纳米氧化铁的制备及应用

纳米氧化铁的制备及应用
纳米氧化铁的制备及应用

纳米氧化铁的制备及其应用

高令博化工与环境生命学部制药工程大连理工大学大连116023

摘要:纳米氧化铁是一种多功能材料。本文综述了纳米氧化铁的各种制备方法,对各种制备方法优缺点进行了分析和比较,详述了纳米氧化铁在磁性材料、透明颜料、生物医学、催化剂等方面的应用,并对其发展前景进行了展望。

关键词:氧化铁;纳米;制备;应用

引言

纳米材料和纳米结构是当今新材料领域中最富活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的组成部分。近几年来,世界各国对金属氧化物纳米粒子进行了广泛研究,并取得了显著成效,其中纳米氧化铁由于具有广阔的应用前景而备受关注。

1 纳米氧化铁的制备

纳米氧化铁的制备方法可分为湿法和干法。湿法主要包括水热法、强迫水解法、凝胶—溶胶法、胶体化学法、微乳液法和化学沉淀法等。干法主要包括:火焰热分解、气相沉积、低温等离子化学气相沉积法(PCVD)、固相法和激光热分解法等。

1.1 湿法

1.1.1 水热法

水热合成法是指在密闭体系中, 以水为溶剂,在一定温度和水的自生压强下, 使原始混合物进行反应的一种合成方法。1982年,用水热反应制备超微粉引起了国内外的重视。由于反应在高温高压的水溶液中进行,故为一定形式的前驱物溶解—再结晶形成的良好微晶材料提供了适宜的物理化学条件[1-2]。康晓红等[3]采用载铁有机相与水相为反应物,于高压釜内进行水热反萃反应,经后处理后获得的氧化铁粉组成均一、粒度小、结晶完好。景志红等[4]也制备出了菱形、纺锤形和球形等不同形貌的氧化铁纳米颗粒。

水热法制备的粒子纯度高、分散性好、晶型好且大小可控[5].反应在压热釜中进行,设备投资较大,操作费用较高[6]。

该法多以FeCl3或Fe(NO3)3为原料,在HCl 或HNO3存在下,在沸腾密闭静态或沸腾回流动态环境下进行强迫水解制备纳米氧化铁超细粒子[7]。制备过程中加一些晶体助长剂(如NaH2PO4),可降低水解沉淀和结晶生长速度,粒子生长完整、均匀。李巧玲等[8]借助微波加热,采用沸腾回流的强迫水解法用三价铁盐直接合成了球形、椭球形、纺锤形、立方形等不同形状、表面光滑、均匀的α-Fe2O3纳米胶粒。魏雨等[9]用强迫水解法制备了单分散、均匀且粒径小于25 nm 的球形α-Fe2O3粒子。

强迫水解法能够制备出不同形貌的氧化铁纳米粒子,但水解浓度较低(一般小于0.2 mol·L-1)。水解在沸腾条件下进行,因此能耗较高。

1.1.3 凝胶—溶胶法[10]

凝胶—溶胶法是以醇盐为原料,在一定温度下进行水解和缩聚反应,随着缩聚反应的进行以及溶剂的蒸发,具有流动性的溶胶逐渐变为略显弹性的固体凝胶,然后再在较低的温度下烧结成为所要合成的材料。马振叶等人[11]相转移法与溶胶-凝胶法结合,以FeC13溶液和NaOH溶液为原料,并添加一定量的油酸和甲苯,制备出平均粒径为12 nm的纳米Fe2O3粉末。曹维良等人[12]制得的前驱体氢氧化铁醇凝胶移至高压釜,程序升温,使体系达到超临界状态,利用超临界干燥技术[13]制得几十纳米大小的氧化铁粉体,并讨论了煅烧温度对粒径的影响。

凝胶—溶胶法反应温度低,产物粒径小,可控制在几十纳米范围,为高密度记录打下良好的基础,其合成工艺的可操作性,与大规模工业生产发展的要求相适应;但反应时间较长,且成本高,干燥时易开裂。

1.1.4 胶体化学法[14-16]

胶体化学法是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧除去有机成分,最后制得纳米材料。以高价铁盐为初始原料,在一定温度下,用低于理论量的碱(如氢氧化钠)与之反应制备出粒子表面带正电的溶胶;引入阴离子表面活性剂如十二烷基苯磺酸钠(DBS),由于表面活性剂在水溶液中电离,产生的负离子团与带正电的胶体粒子发生电中和,使得胶体粒子表面形成有机薄层从而使之具有亲油憎水性,再加入氯仿或甲苯等有机溶剂,将其萃取入有机相,经减压蒸馏出有机溶剂可循环再利用。残留物经加热处理即得纳米氧化铁。杨隽等[15]用该法制备出了粒径以4~6 nm 的球形氧化铁超微粉体粒子。

