离心式压缩机工作原理及结构图

2016-04-21??zyfznb??转自?老姚书馆馆

修改分享到微信

一、工作原理?

汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。? 二、基本结构?

离心式压缩机由转子及定子两大部分组成,结构如图1所示。转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。在转子与定子之间需要密封气体之处还设有密封元件。各个部件的作用介绍如下。?

1、叶轮?

叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。?

2、主轴?

主轴是起支持旋转零件及传递扭矩作用的。根据其结构形式。有阶梯轴及光轴两种,

光轴有形状简单,加工方便的特点。?

3、平衡盘?

在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。平衡盘是利用它两边气体压力差来平衡轴向力的零件。它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,在平衡盘的外缘需安装气封,用来防止气体漏出,保持两侧的差压。轴向力的平衡也可以通过叶轮的两面进气和叶轮反向安装来平衡。?

4、推力盘?

由于平衡盘只平衡部分轴向力,其余轴向力通过推力盘传给止推轴承上的止推块,构成力的平衡,推力盘与推力块的接触表面,应做得很光滑,在两者的间隙内要充满合适的润滑油,在正常操作下推力块不致磨损,在离心压缩机起动时,转子会向另一端窜动,为保证转子应有的正常位置,转子需要两面止推定位,其原因是压缩机起动时,各级的气体还未建立,平衡盘二侧的压差还不存在,只要气体流动,转子便会沿着与正常轴向力相反的方向窜动,因此要求转子双面止推,以防止造成事故。?

5、联轴器?

由于离心压缩机具有高速回转、大功率以及运转时难免有一定振动的特点,所用的联轴器既要能够传递大扭矩,又要允许径向及轴向有少许位移,联轴器分齿型联轴器和膜片联轴器,目前常用的都是膜片式联轴器,该联轴器不需要润滑剂,制造容易。?

6、机壳?

机壳也称气缸,对中低压离心式压缩机,一般采用水平中分面机壳,利于装配,上下机壳由定位销定位,即用螺栓连接。对于高压离心式压缩机,则采用圆筒形锻钢机壳,以承受高压。这种结构的端盖是用螺栓和筒型机壳连接的。?

7、扩压器?

气体从叶轮流出时,它仍具有较高的流动速度。为了充分利用这部分速度能,以提高气体的压力,在叶轮后面设置了流通面积逐渐扩大的扩压器。扩压器一般有无叶、叶片、直壁形扩压器等多种形式。?

8、弯道?

在多级离心式压缩机中级与级之间,气体必须拐弯,就采用弯道,弯道是由机壳和隔板构成的弯环形空间。

9、回流器?

在弯道后面连接的通道就是回流器,回流器的作用是使气流按所需的方向均匀地进入下一级,它由隔板和导流叶片组成。导流叶片通常是圆弧的,可以和气缸铸成一体也可以分开制造,然后用螺栓连接在一起。?

10、蜗壳?

蜗壳的主要目的,是把扩压器后,或叶轮后流出的气体汇集起来引出机器,蜗壳的截面形状有圆形、犁形、梯形和矩形。?

11、密封?

为了减少通过转子与固定元件间的间隙的漏气量,常装有密封。密封分内密封,外密封两种。内密封的作用是防止气体在级间倒流,如轮盖处的轮盖密封,隔板和转子间

的隔板密封。外密封是为了减少和杜绝机器内部的气体向外泄露,或外界空气窜入机器内部而设置的,如机器端的密封。?

离心压缩机中密封种类很多,常用的有以下几种:?

1)迷宫密封?

迷宫密封目前是离心压缩机用得较为普遍的密封装置,用于压缩机的外密封和内密封。迷宫密封的气体流动,当气体流过梳齿形迷宫密封片的间隙时,气体经历了一个膨胀过程,压力从P1降至右端的P2,这种膨胀过程是逐步完成的,当气体从密封片的间隙进入密封腔时,由于截面积的突然扩大,气流形成很强的旋涡,使得速度几乎完全消失,密封面两侧的气体存在着压差,密封腔内的压力和间隙处的压力一样,按照气体膨胀的规律来看,随着气体压力的下降,速度应该增加,温度应该下降,但是由于气体在狭小缝隙内的流动是属于节流性质的,此时气体由于压降而获得的动能在密封腔中完全损失掉,而转化为无用的热能,这部分热能转过来又加热气体,从而使得瞬间刚刚随着压力降落下去的温度又上升起来,恢复到压力没有降低时的温度,气流经过随后的每一个密封片和空腔就重复一次上面的过程,一直到压力P2为止。由此可见迷宫密封是利用节流原理,当气体每经过一个齿片,压力就有一次下降,经过一定数量的齿片后就有较大的压降,实质上迷宫密封就是给气体的流动以压差阻力,从而减小气体的通过量。?

