e -3 500.e -3 1 A m T i m e i n S e c on d s 解调输出波形 图8 解调输出波形 图9 已调信号的频谱(载频为50Hz ) 六、自行搭建调试仿真电路,完成设计任务 2FSK 调制与解调 一、实验目的 1. 掌握2FSK 调制与解调原理; 2. 掌握仿真软件Systemview 的使用方法; 3. 完成对2FSK 调制与解调仿真电路设计,观察2FSK 波形及其功率谱密度。

课程设计报告模板(调制解调)

基于MATLAB的差分码PSK调制解调实现学生姓名:易武指导老师:吴志敏 摘要 PSK调制是通信系统中最为重要的环节之一,PSK调制技术的改进也是通信系统性能提高的重要途径。分析了数字调制系统的基本调制解调方法,利用MATLAB作为编程工具,设计了相移键控系统的模型,并且对模型的方针流程以及仿真结果都给出具体详实的分析,为实际系统的构建提供了很好的依据。数字调制是通信系统中最为重要的环节之一,数字调制解调技术的改进也是通信系统性能提高的重要途径。 关键词 MATLAB;PSK;调制解调;差分码 1 引言 1.1课程设计目的 差分码PSK的调制解调的实现,通过课程设计,我学到了MATLAB的操作,深入了解了PSK调制解调的原理,利用MATLAB集成环境下的M文件,编程实现差分码的PSK 调制解调,并绘制了调制前后的时域和频域波形级叠加噪声时解调前后额频域波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号的额传输影响,知道了2PSK 信号的产生方法主要有两种。这两种方法的复杂程度差不多,并且都可以用数字信号处理器实现,加深了对信号的调制解调的认识,培养了实际操作能力。 1.2课程设计要求 1)绘制基带信号,PSK调制信号和解调信号。 2)绘制噪声后的调制信号和解调信号。 3)改变噪声功率进行解调,分析噪声对信号传输造成的影响。

1.3课程设计原理 差分码PSK 的调制解调实质上就是DPSK 调制解调,利用载波的多种不同的相位状态来表征数字信息的调制方式,调制解调有2DPSK 和4DPSK 调制解调,本次课程实际采用二进制的DPSK 。 2 PSK 调制解调原理 2.1 2PSK 调制的基本原理 在4PSK 信号中,相位变化是以未调载波的相位作为参考基准的。由于它利用载波相位的绝对数值表示数字信息,所以又称为绝对相移。4PSK 相干解调时,由于载波恢复中相位有0、π模糊性,导致解调过程出现“反向工作”现象,恢复出的数字信号“1”和“0”倒置,从而使2PSK 难以实际应用。为了克服此缺点,提出了二进制差分相移键控(2DPSK )方式。 2DPSK 是利用前后相邻码元的载波相对相位变化传递数字信息,所以又称相对相移键控。假设??为当前码元与前一码元的载波相位差,可定义一种数字信息与??之间的关系为 ”“”“010表示数字信息表示数字信息???=?π? (2-1) 于是可以将一组二进制数字信息与其对应的2DPSK 信号的载波相位关系示例如下: 二进制数字信息: 1 1 0 1 0 0 1 1 0 2DPSK 信号相位: (0) π 0 0 π π π 0 π π 或 (π) 0 π π 0 0 0 π 0 0 数字信息与??之间的关系也可定义为 ”0“”1“0表示数字信息表示数字信息???=?π? 由此示例可知,对于相同的基带数字信息序列,由于初始相位不同,2DPSK 信号的相位并不直接代表基带信号,而前后码元相对相位的差才唯一决定信息符号。 为了更直观地说明信号码元的相位关系,我们可以用矢量图来表述。按照(2-1)的定义关系,我们可以用如图2-1(a )所示的矢量图来表示,图中,虚线矢量位置称

FM调制解调电路的设计..

FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz ,解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自

2PSK系统课程设计

《通信原理》课程设计说明书基于 Matlab 的 2PSK 系统设计学院:电气与信息工程学院 学生姓名: 指导教师:职称副教授 专业:通信工程 班级:通信1302 班 学号: 完成时间:2016年 5 月

指导教师学生姓名 课题名称基于MATLAB的 2PSK 系统设计 一、设计任务 利用 MATLAB设计一个2PSK 系统。 二、设计内容 2PSK 系统中包括调制、加噪滤噪与解调部分,具体内容如下: 内 ( 1)产生基带信号; 容 ( 2)产生已调信号; 及 ( 3)已调信号通过高斯白噪声信道; 任 ( 4)对信号输出端的混合信号中的噪声进行滤除; 务 (5)信号的解调; (6)抽样判决码元再生。 三、设计要求 设计出一个 2PSK 系统,对 2PSK 系统进行仿真分析,并编写设计说明书。 主 [1] 樊昌信 ,曹丽娜 .通信原理 [M]. 北京 :国防工业出版社 ,2015. 要 [2] 刘晓东 ,董辰辉 .MA TLAB从入门到精通[M]. 北京 :人民邮电出版社,2010. 参 考[3] 常华 ,袁刚 ,常敏嘉 .仿真软件教程 .北京 : 清华大学出版社 ,2006. 资[4] https://www.360docs.net/doc/af19095936.html,/view/17338d1733687e21af45a9c8?Pcf=2#6,2015-12-14料[5] 朱阳燕 .基于 MATLAB的2PSK系统仿真[J].科技信息,2008(17):82. 教 研 室 意 见 教研室主任: 年月日

摘要 现代通信系统是一个十分复杂的工程系统,通信系统设计研究也是一项十分复杂的 技术。由于技术的复杂性,在现代通信技术中,越来越重视采用计算机仿真技术来进行系 统分析和设计。随着电子信息技术的发展,已经从仿真研究和设计辅助工具,发展成为今 天的软件无线电技术,这就使通信系统的仿真研究具有更重要和更实用的意义。 课程设计首先介绍了课题的研究背景及意义和课题的研究内容,其次描写了2PSK 系统的相关知识理论,着重讲解了2PSK 系统的两种调制方式:模拟调制法和键控法, 和它的解调方式,相干解调。然后在掌握了2PSK 系统原理的基础上利用 MATLAB 软件对数字调制方式 2PSK 进行了编程仿真实现, MATLAB 是一个用于电路与通信系统设计、仿真的动态系统分析工具,可用于信号处理、滤波器设计及复杂的通信系统数学模 型的建立等。在 MATLAB 平台上建立 2PSK 调制和解调技术的仿真模型,并在建立模 型过程中加入一个加噪滤噪的过程。构思好2PSK 系统设计的流程后即可在 MATLAB 仿真平台上进行2PSK 系统的调制与解调,加噪和滤噪,并对仿真模型进行分析,得出 仿真系统的波形图,能够更直观的了解其系统的工作流程,得出更好的结论。通过 2PSK 系统的仿真过程进一步学习了 MATLAB 编程软件,将 MATLAB 与通信系统中数字调制解调知识联系起来,从理论学习的轨道逐步引向实际应用,为以后在通信领域学习和研究打下基础。 关键词:数字调制和解调; MATLAB ;2PSK

PSK(DPSK)调制与解调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。 2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK的“倒π”现象,因此,实际中一般

不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。 2DPSK 的调制原理与2FSK 的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,完成2DPSK 调制,其调制的基带信号和载波信号分别从“PSK 基带输入”和“PSK 载波输入”输入,差分变换的时钟信号从“PSK-BS 输入”点输入,其原理框图如图所示: 2DPSK 调制原理框图 2、2PSK (2DPSK )解调原理

2ASK调制解调课程设计论文(简单版)

目录 1 引言 1.1课题研究的背景和意义……………………………………………… 1.2研究现状……………………………………………………………… 1.3论文的内容安排………………………………………………………… 2 系统原理及设计方法 2.1 2ASK调制的原理…………………………………………………………Y 2.2 ASK解调原理及设计方法…………………………………………………… 3 ASK调制与解调的VHDL系统建模 3.1软件平台介绍………………………………………………………………… 3.2整体方案设计………………………………………………………………… 4 2ASK调制系统VHDL建模 4.1 2ASK调制系统仿真模型……………………………………………………… 4.1.1 m序列原理………………………………………………………… 4.1.2 m序列的实现…………………………………………………… 4.1.3分频器原理……………………………………………… 4.2 调制程序实现…………………………………… 4.2.1 M序列的实现………………………………………… 4.2.2分频器的实现…………… 4.3 2ASK调制系统仿真…………… 4.3.1 M序列伪随机码仿真………………………………………… 4.3.2分频器仿真…………………………………………… 4.3.3 2ASK调制仿真…………………………………………………… 5 2ASK解调系统VHDL建模与仿真 5.1 2ASK解调系统仿真模型……………………………………………………… 5.2 2ASK解调系统的实现………………………… 5.2.1 2ASK解调系统的VHDL设计…………………………………………