胶体化学法能够制备出超细、均匀、球形的氧化铁,但该法涉及大量的有机物,对操作环境要求严格。

微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相, 以使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴中, 从而形成球形颗粒, 又避免了进一步团聚。徐甲强等[ 17]以FeCl3为原料,以一定比例在溴化十六烷基三甲胺( CT-MAB ) /正丁醇/环己烷

/H2O 微乳体系中混合均匀, 经处理制得- Fe2O3纳米粒子。

微乳液法实验装置简单,能耗低,操作容易,所得纳米粒子粒径分布窄易于实现高纯化,且分散性、界面性和稳定性好。与其它方法相比粒径易于控制,适用面广,但工艺操作较难控制。

1.1.6 沉淀法

沉淀法是指在可溶性的铁盐溶液中加入沉淀剂(如: OH- , C2O42-等),形成不溶性的氢氧化物、水合氧化物或盐类,并从溶液中析出, 将溶剂和溶液中原有的阴离子洗去, 经热分解或脱水即可得到所需的氧化物粉体。高志华等[18]用水合硫酸铁或水合硝酸铁与尿素为原料制备了平均粒径小于100nm 的纤维状纳α-Fe2O3粒子。

沉淀法成本较低,但沉淀物通常为胶状物,水洗时过滤较困难。沉淀剂易作为杂质残留,沉淀过程中各种成分可能发生变化,水洗时部分沉淀物易发生溶解。此外,由于多种金属不容易发生沉淀反应,因此该法的适用范围较窄[19]。

1.2 干法

1. 2. 1 固相法

固相法是通过固相到固相的变化来制备粉体, 分子(原子)的扩散迟缓, 集体状态多样, 所得固相粉体和最初粉体可以是同一种物质, 也可以是不同物质。通常制备纳米氧化铁主要是以铁盐和NaOH 按一定比例混合研磨后进行煅烧, 通

过固相反应直接制备纳米级微粒, 或再次研磨粉碎得到纳米级粉体。景苏等人[ 20 ]以FeCl3 6H2O和KOH 为原料,在600~ 800℃的温度下进行烧结,制得40~ 50nm 的- Fe2O3; 邱春喜[ 21]利用Fe( NO3 ) 39H2O、NaOH 在300下发生固-固化学反应直接制得粒径~ 20 nm 的-Fe2O3 粒子。固相化学反应法操作简单、转化率高、污染少, 制备的产物粒径小、粒度分布均匀、无团聚现象。

1. 2. 2 气相法

气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气态状态下发生物理或化学变化, 最后在冷却过程中凝聚长大形成纳米微粒。S Gr imm等[ 22-23]以羰基铁[ Fe( CO )

]为原料, 以N2载体利用火焰法高温分解法或激光分

5

解法制备氧化铁, 将[ Fe( CO) 5 ]从蒸发室导入燃烧室( 600) , 同时喷入高速流的空气,[ Fe( CO ) 5 ] 与空气迅速湍动混合发生剧烈氧化反应, 燃烧产物经骤冷、旋风分离等得到超细无定型透明纳米粒子,粒径为5~ 10 nm、比表面积为150m2 /g,分散性和热稳定性良好。

干法具有工艺流程短,操作环境好,产品质量高、粒子超细、均匀等特点,但技术难度大,对设备的材质要求较高,一次性投资也较大。

1.3 综合法

综合法是指在纳米材料制备中结合化学、物理法的优点,同时进行纳米材料的合成与制备,如:超声沉淀法,激光沉淀法以及微波合成法等。其中微波合成法因具有快速、简便、省电、避免团聚的特点,得到人们的普遍关注。

2 纳米氧化铁的应用

随着科学研究的不断深入,纳米氧化铁的优异性能在磁性材料、透明颜料、生物医学、催化剂及其他方面的应用愈来愈受人们的重视和青睐。

2.1 在磁性材料中的应用

由于磁性纳米材料有特殊的超顺磁性,因而在巨磁电阻、磁性液体和磁记录、软磁、永磁、磁致冷、巨磁阻抗材料以及磁光器件、磁探测器等方面具有广阔的应用前景。纳米氧化铁是新型磁记录材料,在高磁记录密度方面有优异的性能,记录密度约为普通氧化铁的10 倍。利用铁基纳米材料的巨磁阻抗效应制备的磁传感器己经问世,包覆了超顺磁性纳米微粒的磁性液体也被广泛用在宇航和部分民用领域作为长寿命的动态旋转密封。

磁性纳米微粒具有单磁畴结构、很高的矫顽力,用它制作的磁性记录材料可以提高信噪比,改善图像质量。目前,录像磁带一般使用的磁性超微粒为铁或氧化铁的针状粒子(如针状γ-Fe2O3) 。