常用的迷宫密封用的较多的有以下几种:平滑形.、曲折形、曲折形、迷宫密封、台阶形。?

2)油膜密封,即浮环密封?

浮环密封的原理是靠高压密封在浮环与轴套间形成的膜,产生节流降压,阻止高压侧气体流向低压侧,浮环密封既能在环与轴的间隙中形成油膜,环本身又能自由径向浮

动。?

靠高压侧的环叫高压环,低压侧的环叫低压环,这些环可以自由沿径向浮动,但不能转动,密封油压力通常比工艺气压力高0.5Kg/cm2 左右进入密封室,一路经高压环和轴之间的间隙流向高压侧,在间隙中形成油膜,将高压气封住,另一路则由低压环与轴之间的间隙流出,回到油箱,通常低压环有好几只,从而达到密封的目的。?

浮环密封用钢制成,端面镀锡青铜,环的内侧浇有巴氏合金,以防轴与油环的短时间的接触,巴氏合金作为耐磨材料。浮环密封可以做到完全不泄露,被广泛地用作压缩机的轴封装置。?

3)机械密封?

机械密封装置有时用于小型压缩机轴封上,压缩机用的机械密封与一般泵用的机械密封的不同点,主要是转速高,线速度大,PV值高,摩擦热大和动平衡要求高等。因此,在结构上一般将弹簧及其加荷装置设计成静止式而且转动零件的几何形状力求对称,传动方式不用销子、链等,以减少不平衡质量所引起的离心力的影响,同时从摩擦件和端面比压来看,尽可能采取双端面部分平衡型,其端面宽度要小,摩擦副材料的摩擦系数低,同时还应加强冷却和润滑,以便迅速导出密封面的摩擦热。?

4)干气密封?

随着流体动压机械密封技术的不断完善和发展,其重要的一种密封型式螺旋槽面气体动压密封即干气密封在石化行业得到了广泛的应用。相对于封油浮环密封干气密封具有较多的优点:运行稳定可靠易操作,辅助系统少,大大降低了操作人员维护的工作量,密封消耗的只是少量的氮气,既节能又环保。?

螺旋槽面干气密封。它由动环1、静环2、弹簧4、O形环3、5、8,组装套7及轴6组成。图6-7所示为动环表面精加工出螺纹槽而后研磨、抛光的密封面。一般来讲螺

旋槽深度约~10μm,密封环表面平行度要求很高,需小于1μm,螺旋槽形状近似对数螺旋线。?

当动环旋转时将密封用的氮气周向吸入螺旋槽内,由外径朝向中心,径向方向朝着密封堰流动,而密封堰起着阻挡气体流向中心的作用,于是气体被压缩引起压力升高,此气体膜层压力企图推开密封,形成要求的气膜。此平衡间隙或膜厚h典型值为3μm。这样,被密封气体压力和弹簧力与气体膜层压力配合好,使气膜具有良好的弹性既气膜刚度高,形成稳定的运转并防止密封面相互接触,同时具有良好刚度的氮气膜可有效的阻止被介质的泄漏。?

干气密封作用力情况正常运转条件下该密封的闭合力(弹簧和气体作用力)等于开启力(气膜作用力),当受到外力干扰,间隙减小,则气体剪切率增大,螺旋槽开启间隙的效能增加,开启力大于闭合力,恢复到原间隙,若受到外扰间隙增大,则间隙内膜压下降,开启力小于闭合力,密封面合拢恢复到原间隙。?

12、轴承?

离心式压缩机有径向轴承和推力轴承。径向轴承为滑动轴承,它的作用是支持转子使之高速运转,止推轴承则承受转子上剩余轴向力,限制转子的轴向窜动,保持转子在气缸中的轴向位置。?

(1)径向轴承?

径向轴承主要有轴承座、轴承盖、上下两半轴瓦等组成。?

轴承座:是用来放置轴瓦的,可以与气缸铸在一起,也可以单独铸成后支持在机座上,转子加给轴承的作用力最终都要通过它直接或间接地传给机座和基础。?

轴承盖:盖在轴瓦上,并与轴瓦保持一定的紧力,以防止轴承跳动,轴承盖用螺栓紧固在轴承座上。?

轴瓦:用来直接支承轴颈,轴瓦圆表面浇巴氏合金,由于其减摩性好,塑性高,易于浇注和跑合,在离心压缩机中广泛采用。在实际中,为了装卸方便,轴瓦通常是制成上下两半,并用螺栓紧固,目前使用巴氏合金厚度通常在1~2mm。?

轴瓦在轴承座中的放置有两种:一种是轴瓦固定不动,另一种是活动的,即在轴瓦背面有一个球面,可以在运动中随着主轴挠度的变化自动调节轴瓦的位置,使轴瓦沿整个长度方向受力均匀。?