AM调制与解调电路设计

AM 调制与解调电路设计 一.设计要求:设计AM 调制和解调电路 调制信号为:()1S 3cos 272103cos164t V tV ππ=?+=???? 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=??+=???? 二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法; 调幅电路采用丙类功放电路,集电极调制; 检波电路采用改进后的二极管峰值包络检波器。 1.AM 调幅电路设计: (1).参数计算: ()6cos1640c u t tV π=载波为, ()3cos164t tV πΩ=调制信号为u 则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+ 其中调幅指数 0.5a M = 最终调幅信号为 am U 6[10.5cos164]cos1640t t ππ=+ 为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为 21 LC c ω= c 1640ωπ= L 200H,C 188F 1BB V μμ===另U (2).调幅电路如下图所示:

调幅波形如下: 可知调幅信号与包络线基本匹配 2.检波电路设计: 参数计算: 取10L R k =Ω 1.电容 C 对载频信号近似短路,故应有1 c RC ω ,取 ()510/10/0.00194c c RC ωω== 2.为避免惰性失真,有m a x /0.00336 a RC M Ω= ,取0.0022,1RC R k C F μ==Ω=,则

3.设 11212250.2,,330, 1.6566 R R R R R R R k R ====Ω=Ω则。因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min 1 c L C R Ω ,取 4.7c C F μ= 3.调制解调电路如下图所示: o am U U 与波形为: o L U U 与解调信号的波形为:

2PSK调制与解调系统的仿真(1)

科类理工科编号(学号) 本科生毕业论文(设计) PSK调制与解调系统的仿真 The simulation of PSK modulation and demodulation system 秦安东 指导教师:赵红伟(讲师) 云南农业大学昆明黑龙潭650201 学院:基础与信息工程学院 专业:电子信息工程年级: 论文(设计)提交日期:答辩日期: 答辩委员会主任: 云南农业大学 年月

目录 摘要 ................................................................................................................ 错误!未定义书签。ABSTRACT.. (5) 1.前言 (5) 2.设计原理 (5) 2.1 2PSK信号的调制与解调 (5) 2.1.1 2PSK信号的调制原理 (5) 2.1.2 2PSK信号的解调原理 (7) 2.2 4PSK信号的调制与解调 (5) 2.2.1 4PSK信号的调制原理 (5) 2.2.2 4PSK信号的解调原理 (7) 2.3 8PSK信号的调制与解调 (5) 2.3.1 8PSK信号的调制原理 (5) 2.3.2 8PSK信号的解调原理 (7) 3仿真结果 (8) 4.1 2PSK信号的仿真结果如下图所示......................................... 错误!未定义书签。 4.2 4PSK信号的仿真结果如下图所示 (7) 4.3 8PSK信号的仿真结果如下图所示......................................... 错误!未定义书签。 5.心得体会 (9) 参考文献 (10) 致谢··················································································································错误!未定义书签。 附录··················································································································错误!未定义书签。

课程设计:基于MATLAB的BPSK调制解调研究

课程设计:基于MATLAB的BPSK 调制解调研究

东北石油大学课程设计 2012年3月9日

东北石油大学课程设计任务书 课程通信综合课程设计 题目基于MATLAB的BPSK调制解调研究 专业XXXXXXX姓名XXX学号XXXXXXXXX 主要内容: 1、简要阐述了BPSK的调制与解调原理; 2、利用MATLAB进行仿真,附上仿真程序和仿真结果,并对仿真结果进 行分析。 基本要求: 掌握数字带通BPSK调制解调相关知识,学习MATLAB软件,掌握相关调制解调的MATLAB函数的使用。运用MATLAB进行编程实现BPSK的调制解调过程,并且仿真输出调制前的基带信号、调制后的BPSK信号和叠加噪声后的2PSK信号波形、解调器在接收到信号后解调的各点的信号波形,并对仿真结果进行分析。 主要参考资料: [1] 樊昌信,曹丽娜.通信原理[M].国防工业出版社,2010:205-212. [2] 章宜华.精通MATLAB5[M].清华大学出版社,1999:136-140. [3] 沈兰芬,李治群.调制解调的数字实现[J].电信科学,1993,(6):27-31. 完成期限2012.2.20—2012.3.9 指导教师 专业负责人 2012年2月20日