2.2 在颜料领域中的应用

纳米氧化铁颜料不仅保持了一般无机颜料良好的耐热性、耐侯性和吸收紫外线功效,而且能很好地分散在油性载体中,用它调制的涂料和油墨具有令人满意的透明度。纳米氧化铁做成的涂料具有较高的导电特性,因此能起到静电屏蔽的作用。

透明氧化铁颜料的优良性能也为制造同质的彩色水泥瓦代替彩色表面层提供了条件。颜料贯注瓦片整体,质感朴实自然,色泽亚光柔和,消除了国内多彩表面水泥瓦的质量参差不齐的缺点,因此,透明氧化铁颜料适用于各种建筑结构和混凝土制品的着色。

将能吸收某些波长光线的透明氧化铁颜料包覆在干涉型珠光颜料上,如与闪光铝浆混用便形成一种组合颜料。用这种组合效应颜料制成的轿车闪光漆,在正

视或侧视时不仅看到颜色在透明度上、饱和度或色调上有差异,而且会看到真正不同的颜色,即所谓的tow-color 效应。严格控制砷和重金属的含量,透明氧化铁颜料可用于药品、食品、化妆品等着色。

2.3 在催化领域中的应用

纳米氧化铁具有巨大的比表面积,表面效应显著,是一种很好的催化剂。用纳米粒子制成的催化剂的活性、选择性都高于普通催化剂,并且寿命长易操作。将用纳米α-Fe2O3做成的空心小球,浮在含有机物的废水表面上。利用太阳光进行有机物的降解可加速废水处理过程.美国、日本等对海上石油泄露造成的污染进行处理时就是采用的这种方法。

纳米α-Fe2O3已直接用作高分子聚合物氧化、还原及合成的催化剂,纳米α-Fe2O3催化剂可使石油的裂解速度提高1~5 倍,以其作为燃烧催化剂制成的固体推进剂的燃烧速度较普通推进剂可提高1~10倍,这对制造高性能火箭及导弹十分有利。

2.4 在生物医学及其它方面的应用

磁性纳米粒子最小的只有几纳米,粒度呈正态分布.铁磁性纳米材料经过表面包覆处理后,可作为超磁性氧化纳米材料用于磁共振成像,在疾病的诊断上有重要应用;也可以用于磁性微球的制备。

磁粒可用于肿瘤热疗、磁致热疗,磁粒在磁场的引导下,可靶向病变部位,在交变磁场作用下产生磁滞后效应而放出热量,将富有磁粒的肿瘤部位加热到43~48℃之间,选择性杀死癌细胞,同时又不伤害正常细胞.A.Jordan 博士等[32]研究发现用糖衣包裹氧化铁粒子伪装后,可以成功逃过人体免疫细胞的攻击而安然进入肿瘤组织内,加上交换磁场,在维持治疗部位45~47℃的温度下,氧化铁粒子便可杀死肿瘤细胞,临近的健康组织却不受到明显影响。

参考文献

[1] 王光信,陈宗淇.均分散Fe2O3 粒子的制备[J].物理化学报,1991,7(6):699-702.

[2] 陈兴,邓兆祥,李宇鹏,等.水热法制备超顺磁性铁氧体纳米微粒[J].无机化学学报,2002,(5):460-464.

[3] 康晓红, 王兴尧, 谢惠琴, 卢立柱. 材料研究学报, 2003,17(5): 466-470

[4] 景志红,王燕,吴世华.不同形态的α-Fe2O3 纳米粉体的水热合成、表征及其磁性研究[J].无机化学学报,2005,21(1):145-149.

[5] 沙菲,宋宏昌.纳米α-Fe2O3的制备方法及应用概况[J].江苏化工,2003,

31(5):12-15.

[6] 魏雨,郑学忠,赵建录.凝胶—溶胶法制备针状和纺锤状α-Fe2O3 [J].功能材料与器件学报,1997,3(4):267-270.

[7] 邵梅珍.纳米氧化铁的制备与展望[J].衡水师专学报,2001,3(4):57-59.

[8] 李巧玲,魏雨,李琳.微波诱导异形均匀α-Fe2O3纳米胶粒的制备[J].材料导

报,2000,14(4):69-70.

[9] 孟哲,魏雨,贾振斌.非晶态液相合成纳米级粉体历程研究[J].化学学报,2004,62(5):485-488

[10] 曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术最新进展[J].现代械,2003(4):80-82.

[11] 马振叶,李凤生,崔平,白华萍.纳米Fe2 O3 的制备及其对高氯酸铵热分解的催化性能.催化学报,2003,24(10):795~798

[12] 曹维良,张敬畅石锦华,于定新.超微粒子氧化铁的制备研究.应用科学学报,2000,18(2):171~174

[13] 粱燕波,童景山.超临界干燥工艺以及干燥机理的研究.中国矿业大学学报,1995,24(4):97~100

[14] 赵纯寅,宋红艳.超细透明氧化铁黄颜料的制法[J].涂料工业,1996(4):26-27.