润滑油从轴承侧表面的油孔进入轴承,在进入轴承的油路上,安装一个节流孔板,借助于节流孔板直径的改变,就可以调节进入轴承油量的多少,在轴瓦的上半部内有环状油槽,这样使得润滑油能更好地循环,并对轴颈进行冷却。?

(2)推力轴承?

推力轴承与径向轴承一样,也是分上下两半,中分面有定位销,并用螺栓连接,球面壳体与球面座间用定位套筒,防止相对转动,由于是球面支承或可根据轴挠曲程度而自动调节,推力轴承与推力盘一起作用,安装在轴上的推力盘随着轴转动,把轴传来的推力压在若干块静止的推力块上,在推力块工作面上也浇铸一层巴氏合金,推力块厚度误差小于~0.02mm。?

离心压缩机中广泛采用米切尔式推力轴承和金斯泊雷式轴承?

离心压缩机在正常工作时,轴向力总是指向低压端,承受这个轴向力的推力块称为主推力块。在压缩机起动时,由于气流的冲力方向指向高压端,这个力使轴向高压端窜动,为了防止轴向高压端窜动,设置了另外的推力块,这种推力块在主推力块的对面,称为副推力块。?

推力盘与推力块之间留有一定的间隙,以利于油膜的形成,此间隙一般在~0.35mm以内,最主要的是间隙的最大值应当小于固定元件与转动元件之间的最小轴向间隙,这样

才能避免动、静件相碰。?

润滑油从球面下部进油口进入球面壳体,再分两路,一路经中分面进入径向轴承,另一路经两组斜孔通向推力轴承,进推力轴承的油一部分进入主推力块,另一部分进入副推力块.

离心压缩机工作原理及结构

离心压缩机工作原理及结构 离心压缩机是机械工程中的重要组成部分,广泛应用于工业和科学领域。它的主要功能是提高气体压力,以便在各种工艺流程中满足气体传输和压缩的需求。 一、离心压缩机的工作原理 离心压缩机的工作原理基于牛顿的第二定律,即“力等于质量乘以加速度”。在离心压缩机中,工作气体在旋转的叶轮上受到离心力的作用,使得气体分子获得速度并具有能量。随着叶轮的进一步转动,气体的速度逐渐减小,动能转化为压力能,从而提高气体的压力。二、离心压缩机的结构 离心压缩机主要由以下几个部分组成: 1、转子:包括电机、主轴、叶轮等部件,是离心压缩机的核心部分。电机驱动主轴旋转,主轴带动叶轮一起旋转,使气体获得动能。 2、蜗壳:蜗壳是一种将动能转化为压力能的装置,它收集从叶轮中流出的气体,并将其引导至下一阶段。 3、扩压器:扩压器是进一步将气体的动能转化为压力能的部分。在

蜗壳之后,气体进入扩压器,通过减小气体的流速,进一步提高气体的压力。 4、冷却器:冷却器用于降低气体的温度,防止气体温度过高导致压缩机性能下降。 5、控制系统:控制系统用于监测和控制压缩机的运行状态,包括转速、压力、温度等参数。 三、离心压缩机的优点和缺点 1、优点:离心压缩机具有效率高、压力范围广、可靠性高、使用寿命长等优点。同时,由于其结构简单,维护方便,使得离心压缩机在工业领域得到广泛应用。 2、缺点:然而,离心压缩机的缺点也不容忽视。由于其工作原理的限制,离心压缩机的流量和压力曲线存在不连续性。离心压缩机的能耗相对较高,对能源的需求较大。离心压缩机的启动和停止过程需要时间较长,无法实现快速响应。 四、结论 离心压缩机以其高效、可靠、使用寿命长等优点在工业领域占据着重

各种空压机工作原理动图(完整版)

各种压缩机工作原理动图(完整版) 一、活塞式压缩机 活塞式压缩机的工作是气缸、气阀和在气缸中作往复运动的活塞所构成的工作容积不断变化来完成。如果不考虑活塞式压缩机实际工作中的容积损失和能量损失(即理想工作过程),则活塞式压缩机曲轴每旋转一周所完成的工作,可分为吸气,压缩和排气过程。 活塞式压缩机工作原理: 压缩过程:活塞从下止点向上运动,吸、排汽阀处于关闭状态,气体在密闭的气缸中被压缩,由于气缸容积逐渐缩小,则压力、温度逐渐升高直至气缸内气体压力与排气压力相等。压缩过程一般被看作是等熵过程。 排气过程:活塞继续向上移动,致使气缸内的气体压力大于排气压力,则排气阀开启,气缸内的气体在活塞的推动下等压排出气缸进入排气管道,直至活塞运动到上止点。此时由于排气阀弹簧力和阀片本身重力的作用,排气阀关闭排气结束。 二.双螺杆压缩机 双螺杆压缩机具有一对互相啮合、相反旋向的螺旋形齿的转子。大气通过进气过滤器将灰尘或杂质滤除后,经进气控制阀进入螺杆空气压缩机机头的吸气齿槽容积腔中,随着阳、阴转子啮合运动,齿槽容积腔中的空气被逐渐压缩,当空气被压缩到规定的压力时,压缩空气即从特定的排气孔口排出,然后流经油气分离罐,此时压缩排出的含油气体在油气分离罐内通过碰撞、拦截、重力作用,绝大部份的油介质被分离下来,然后进入油气分离芯进行二次分离,得到含油量很少的压缩空气,最后通过空气冷却器冷却排出,完成整个工作过程。(国