目录 1.设计要求 (1) 2.设计原理 (1) 2.1BPSK的调制原理 (1) 2.2BPSK的解调原理 (3) 3.基于MATLAB的BPSK调制解调仿真 (4) 3.1仿真框图 (4) 3.2仿真源程序 (4) 3.3仿真输出结果 (6) 3.4仿真结果分析 (9) 4.总结 (10) 参考文献 (10)

PSK系统设计课程设计报告

华南理工大学 通信原理课程设计报告 题目:2PSK系统仿真 专业: 班级: 姓名: 学号: 日期:20XX年XX月 一、实验需要材料 MATLAB软件 二、实验要求 完成规定系统的MATLAB编程以及simulink的仿真,基本内容包括:输入信号,系统中各个关键模块的输出情况。并调整仿真的参数得到不同的仿真结果。 三、设计原理 2PSK汉语全称:二进制相移键控。2PSK是的最简单的一种形式,它用两个相隔为180的来传递信息。所以也被称为BPSK。 Simulink简介:Simulink是Mathworks公司推出的基于Matlab平台的着名仿真环境Simulin 作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法: ①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理。 ②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1 相应的信号波形的示例 1 0 1 调制原理:

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移 相键控(2PSK)信号。2PSK信号调制有两种方法,即模拟调制法和键控法。通常用已调信号载波的 0° 和 180°分别表示二进制数字基带信号的 1 和 0,模拟调制法用两个反相的载波信号进行调制。 2PSK以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0°,当基带信 号为1时相对于初始相位为180°。 键控法,是用载波的相位来携带二进制信息的调制方式。通常用0°和180°来分别代表0和 1。其时域表达式为: 其中,2PSK的调制中an必须为双极性码。两种方法原理图分别如图1-1和图1-2所示。 图1-1 模拟调制法原理图 图1-2 键控法原理图 在 所示)。 为2PSK方式的“倒π”现象或“反相工作”。但在本次仿真中是直接给其同频同相的载波信号, 所以不存在此问题。 图2-2 相干解调中各点波形图 相关公式: 2PSK信号在一个码元的持续时间Ts内可以表示为 u1T(t) 发送“1”时 S T(t)= u oT(t)=- u1T(t) 发送“0”时 其中 Acosωc t , 0< t < Ts u1T(t)= 0 ,其他 设发送端发出的信号如上式所示,则接收端带通滤波器输出波形y(t)为 [a+n c(t)]cosωc t-n s(t)sinωc t ,发送“1”时 y(t)= [-a+n c(t)]cosωc t-n s(t)sinωc t ,发送“0”时 y(t)经过想干解调(相乘—低通)后,送入抽样判决器的输入波形为 a+n c(t) ,发送“1”时 x(t)= -a+n c(t) ,发送“0”时 由最佳判决门限分析可知,在发送“1”和“0”概率相等时,即P(1)=P(0)时,最佳门限b*=0. 此时,发“1”而错判为“0”的概率为 P(0/1)=P(x≦0)=∫0-∞f1(x)dx=1/2erfc(r)

PSK调制和解调的基本原理回顾

目录 1.实验要求及开发环境 (3) 2. 二、课程设计软件说明 (7) 三、基本原理 (2) 3.1调制方式简介 (2) 3.2OQPSK的含义 (3) 3.3同相正交环法(科斯塔斯环) (5) 四、实验框图原理说明 (12) 4.1实验总框图介绍 (12) 4.2五个子部分的介绍 (7) 4.2.1串并转换 (7) 4.2.2载波调制 (9) 4.2.3 科斯塔斯环解调 (15) 4.2.4 抽样判决 (17) 4.2.5 并串转换 (17) 五、实验结论 (18) 六、调试报告 (19) 6.1频率调制器F M参数设置 (19) 6.2低通滤波器参数设置 (19) 6.3脉冲串的参数设置 (20) 七、实验心得 (21) 八、参考文献 (22)