[15] 杨隽,张启超.胶体化学法制备氧化铁超微粉体[J].无机盐工业,2000,32(1):16.

[16] 张启超,游波.超微粒子氧化铁的制备[J].重庆大学学报,1987(3):81-88.

[17] 徐甲强, 侯振雨, 田孟魁, 等. 用溶胶法和微乳液法制备纳米级氧化铁材料[ J] . 郑州轻工业学院学报, 1998, 13( 45): 27~ 30.

[18] 高志华,李春虎.纳米粒子α-Fe OOH/α-Fe2O3 样品的制备与表征[J].化工冶金2000,4(21):341-345.

[19] 汪信,陆路德.纳米金属氧化物的制备与应用研究的若干进展[J].无机化学学报,2000,16(2):213-217.

[ 20] 景苏, 鲁新宁. 室温固相法合成纳米FeO-OH 及Fe2O3[ J]. 南京工业大学学报, 2002, 24( 6): 52~ 54.

[ 21] C heon J, Kang N J, L ee S M, et a l. J. Am. C hem. So c. ,2 00 4, 1 26: 19 50 —195 1

[22] Gr imm S, SchultzM, Ba rth S. Flam e pyro lysis - aprepa ra tion route for ultra fine pure- Fe2O3 pow dersand the contro l o f their partic le size and properties

[ J]. M ater ia ls Sc ience, 1997, 32( 4): 1080~ 1092

[23] Mat sunagaT , O kamuraY , Tanaka T . J. Mater . Chem. , 2004,

1 4: 2099—

2 105

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米氧化铁

第一章综述 1.1 概述 1.1.1 氧化铁的性质 纳米科学技术是20世纪80年代末诞生并崛起的新科技,它的基本内涵是指在-9-7)范围内认识和改造自然,通过直接和安排原子,分子创造1010~纳米尺寸(新物质,以及改造原有物质使其具有新的性质[1]。纳米材料具有量子尺寸效应,小尺寸效应,表面效应及宏观量子隧道效应等基本特性[1]。这些基本特性使纳米材料具有不同与常规材料的潜在的物理,化学性质,因此引起人们的广泛兴趣。纳米氧化铁( nano- sized iron oxide) 具有良好的耐候性、耐光性、磁性 和对紫外线具有良好的吸收和屏蔽效应, 可广泛应用于闪光涂料、油墨、塑料、皮革、汽车面漆、电子、高磁记录材料、催化剂以及生物医学工程等方面, 且可望开发新的用途[2,3]。 通常,铁的氧化物及其羟基氧化物均归属于氧化铁系列化合物,按价态,晶型结构的不同可以分为(α-﹑β-﹑γ-)FeO ﹑FeO ﹑FeO 和(α-﹑β-﹑γ-) 4323FeOOH.按色泽又可以分为,红﹑黄﹑橙﹑棕﹑黑。较具实用价值的有,α- FeO32﹑β- FeO ﹑α- FeOOH﹑FeO等。43321.1.2 氧化铁的应用 1 纳米氧化铁在装饰材料中的应用 在颜料中, 纳米氧化铁又被称为透明氧化铁( 透铁) 。所谓透明, 并非特指粒子本身的宏观透明, 而是指将颜料粒子分散在有机相中制成一层漆膜( 或称油膜) , 当光线照射到该漆膜上时, 如果基本不改变原来的方向而透过漆膜, 就称该颜料粒子是透明的。透明氧化铁主要有5 个品种, 即透铁红、黄、黑、绿、棕。透明氧化铁颜料因其有0.01μm 的粒径, 因而具有高彩度、高着色力和高透明度, 经特殊的表面处理后具有良好的研磨分散性。透明氧化铁颜料可用于油化与醇酸、氨基醇酸、丙烯酸等漆料制成透明色漆, 有良好的装饰性。此种透明漆既可单独, 也可和其他有机彩色颜料的色浆相混, 如加入少量非浮性的铝粉浆则可制成有闪烁感的金属效应漆; 与不同颜色的底漆配套, 可用于汽车、自行车、仪器、仪表、木器等要求高的装饰性场合。透铁颜料强烈吸收紫外线的特性使其可作为塑料中紫外线屏蔽剂,而用于饮料、医药等包装塑料中。纳米FeO 在32 1 静电屏蔽涂料中也有广阔的应用前景, 日本松下公司已研制成功具有良好静电屏蔽的FeO 纳米涂料。这种具有半导体特性的纳米粒子在室温下具有比常规的23氧化物高的导电性, 因而能起到静电屏蔽作用。 2 纳米氧化铁在油墨材料中的应用 透铁黄可用于罐头外壁的涂装, 透铁红油墨为红金色, 特别适合罐头内壁用, 加之透铁红耐300 ℃的高温, 是油墨中难得的颜料珍品。为提高钞票的印制质量, 往往在印钞油墨中加入纳米氧化铁颜料来保证钞票的色度和彩度等指标。 3 纳米氧化铁在着色剂中的应用 随着人们生活水平的提高, 人们越来越重视医药、化妆品、食品中使用的着色剂, 无毒着色剂成了人们关注的焦点。纳米氧化铁在严格控制砷和重金属含量的情况

纳米氧化铁材料的制备与现代发展.