内做的比较成熟的双螺杆空压机公司是广东艾高,专注螺杆空压机20多年,微信:艾高空压机) 三、单螺杆压缩机 螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 四、转子式压缩机 转子式压缩机通过由发动机或电动机驱动(多数为电动机驱动),另一转子(又称阴转子或凹转子)是由主转子通过喷油形成的油膜进行驱动,或由主转子端和凹转子端的同步齿轮驱动。压缩机汽缸内装有一对互相啮合的螺旋形阴阳转子,两转子都有几个凹形齿,两者互相反向旋转。转子之间和机壳与转子之间的间隙仅为5~10丝,主转子(又称阳转子或凸转子),通过由发动机或电动机驱动(多数为电动机驱动),另一转子(又称阴转子或凹转子)是由主转子通过喷油形成的油膜进行驱动,或由主转子端和凹转子端的同步齿轮驱动。所以驱动中没有金属接触(理论上)。 五、离心式压缩机

离心式压缩机工作原理

离心式压缩机的工作原理是什么,为什么离心式压缩机要有那么高的转速? 答:离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。 更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系: 式中 D2--叶轮外缘直径,m; n--叶轮转速,r/min。 因此,离心式压缩机之所以要有很高的转速,是因为: 1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大; 2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小; 3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。 另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h

离心式压缩机工作原理及结构图

2016-04-21??zyfznb??转自?老姚书馆馆 修改分享到微信 一、工作原理? 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。? 二、基本结构? 离心式压缩机由转子及定子两大部分组成,结构如图1所示。转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。在转子与定子之间需要密封气体之处还设有密封元件。各个部件的作用介绍如下。? ? 1、叶轮? 叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。? 2、主轴? 主轴是起支持旋转零件及传递扭矩作用的。根据其结构形式。有阶梯轴及光轴两种,

光轴有形状简单,加工方便的特点。? 3、平衡盘? 在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。平衡盘是利用它两边气体压力差来平衡轴向力的零件。它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,在平衡盘的外缘需安装气封,用来防止气体漏出,保持两侧的差压。轴向力的平衡也可以通过叶轮的两面进气和叶轮反向安装来平衡。? 4、推力盘? 由于平衡盘只平衡部分轴向力,其余轴向力通过推力盘传给止推轴承上的止推块,构成力的平衡,推力盘与推力块的接触表面,应做得很光滑,在两者的间隙内要充满合适的润滑油,在正常操作下推力块不致磨损,在离心压缩机起动时,转子会向另一端窜动,为保证转子应有的正常位置,转子需要两面止推定位,其原因是压缩机起动时,各级的气体还未建立,平衡盘二侧的压差还不存在,只要气体流动,转子便会沿着与正常轴向力相反的方向窜动,因此要求转子双面止推,以防止造成事故。? 5、联轴器? 由于离心压缩机具有高速回转、大功率以及运转时难免有一定振动的特点,所用的联轴器既要能够传递大扭矩,又要允许径向及轴向有少许位移,联轴器分齿型联轴器和膜片联轴器,目前常用的都是膜片式联轴器,该联轴器不需要润滑剂,制造容易。? 6、机壳?