一、实验要求及开发环境 实验要求:1. 数字相关器子系统 2. 仿真结果分析 实验目的:1.了解PSK直序扩频通信系统的基本原理 2.掌握Systemview的使用 开发环境:PC机开发软件:Systemview Systemview简介 Systemview是一个用于现代工程与科学系统设计及仿的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真。直到一般系统的数学模型建立等各个领域,systemview在友好且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。 利用systemview,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统.可用于各种线性或非线性控制系统的设计和仿真。其特色是,利用它可以从各种不同角度、以不同方式,拉要求设计多种滤波器,并可自动完成滤波器的各种指标一如幅频待件(波特图)、传递函数、根轨迹图等之间的转换。它还

DSB波的调制与解调课程设计报告材料

- 1 - 现代通信系统原理课程设计说明书 题目:DSB-SC调制与解调 学生姓名: 学号: 院(系): 专业: 指导教师: 年月日

目录 一、调幅与解调原理: (4) 二、DSB的调制调制与解调总系统框:………………………………………… ..4 三、DSB调制与解调: (4) 3.1.双边带调制原理 (4) 3.2调幅波的解调:......................................................... .. (6) 3.3乘法器原理 (7) 四、单元电路设计: (7) 4.1调幅电路图、波形图以及频谱图及理论分析 (8) 4.2解调电路图、波形图以及频谱图及理论分析 (9) 4.3低通滤波器电路图、已调波波形图以及频谱图及理论分析 (10) 五:总电路图: (18) 六、自设问题并解答以及心得体会 (19) 七、附录元器件清单: (20) 八、参考文献 (21) 摘要 模拟通信系统具有直观,容易实现等优点,在早期的通信系统中得到了广泛的应用,例如早期的电话系统就是模拟通信系统。抑制双边带调幅(DSB-SC)作为最经典的模拟通

信系统之一,具有调制效率高,抗噪性能好等优点,得到了广泛的研究与应用。MATLAB仿真软件具有编程效率高,使用方便等优点广泛应用与电子通信,航空航天等科学领域,而SIMUINK作为一种可视化的仿真工具直观以及便捷等优点。本次仿真就是基于这两种仿真平台对DSB通信系统进行仿真建模,在对一个系统进行仿真建模时需要我们对原理部分熟练掌握,在建模过程中达到学以致用的目的,因此仿真建模对于教学研究具有积极作用。 本次设计首先在简要概述DSB通信系统原理的基础上,建立了基于MATLAB与SIMULINK 的仿真建模,其中主要包括调制部分,信道与解调部分的仿真建模。整个通信系统中以正弦信号为基带信号,经过加性高斯白噪声信道后通过巴特沃斯低通滤波器以及相干解调方式解调得到解调信号;在SIMULINK对整个DSB系统进行建模的基础上再对该系统的各个部分进行了MATLAB仿真建模。在仿真后的数据分析中得到了与理论分析一致的结果,从而也验证了此次仿真建模的成功。 关键词:模拟通信系统;仿真建模; DSB; MATLAB; SIMULINK 绪论 课题研究的意义

FM调制解调电路的设计说明

DOC 格式. FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制 解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz , 解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设 计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自振频率(中心频率)o f 上下)随调制信号的变化而变化,于是生成了调频波。

PSK的调制解调

1 引言 通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已成为现代社会的命脉。信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术,计算机技术相互融合,已为21世纪国际社会和世界经济发展的强大推动力。 1.1 数字通信系统的模型 按照信道中传输的是模拟信号还是数字信号,相应的将通信系统分为模拟通信系统和数字通信系统。模拟通信系统是利用模拟信号来传递信息的通信系统,模拟信号有时也称连续信号。而数字通信系统是利用数字信号来传递信息的通信系统。数字信号有时也称为离散信号。近年来数字通信的发展远远超过模拟通信,数字通信在各个领域的应用也越来越广泛。本文讨论的也是数字通信中调制解调原理。数字通信系统的一般模型如图1所示。 图1 数字通信系统模型 其中,信源编码有两个基本功能:一是提高信息传输的有效性,即设法减少码元数目和降低码元速率。二是完成数/模转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,信源译码是信源编码的逆过程。信道编码的目的是增强数字信号的抗干扰能力,信道译码是信道编码的逆过程。加密和解密是为了保证所传信息的安全。数字调制就是将数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。图1为数字通信系统的一般化模型,实际的数字通信系统不一定包含图中的所有环节。模拟信号经过数字编码后也可以在数字通信系统中传输。 1.2 数字通信的特点 目前,数字通信在不同的通信业务中都得到了广泛的应用,究其原因也是数字通信相较于模拟同通信具有以下的一些优点。 (1)数字通信系统抗干扰能力强,且噪声不积累。数字通信系统中传输的