课题名称MITobj004 姓名 院系 专业班级 指导教师 2009 年10 月01 日

摘要纳米氧化铁的制备方法有沉淀法、固液气相法、水热法、凝胶—溶胶法、共混包埋法、单体聚合法等.。本文通过分析比较各种纳米氧化铁的制备方法, 水热法由于操作简单、粒子可控等优点广泛应用于自分散氧化物的制备研究中。 关键词水热法,沉淀法,固液气相法,比较 前言 定,催化活性高,具有良好的耐光性、耐候性和对紫外线的屏蔽性,在精细陶瓷、塑料制品、涂料、催化剂、磁性材料以及医学和生物工程等方面有着广泛的应用价值和前景,因此研究纳米氧化铁有着很重要的意义。由于纳米氧化铁具有如此多的优点及其广泛的应用前景,近年来国内外研究者对其制备和应用投入了大量的研究工作。本文综述了纳米氧化铁制备方法的一些研究进展,分析了当前急需解决的问题,并对今后发展做了展望。重点介绍了水热法制备纳米氧化铁材料,以及在铁离子浓度、PH值、水解时间分别不同的情况下的水解程度。【1】 文献综述 国内外研究现状: 我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,科院上海硅酸盐研究所、南京大学、科院固体物理所、科院金属所、物理所、国科技大学、清华大学和科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的坚力量。【2】 近年来美国纳米技术研究与产品开发发展迅速。如医学领域的纳米医药机器人、纳米定向药物载体、纳米在基因工程蛋白质合成中的应用,微电子及信息技术领域的导电聚合物在信息技术的应用、纳米电子元器件FET二极管、用于感应器的电子序列、纳米传感器,化工领域的利用纳米材料提高催化剂的效能等,都取得了很大进展。 日本科学家在2003年12月发现,当温度降到极端低时,非常接近于一维金属的碳纳米管的电阻急剧增大,变成绝缘体,与普通金属的导电性截然相反。从

氧化铁制备的方法

氧化铁制备的方法 制备氧化铁的方法有很多,根据反应物料的状态分别有干法和湿法两种。干法又包括气相法和固相法两种,其中气相法包括热分解法、鲁式法、焙烧法等。其中湿法包括空气氧化法、水解法、沉淀法、溶胶?凝胶法等;此外,还有催化法、包核法、水热法等工艺改进方法。 2.1 干法 气相法通常以羰基铁(Fe(CO)5)或者二茂铁(FeCP2)等为原材料,采用气相沉积、低温等离子化学沉积法(PCVD)、火焰热分解或激光热分解等方法来制备。固相法是把金属盐或金属氧化物按照配方充分混合、研磨以后进行煅烧,固相反应结束后,直接产生纳米粒子或研磨方法得到纳米粒子。 2.1.1 热分解法 热分解法通常以羰基铁(Fe(CO)5)或二茂铁(FeCP2)等为原材料,利用火焰热分解、激光分解或气相分解等技术制备而成。蔺恩惠等采用激光气相反应法,光源采用红外激光脉冲CO2激光器、以(Fe(CO)2)/O2作为反应物质,利用爆炸式反应,同时能够得到晶形和无定形态的三氧化二铁超细粉;该方法具有反应时间较短,工艺简单,产率高,能耗低等优点。余高奇等利用Fe(NO3)3·9H2O在高温加热到一定的温度会分解的特性,利用配制成的Fe(NO3)3·9H2O 的盐液体,经过超临界干燥,直接可得到纳米级氧化铁粉。热分解法具有操作环境好,影响因素少,产品质量高,工艺流程简单,分散性好,粒子超细等特点。但是其技术难度较大,对设备的结构和材质要求较高,一次性投资耗费大。 2.1.2 焙烧法 传统的焙烧法通常指的是绿矾焙烧法,该方法是指硫酸亚铁经过高温煅烧得到氧化铁红。该方法因为产生的SO2和SO3等气体严重污染环境,只应用于小规模生产。此外,还有煅烧铁黄、煅烧铁黑法。孙本良等提出一种利用化工等行业产生废铁泥为原料得到氧化铁红的工艺,该工艺包括筛分、磁选、煅烧等几个过程,其炉尾废气中粉尘通过除尘器收集后一方面可以作为后续产品的原料,另一