离心式制冷压缩机

离心式制冷压缩机 离心式制冷压缩机(centrifugal refrigeration compressor)是一种速度型的压缩机。大型空气调节系统和石油化学工业对冷量的需求很大,离心式制冷压缩机正是适应这种需求而发展起来的。与其他特别是活塞式制冷压缩机相比,因压缩气体的工作原理不同,它具有下列特点: 1)无往复运动部件,动平衡特性好,振动小,基础要求简单; 2)无进排气阀、活塞,气缸等磨损部件,故障少、工作可靠、寿命长; 3)机组单位制冷量的重量、体积及安装面积小; 4)机组的运行自动化程度高,制冷量调节范围广,且可连续无级调节,经济方便; 5)在多级压缩机中容易实现一机多种蒸发温度; 6)润滑油与制冷剂基本上不接触,从而提高了冷凝器及蒸发器的传热性能; 7)对大型离心式制冷压缩机,可由蒸气动力机或燃气动力机直接带动,能源使用经济,合理; 8)单机容量不能太小,否则会使气流流道太窄,影响流动效率; 9)因依靠速度能转化成压力能,速度又受到材料强度等因素的限制,故压缩机的一级压力比不大,在压力比较高时,需采用多级压缩; l0)通常工作转速较高,需通过增速齿轮来驱动; 11)当冷凝压力太高或制冷负荷太低时,机器会发生喘振而不能正常工作; 12)制冷量较小时,效率较低; 综上所述,在蒸发温度不太低和冷量需求量很大时,选用离心式制冷压缩机是比较适宜的。 第一节工作原理与结构 一、离心式制冷压缩机的工作原理 离心式制冷压缩机的工作原理与容积式压缩机不同,它是依靠动能的变化来提高气体的压力的。它由转子与定子等部分组成。当带叶片的转子(即工作轮)转动时,叶片带动气体转动,把功传递给气体,使气体获得动能。定子部分则包括扩压器、弯道、回流器、蜗壳等,它们是用来改变气流的运动方向以及把速度能转变为压力能的部件。制冷剂蒸气由轴向吸入,沿半径方向甩出,故称离心式压缩机(centrifugal compressor)。 图4—1示出了气体通过叶轮和扩压器时压力和速度的变化。这种变化与第一篇离心式泵与风机所述相同,这里不再重复。 二、总体及零部件结构 离心式制冷压缩机可分为开启式和封闭式两大类型。 开启式的压缩机与原动机分开(增速齿轮可以与压缩机装在同一机壳内,也可以单独装在机外),压缩机轴的外伸端装有机械密封,以防止制冷剂外泄或空气漏入。封闭式则是将压缩机、增速齿轮、原动机用一个壳体连成一体,轴端不需要机械密封。氟利昂离心式制冷压缩机为了减少制冷剂的泄漏,大多采用封闭式结构。

离心式压缩机工作原理

离心式压缩机工作原理 离心式压缩机是一种常见的工业压缩机,它具有高效、稳定、低噪音等优点,在空调、制冷、气体输送、化工等行业应用广泛。本文将详细介绍离心式压缩机的工作原理。 一、离心式压缩机简介 离心式压缩机是指以离心力为主要作用力而工作的压缩机。它通过贯穿在转子上的叶 轮以及转子高速旋转产生的离心力将气体压缩,并将气体送入下游流体系统。离心式压缩 机通常由驱动机、压缩机本体以及控制系统三部分组成。 二、离心式压缩机工作原理 1. 压缩室转子运动 离心式压缩机的核心是压缩室,它由两个旋转的圆锥形元件组成,即进口叶轮和压缩 叶轮。进口叶轮和压缩叶轮之间有一个斜板,叫做导向叶片,将气体引导到压缩叶轮中 心。 在正常工作状态下,驱动机会将马达的动力传输到压缩机本体内的主轴,主轴在高速 旋转的将进口叶轮和压缩叶轮带动着一起旋转。进口叶轮将气体引入压缩室,气体在导向 叶片的作用下被引导到压缩叶轮的周围,并沿着压缩叶轮旋转,由于叶轮的高速旋转和离 心力的作用,气体的压力和密度逐渐增大,最终被压缩为高压气体。 2. 压缩室压力变化过程 在压缩室的运作中,气体在叶轮上和斜板上的作用下被压缩,并形成高压气体,这个 过程中压缩室内外的压力也随之变化。当气体经过进口叶轮后,压力和速度都较低,此时 气体压力和周围环境大致相同;当气体进入到压缩叶轮内部,并随着转子高速旋转时,气 体被不断加压,压力逐渐增大;当气体经过离心叶轮后,它达到了最高的压缩程度,压力 已达到了较高的水平,接下来经过出口通道进入下一个部分。 3. 出口通道与电机驱动 在离心叶轮的压缩作用下,气体被压缩成了高压气体,在压缩室的末端,压缩气体最 终经过出口通道被排出,在此之前,出口通道通常连接着一个冷却器,对高温气体进行冷却,冷却后的气体密度变大,且易于被输送到下游流体系统。 驱动离心式压缩机的电机通常是三相异步电机,它提供转子所需的动力,驱动离心叶 轮高速旋转,和气体进行压缩。在工作过程中,需要对压缩机进行实时监测和控制,确保 运行的稳定性和性能。