FM调制解调系统设计与仿真

贵州大学明德学院 《高频电子线路》 课程设计报告 题目:模拟角度调制系统 学院:明德学院 专业:电子信息工程 班级: 学号: 姓名:周科远 指导老师:宁阳 2012年1月 1日

《高频电子线路》课程设计任务书 一、课程设计的目的 高频电子线路课程设计是专业实践环节之一,是学习完《高频电子线路》课程后进行的一次全面的综合练习。其目的让学生掌握高频电子线路的基本原理极其构造和运用,特别是理论联系实践,提高学生的综合应用能力。 二、课程设计任务 课程设计一、高频放大器 课程设计二、高频振荡器 课程设计三、模拟线性调制系统 课程设计四、模拟角度调制系统 课程设计五、数字信号的载波传输 课程设计六、通信系统中的锁相环调制系统 共6个课题选择,学生任选一个课题为自己的课程设计题目,独立完成;具体内容按方向分别进行,不能有雷同;任务包括原理介绍、系统仿真、波形分析等;要求按学校统一的课程设计规范撰写一份设计说明书。 三、课程设计时间 课程设计总时间1周(5个工作日) 四、课程设计说明书撰写规范 1、在完成任务书中所要求的课程设计作品和成果外,要撰写课程设计说明书1份。课程设计说明书须每人一份,独立完成。 2、设计说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及附图或附件等材料。 3、题目字体用小三,黑体,正文字体用五号字,宋体,小标题用四号及小四,宋体,并用A4纸打印。

目录 摘要...................................................................I ABSTRACT .............................................................II 一.课程设计的目的与要求.. (1) 1.1课程设计的目的 (1) 1.2课程设计的要求 (1) 二.FM调制解调系统设计 (2) 2.1FM调制模型的建立 (3) 2.2调制过程分析 (3) 2.3FM解调模型的建立 (4) 2.4解调过程分析 (5) 2.5高斯白噪声信道特性 (6) 2.6调频系统的抗噪声性能分析 (9) 三.仿真实现 (10) 3.1MATLAB源代码 (11) 3.2仿真结果 (15) 四.心得体会 (18) 五.参考文献 (19)

基于Multisim调制解调仿真电路设计

基于Multisim调制解调仿真电路设计 春芽电子科技春芽ing 摘要 通信电路系统中实现调制解调方法很多,而锁相环鉴频是利用现代锁相环技术来鉴频实现调制解调因为工作稳定、失真度小、信噪比高等优点被广泛应用。本课题分别设计2ASK、2PSK、2FSK的调制解调电路,功能是数字基带信号经过调制输出模拟信号,然后运用锁相环进行解调出数字信号,所以调制解调电路都运用Multisim软件进行仿真分析。对2ASK、2FSK、2PSK解调电路时低通滤波器输出的波形失真比较大,经过抽样判决电路整形后可以再生数字基带脉冲。整个硬件电路设计中,尽量做到电路简单实用,基本达到功能要求。 关键词:调制解调,Multisim仿真,锁相环 Abstract Communication circuit system to achieve a lot of modulation and demodulation, and the phase-locked loop frequency demodulation is the use of modern technology to achieve phase locked loop demodulation because the work is stable, low distortion, high signal noise ratio is widely used. This topic design of 2ASK, 2PSK, 2FSK modulation and demodulation circuit function is digital base band signal after the modulation output analog signal, then use the PLL to demodulate the digital signal, so modulation and demodulation circuit use Multisim software simulation analysis. The waveform distortion of the low pass filter output of 2ASK, 2FSK and 2PSK demodulation circuits is relatively large, and the digital baseband pulse can be regenerated by the sampling decision circuit. Throughout the hardware circuit design, as far as possible to achieve a simple and practical circuit, the basic requirements to achieve functional. Keywords: Modulation and Demodulation, Multisim Simulation, Phase Locked Loop

相关文档
最新文档