纳米材料的制备及合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (2) 1.1纳米粉体的湿化学法制备 (2) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (3) 1.2.2溅射法 (3) 1.2.3真空蒸镀法 (4) 1.2.4等离子体方法 (4) 1.2.5激光诱导化学气相沉积法(LICVD) (4) 1.2.6爆炸丝方法 (5) 1.2.7燃烧合成法 (5) 1.3纳米薄膜的化学法制备 (5) 1.4纳米单相及复相材料的制备 (6) 2纳米材料的物理法制备 (7) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (7) 2.2纳米粉体的高能机械球磨法制备 (7)

2.3纳米晶体非晶晶化方法制备 (8) 2.4深度塑性变形法制备纳米晶体 (9) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (9) 2.6纳米薄膜物理气相沉积技术 (9) 3纳米材料的应用展望 (10) 4 总结 (11) 参考文献 (12)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

纳米氧化铁制备及改性研究(开题报告)

毕业设计(论文)开题报告 学生姓名:高盛学号:P1001130908 所在学院:浦江学院 专业:化学工程与工艺 设计(论文)题目:纳米氧化铁制备及改性研究 指导教师:陈洪龄教授 2017 年3月2日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 一.课题背景及研究意义 纳米技术(nanotechnology)[1]是一种用单个原子、分子制造物质的科学技术。常常会表现出与其块状材料迥异的光、电、磁等物理特性及独特的化学性质,这就产生了四个方面的效应:小尺寸效应、表面效应、宏观量子隧道效应及量子尺寸效应。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。 氧化铁可用于油漆、橡胶、塑料、建筑等的着色,是无机颜料,在涂料工业中用作防锈颜料。用作橡胶、人造大理石、地面水磨石的着色剂,塑料、石棉、人造革、皮革揩光浆等的着色剂和填充剂,精密仪器、光学玻璃的抛光剂及制造磁性材料铁氧体元件的原料等。 二.课题研究方向 1氧化铁纳米颗粒的合成 氧化铁纳米材料由于其独特的超顺磁性质,成为目前生物医学领域应用较为广泛的一类纳米材料,在磁共振成像和肿瘤治疗方面有着很大的优势。合成路线可以分为三种:物理,化学和生物方法。化学方法是生产氧化铁纳米颗粒的最被引用的方法。 1.1氧化铁纳米颗粒合成的物理方法 生产氧化铁纳米颗粒的物理方法是自上而下的方法,这涉及将大颗粒制动成纳米颗粒尺寸。已经报道了生产氧化铁纳米颗粒的不同物理方法,例如粉末和球磨,以及电子束光刻方法。虽然物理方法适合于大规模生产,但是难以控制合成粒子的尺寸。 粉末和球磨法 机械粉末和球磨技术也称为机械化学或机械合金化技术。它利用冲击将微米尺寸的铁前体还原为纳米尺寸。颗粒在围绕其轴线旋转的中空圆柱壳内产生。它被作为研磨介

纳米相增强金属材料制备技术的研究进展及应用

纳米相增强金属材料制备技术的研究进展及应用 【摘要】目前纳米技术应用广泛,在高强金属材料应用方面尤为突出。本文针对现有主要几种纳米增强金属材料制备工艺方法进行概述并比较,讨论其优缺点。最后还探讨了纳米相增强制备技术未来的发展趋势和改进方向,并对纳米结构材料应用领域和前景进行展望。 【关键词】纳米增强制备方法优缺点 随着科技进步,各个领域对于相关材料的性能要求日益提高。纳米增强技术是改善材料性能的重要方法之一,其在金属材料领域尤其应用广泛。在电子、汽车、船舶、航天和冶金等行业对高性能复合材料需求迫切,选用最佳制备方法制备出性能更优良的纳米材料是当前复合材料发展的迫切要求。 1 纳米增强技术概述 纳米相增强金属材料是由纳米相分散在金属单质或合金基体中而形成的。由于纳米弥散相具有较大的表面积和强的界面相互作用,纳米相增强金属复合材料在力学、电学、热学、光学和磁学性能方面不同于一般复合材料,其强度、导电性、导热性、耐磨性能等方面均有大幅度的提高[1]。 1.1 机械合金化法 机械合金化法(MA)是一种制备纳米颗粒增强金属复合材料的有效方法。通过长时间在高能球磨机中对不同的金属粉末和纳米弥散颗粒进行球磨,粉末经磨球不断的碰撞、挤压、焊合,最后使原料达到原子级的紧密结合的状态,同时将颗粒增强相嵌入金属颗粒中。由于在球磨过程中引入了大量晶格畸变、位错、晶界等缺陷,互扩散加强,激活能降低,复合过程的热力学和动力学不同于普通的固态过程,能制备出常规条件下难以制备的新型亚稳态复合材料。 1.2 内氧化法 内氧化法(Internal oxidation)是使合金雾化粉末在高温氧化气氛中发生内氧化,使增强颗粒转化为氧化物,之后在高温氢气气氛中将氧化的金属基体还原出来形成金属基与增强颗粒的混合体,最后在一定的压力下烧结成型。因将材料进行内氧化处理,氧化物在增强颗粒处形核、长大,提高增强粒子的体积分数及材料的整体强度,这样可以提高材料的致密化程度,且可以改善相界面的结合程度,使复合材料的综合力学性能得到提高。 1.3 大塑性变形法 大塑性变形法(Severe plastic deformation)是一种独特的纳米粒子金属及金属合金材料制备工艺。较低的温度环境中,大的外部压力作用下,金属材料发