离心式制冷压缩机教案

《制冷压缩机》电子教案 第六章离心式制冷压缩机 第一节离心式压缩机的工作原理与结构 离心式制冷压缩机属于速度型压缩机,是一种叶轮旋转式的机械。它是靠高速旋转的叶轮对气体做功,以提高气体的压力。气体的流动是连续的,其流量比容积型制冷压缩机要大得多。 一、压缩机的工作原理与主要结构 1. 工作原理 离心式制冷压缩机有单级、双级和多级等多种结构型式。单级压缩机主要由吸气室、叶轮、扩压器、蜗壳等组成,如图6-1所示。 对于多级压缩机,还设有弯道和回流器等部件。。多级离心式制冷压缩机的中间级如图6-2所示。 级数较多的离心式制冷压缩机中可分为几段,每段包括一到几级。 1—进口可调导流叶片 2—吸气室 1—叶轮 2—扩压器 3—叶轮 4—蜗壳 5—扩压器 6—主轴 3—弯道 4—回流器 离心式制冷压缩机的工作原理如下:通过叶轮对气体做功,使其动能和压力能增加,气体的压力和流速得到提高。然后大部分气体动能转变为压力能,压力进一步提高。 对于多级离心式制冷压缩机,则利用弯道和回流器再将气体引入下一级叶轮进行压缩,如图6-2所示。 离心式制冷压缩机与往复活塞式制冷压缩机相比,具有以下特点: ①①在相同制冷量时,其外形尺寸小、重量轻、占地面积小。 ②②无往复运动部件,动平衡特性好,振动小,基础要求简单。 ③③③磨损部件少,连续运行周期长,维修费用低,使用寿命长。 ④④润滑油与制冷剂基本上不接触,从而提高了蒸发器和冷凝器的传热性能。 ⑤⑤易于实现多级压缩和节流,达到同一台制冷机多种蒸发温度的操作运行。 ⑥⑥能够经济地进行无级调节。 ⑦⑦对大型制冷机,若用经济性高的工业汽轮机直接带动,实现变转速调节,节能 效果更好。 ⑧⑧转速较高,用电动机驱动的一般需要设置增速器。 ⑨⑨当冷凝压力较高,或制冷负荷太低时,压缩机组会发生喘振而不能正常工作。 ⑩⑩制冷量较小时,效率较低。 目前所使用的离心式制冷机组大致可以分成两大类:冷水机组和离心式制冷机组。 2. 主要零部件的结构与作用 (1)吸气室吸气室的作用是将从蒸发器或级间冷却器来的气体,均匀地引导至叶轮的进口。吸气室有轴向进气和径向进气两种形式,如图6-3所示。

超详细的离心式压缩机介绍

超详细的离心式压缩机介绍 离心式压缩机的工作原理 离心压缩机是产生压力的机械,是透平(旋转的叶轮)压缩机的一种。离心压缩机气体的运动是沿垂直于压缩机轴的径向进行的。 为了达到缩短气体分子与分子之间的距离,提升气体压力的目标,采用气体动力学的方法,即利用机械的作功元件(高速回转的叶轮),对气体作功,使气体在离心式的作用下压力得到提高,同时动能也大为增加,随后在扩压流道内这部分动能又转变为静压能,而使气体压力进一步提高,这就是离心式压缩机的工作原理。 压缩机的分类

离心式压缩机的分类 (1)按轴的型式分:单轴多级式,一根轴上串联几个叶轮;双轴四级式,四个叶轮分别悬臂地装在两个小齿轮的两端,旋转靠电机通过大齿轮驱动小齿轮。(2)按气缸的型式分:水平剖分式和垂直剖分式。 (3)按级间冷却形式分类:级外冷却,每段压缩后气体输出机外进入冷却器;机

内冷却,冷却器和机壳铸为一体。 (4)按压缩介质分类:空气压缩机、氮气压缩机、氧气压缩机等。 离心式压缩机的特点 1、优点 由于是连续旋转式机械,可以大大地提高进入其中的工质量,提高功率。所以,离心式压缩机的第一个特点是:功率大。 由于工质量可以提高,必然导致叶片转速的提高,所以第二个特点是高速性。 无往复运动部件,动平衡特性好,振动小,基础要求简单; 易损部件少,故障少、工作可靠、寿命长; 2、缺点: 单机容量不能太小,否则会使气流流道太窄,影响流动效率; 因依靠速度能转化成压力能,速度又受到材料强度等因素的限制,故压缩机每级的压力比不大,在压力比较高时,需采用多级压缩; 特别情况下,机器会发生喘振而不能正常工作; 离心式压缩机的性能参数 1、常用性能参数名词解释: ①级:每一级叶轮和与之相应配合的固定元件(如扩压器等)构成一 个基本的单元,叫一个级。 ②段:以中间冷却器隔开级的单元,叫段。这样以冷却器的多少可以 将压缩机分成很多段。一段可以包括很多级。也可仅有一个级。 ③标态:0℃,1标准大气压。 ④进气状态:一般指进口处气体当时的温度、压力。

制冷机-离心式压缩机工作原理

离心式制冷压缩机的构造与工作原理 离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似.但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机.其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成.压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力).汽体流过扩压器时速度减小,而压力则进一步提高.经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。 二、离心式制冷压缩机的特点与特性 离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点:

离心式压缩机的工作原理

离心式压缩机的工作原理 离心式压缩机是一种常见的压缩机类型,广泛应用于空调、制冷、冷冻等领域。它通过离心力将气体压缩,实现增压和输送。下面我们将详细介绍离心式压缩机的工作原理。 首先,让我们从离心式压缩机的结构说起。离心式压缩机通常由电机、离心式 压缩机壳体、转子、离心式压缩机叶轮等部件组成。当电机启动时,驱动转子旋转,离心式压缩机叶轮也随之旋转。气体被吸入叶轮的中心部分,随着叶轮的高速旋转,气体被离心力甩到叶轮外缘,从而实现气体的压缩。 其次,我们来了解一下离心式压缩机的工作原理。当离心式压缩机启动后,叶 轮开始旋转,气体被吸入并被甩到叶轮外缘。在这个过程中,气体受到离心力的作用,压力逐渐增大,温度也随之升高。随着气体在叶轮外缘不断旋转,气体的压力和温度不断增加,最终实现了气体的压缩。 接着,让我们来分析一下离心式压缩机的工作过程。在离心式压缩机内部,气 体经过叶轮的压缩作用后,会进入到离心式压缩机壳体中。在壳体内部,气体的压力得到进一步增加,同时也会产生热量。为了保证离心式压缩机的正常工作,通常会设置冷却系统,将气体的温度降低,同时排出多余的热量。 最后,我们来总结一下离心式压缩机的工作原理。离心式压缩机通过离心力将 气体压缩,实现了气体的增压和输送。在压缩过程中,气体的压力和温度都会逐渐增加,为了保证离心式压缩机的正常工作,通常会设置冷却系统来降低气体的温度。通过以上介绍,相信大家对离心式压缩机的工作原理有了更深入的了解。 总之,离心式压缩机利用离心力将气体压缩,是一种高效、可靠的压缩机类型。它在空调、制冷、冷冻等领域有着广泛的应用,对于提高设备效率、节约能源具有重要意义。希望本文对大家了解离心式压缩机的工作原理有所帮助。

离心式压缩机工作原理及结构图

离心式压缩机工作原理及结 构图 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

离心式压缩机工作原理及结构图 2016-04-21 zyfznb转自老姚书馆馆 修改分享到微信 一、工作原理 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。二、基本结构 离心式压缩机由转子及定子两大部分组成,结构如图1所示。转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。在转子与定子之间需要密封气体之处还设有密封元件。各个部件的作用介绍如下。

1、叶轮 叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。 2、主轴 主轴是起支持旋转零件及传递扭矩作用的。根据其结构形式。有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。 3、平衡盘 在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。平衡盘是利用它两边气体压力差来平衡轴向力的零件。它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,在平衡盘的外缘需安装气封,用来防止气体漏出,保持两侧的差压。轴向力的平衡也可以通过叶轮的两面进气和叶轮反向安装来平衡。 4、推力盘 由于平衡盘只平衡部分轴向力,其余轴向力通过推力盘传给止推轴承上的止推块,构

离心式压缩机工作原理及结构介绍

离心式压缩机工作原理及结构介绍 1.概述 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。但近来,由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。工业用高压离心压缩机的压力有(150~350)×105Pa的,海上油田注气用的离心压缩机压力有高达700×105Pa的。作为高炉鼓风用的离心式鼓风机的流量有大至7000m3/min,功率大的有52900KW的,转速一般在10000r/min以上。 有些化工基础原料,如丙烯,乙烯,丁二烯,苯等,可加工成塑料,纤维,橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式压缩机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式压缩机也是极为关键的设备。离心式压缩机之所以能获得这样广泛的应用,主要是比活塞式压缩机有以下一些优点。 a)离心式压缩机的气量大,结构筒单紧凑,重量轻,机组尺寸小,占地面积小。 b)运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员 少。 c)在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。 d)离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。 对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了 可能。 但是,离心式压缩机也还存在一些缺点。 a)离心式压缩机目前还不适用于气量太小及压比过高的场合。 b)离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。 c)目前离心式压缩机效率一般比活塞式压缩机低。 我国在五十年代已能制造离心式压缩机,从七十年代初开始又以石油化工厂,大型化肥厂为主,引进了一系列高性能的中、高压力的离心式压缩机,取得了丰富的使用经验,并在对引进技术进行消化、吸收的基础上大大增强了自己的研究、设计和制造能力。 2.离心压缩机的工作原理及结构 2.1.工作原理 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。 2.2. 基本结构