纳米氧化铁材料

纳米氧化铁材料 班级:材料化学091班姓名:林赚学号:091304101 摘要:氧化铁纳米粒子是一种新型的磁功能材料,被广泛应用于生物、材料以及环境等众 多领域。本文介绍了超顺磁氧化铁纳米粒子的制备方法,比较了各种方法的优缺点;评述了磁性氧化铁纳米粒子在细胞、蛋白质和核酸分离及生物检测中的应用,对多功能复合磁性氧化铁纳米粒子的构建,在生物医学领域中的应用具有的指导意义。 关键词:超顺磁性氧化铁纳米粒子;制备;生物分离;生物检测 1 引言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点,在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性,以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性,从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。 2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶

学术周报告--水热法制备纳米氧化铁材料

水热法制备纳米氧化铁材料 摘要:水热水解法制备纳米氧化铁材料,是通过控制一定的温度和酸碱度,使一定浓度的金属铁的水解,生成氧化铁。条件适当可以得到颗粒均匀的多晶态溶胶,其颗粒尺寸在纳米级,对提高气敏材料的灵敏度和稳定性有利。 关键字:水热水解法纳米材料氧化铁制备影响因素 水解反应是中和反应的逆反应,是一个吸热反应。水热法【1】又称为热液法, 是指在特制的密闭反应器(高压釜)中, 采用水溶液作为反应体系, 通过对反应体系加热, 产生一个高温高压的环境, 加速离子反应和促进水解反应, 在水溶液或蒸气流体中制备氧化物, 再经过分离和热处理得到氧化物纳米粒子, 可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。 纳米材料【2】是指晶粒和晶界等显微结构能够达到纳米级尺度水平的材料,是材料科学的一个重要发展方向。纳米材料由于粒径较小,比表面很大,表面原子数会超过体原子数。因此纳米材料常表现出与本体材料不同的性质,在保持原有物质化学性质的基础上,呈现出热力学上的不稳定性。纳米材料在发光材料、生物材料方面也有重要的应用。 纳米氧化铁是一种多功能材料,在催化、磁介质、医药等方面具有广泛的应用。纳米氧化铁还被广泛应用到生产生活中,被用作颜料和涂料、装饰材料、油墨材料、磁性材料和磁记录材料、

敏感材料等。 实验仪器和试剂 仪器:台式烘箱,721或722型分光光度计,医用高速离心机或800型离心沉淀器,酸度计,多用滴管,20mL具塞锥形瓶,50mL容量瓶,离心试管,5mL吸量器。 试剂:1.0mol/LFeCl3溶液,1.0mol/L盐酸,1.0mol/LEDTA 溶液,1.0mol/L(NH4)2SO4溶液。 实验步骤 1.实验中的玻璃仪器均需严格清洗,先用铬酸洗液洗,再用离子水冲洗干净,然后烘干备用。 2.根据文献及实验时间,本实验选定水解温度为105摄氏度,有兴趣的同学可用95摄氏度,80摄氏度对照。 3.水解时间的影响,需读取6次,绘制A-t图。 4.水解液pH的影响,改变水解液的浓度,分别为1.0,1.5,2.0,2.5,3.0;用分光光度计观察水解pH的影响,绘制pH-t 图。 5.水解液中的三家铁离子浓度的影响,绘制A-t图。 6.沉淀的分解,取上述水解液一份,迅速用冷水冷却,分为二分,一份用高速离心机离心分离,一份加入硫酸铵使溶胶沉淀后用普通离心机离心分离。沉淀用去离子水洗至··无氯离子为止。 7.产品鉴定。