FSELLIOTT要点简介

FSELLIOTT离心式空压机简介 ELLIOTT公司为世界上第一家制造出离心式空气压缩机的企业,后与复盛集团合并成为复盛集团旗下专业生产离心式空气压缩机的部门,并更名为FSELLIOTT。 FSELLIOTT的制造车间设在美国宾夕法尼亚州匹兹堡市,用于生产机头,控制器等关键部件。装配车间设在上海市松江区,用以组装由美国运来的零件,及储存备件。上海埃利沃特贸易有限公司则负责中国地区销售和后期服务。明确的分工使我们的业绩在业内遥遥领先。 1.FSElliott离心式压缩机的压缩流程示意图 如右图所示FSELLIOTT 离心式空压机为三 级压缩,两级冷却 的机器。空气先由 进气口吸入经过第 一级压缩后进入一 级冷却器后,再经 第二级压缩后进入二级冷却器冷却,然后又经第三级 压缩达到所需压力最后经过后冷却器提供给用户45O C 以下完全无油的洁净高 压空气。 2.离心式压缩机的机头结构

右图是离心式压缩机的 机头结构图。它可以清 楚的显示出三级压缩的 离心式压缩机的结构却 如此的简洁。 3.我们提供的是完全无油的洁净压缩空气 离心式空气压缩机润滑油只用来润滑轴承及齿轮。作为压缩空气的叶轮,蜗壳,扩压器均不接触润滑油。 右图为FSELLIOTT所采用的水平分离式碳环轴封元件。 它分为气侧碳环和油侧碳 环。两组碳环之间再采用 仪表风气幕密封进行双重 保护:防止在碳环损坏情况下 油气窜至气侧影响气质。 4.世界顶级的设备当然采用世界水平的零部件 a.FSELLIOTT离心式空压机 采用目前世界上最先进的 后倾式叶轮,采用不锈钢 精密加工制成。此种叶轮 具有流量调节范围大,操作性很稳定的优点!

离心式冷水机组的结构及原理

离心式冷水机组的结构及原理 12冷却塔凤康电机 11亂丄闽罔冷却塔*溫闊节拥 16.平衡阀 ,$載止 跑 15冷却水泵 7妙3莎龄开关 4调压翔\ 目前,用于中央空调的离心式冷水机组,主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)冷 凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全 保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系统组 成如图4.13及图4.14所示。 D进口导叶逊巧机枸 口建怙式压縮机 h ] i —K --― ]3冷创窗 ■"MH

图4.15离心式制冷压缩机的典型结构 (a)单级离心式制冷压缩机;(b)多级离心制冷压缩机的中间级 1 一齿轮箱体; 2 一机壳门; 3 一轮盖密封座; 1 一叶轮;2 一扩压器; 4 一叶轮; 5 一叶片调节机构; 6 —进口壳体;3 一弯道;4 一回流器; 7 一轮盖密封;8 一轮盘密封;9 一右轴承; 5 一级内密封;6 一中间加气孔 10 一左轴承;11 一推力盘;12 —后壳体 由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中的马赫数M比较高(特 别是在叶轮进口的相对速度马赫数和叶轮岀口的绝对速度马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。

1—进口导叶;2—叶轮;3 —压缩机壳体;4—增速轮;5 —主电动机;6—电动机冷却供液管; 图4.16压缩机与闭式主电动机 3)蒸发器和冷凝器 离心式冷水机组的蒸发器、冷凝器均为卧式管壳式结构,制冷剂都在壳侧流动。蒸发器、冷凝器换热效果的好坏对机组的能耗、重量和尺寸影响极大。就光管而言,管外制冷剂侧的表面传热系数远低于管内水侧的表面传热系数。提高制冷剂侧传热管外表面传热效果的主要方法有两种:一是通过在管外表面喷涂金属颗粒或通过机械加工在管外表面形成翅片以增大管外表面的传热面积;二是通过改进管外去面翅片的形状以改善表面传热,提高表面传热系数。比如,使冷凝管外表面加工成锯齿肋,使管外表面形成的冷凝液膜易于形成珠状很快滴下,不致覆盖在冷凝管外表面形成新的热阻,从而提高了冷凝换热系数。又如,将蒸发管外表面按制冷剂核态沸腾特性设计,使冷媒蒸发气泡连续生成,避免沸腾气泡被再冷凝,同时气泡在上升过程中又加大了对制冷剂液的扰动,从而提高表面传热系数。目前,很多制造厂商的传热管外表面传热系数已经达到或超过管内的表面传热系数,有的为了进一步提高管内侧的表面传热系数,甚至在管内壁上也加工岀了翅片。由于传热管技术的进步。现在蒸发温度与冷水岀水温度之差,已可达到 2 'C左右,蒸发温度的提高使压缩机的压缩比降低,减少了耗功,也减小了换热器的尺寸和重量。 在蒸发器的上部有挡液网,以防止蒸发飞溅的制冷剂液滴直接被压缩机吸入。 4)节流装置

相关主题
相关文档
最新文档