纳米氧化铁的制备及应用

纳米氧化铁的制备及其应用 高令博化工与环境生命学部制药工程大连理工大学大连116023 摘要:纳米氧化铁是一种多功能材料。本文综述了纳米氧化铁的各种制备方法,对各种制备方法优缺点进行了分析和比较,详述了纳米氧化铁在磁性材料、透明颜料、生物医学、催化剂等方面的应用,并对其发展前景进行了展望。 关键词:氧化铁;纳米;制备;应用 引言 纳米材料和纳米结构是当今新材料领域中最富活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的组成部分。近几年来,世界各国对金属氧化物纳米粒子进行了广泛研究,并取得了显著成效,其中纳米氧化铁由于具有广阔的应用前景而备受关注。 1 纳米氧化铁的制备 纳米氧化铁的制备方法可分为湿法和干法。湿法主要包括水热法、强迫水解法、凝胶—溶胶法、胶体化学法、微乳液法和化学沉淀法等。干法主要包括:火焰热分解、气相沉积、低温等离子化学气相沉积法(PCVD)、固相法和激光热分解法等。 1.1 湿法 1.1.1 水热法 水热合成法是指在密闭体系中, 以水为溶剂,在一定温度和水的自生压强下, 使原始混合物进行反应的一种合成方法。1982年,用水热反应制备超微粉引起了国内外的重视。由于反应在高温高压的水溶液中进行,故为一定形式的前驱物溶解—再结晶形成的良好微晶材料提供了适宜的物理化学条件[1-2]。康晓红等[3]采用载铁有机相与水相为反应物,于高压釜内进行水热反萃反应,经后处理后获得的氧化铁粉组成均一、粒度小、结晶完好。景志红等[4]也制备出了菱形、纺锤形和球形等不同形貌的氧化铁纳米颗粒。 水热法制备的粒子纯度高、分散性好、晶型好且大小可控[5].反应在压热釜中进行,设备投资较大,操作费用较高[6]。

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

纳米材料的湿法合成

论文中英文摘要 作者姓名:孙旭平 论文题目:纳米材料的湿化学合成及新颖结构的自组装构建 作者简介:孙旭平,男,1972年08月出生,2000年09月师从于中国科学院长春应用化学研究所汪尔康研究员,于2006年03月获博士学位。 中文摘要 围绕论文题目“纳米材料的湿化学合成及新颖结构的自组装构建”,我们开展了一系列研究工作。通过湿化学途径,在贵金属纳米粒子及其二维纳米结构和导电聚合物纳米带的合成方面进行了深入研究。同时,利用界面自组装及溶液自组装技术,构建了一些新颖结构。本论文研究工作的主要内容和创新点表现在以下几个方面: (1)首次提出了一步加热法制备多胺化合物保护的贵金属纳米粒子。我们利用多胺化合物(包 括聚电解质和树枝状化合物)作为还原剂和保护剂,直接加热贵金属盐和多胺化合物的混合水溶液,在不加入其它保护剂和还原剂的情况下,一步制备得到了稳定的贵金属金和银的纳米粒子。我们在实验中发现,树枝状化合物聚丙烯亚胺能对反应生成的金纳米粒子的大小及成核和生长动力学进行有效控制。我们还发现,室温下直接混合浓的阳离子聚电解质分支型聚乙烯亚胺和浓的HAuCl4水溶液可得到高浓度的、稳定的胶体金。这种一步合成法操作简单且方便易行,是一种制备多胺化合物保护的贵金属纳米粒子的通用方法;同时,本方法合成的纳米粒子表面带正电荷,可用作加工纳米粒子功能化薄膜的构建单元。 (2)首次提出了一种无表面活性剂的、无模板的、大规模制备导电聚合物聚邻苯二胺纳米带的 新方法。我们通过在室温下直接混合邻苯二胺和HAuCl4水溶液,在没有表面活性剂或“硬模板”存在的条件下,获得了长度为数百微米、宽度为数百纳米、厚度为数十纳米的聚邻苯二胺。纳米带的自发形成可归因于反应中生成的金纳米粒子催化的邻苯二胺的一维定向聚合。本方法方便快速,无需加入表面活性剂或使用“硬模板”,且可用于大规模制备。 此外,我们通过在室温下直接混合AgNO3和邻苯二胺水溶液,也获得了大量的一维纳米结构,并发现其形貌可通过调节实验参数而改变。我们还发现,当溶液pH降低时,这些一维结构将分解成水溶性的低聚体,而如果再次升高pH,这些低聚体又将自组装形成一

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

纳米氧化铁的制备和表征

纳米氧化铁的制备和表征 北京师范大学化学学院小灰(081015xxxx) 指导教师司书峰 摘要:通过控制pH值,缓慢水解FeCl3合成纳米Fe2O3,对其物相进行XRD和TEM表征,并作气敏性质的测试。XRD和TEM显示制得的粒子为椭球形α-Fe2O3,粒径约为28nm,且分散性好。粒子对乙醇、丙 酮和90#汽油都有响应,且随气体浓度增加,气敏阻值线性降低。 关键词:纳米Fe2O3;XRD;SEM;气敏性质 Preparation and characterization of Iron Oxide Nanoparticles Abstract:Iron oxide nanoparticles were prepared by a solution phase controlled hydrolysis method, and were characterized by XRD and SEM techniques. Its gas-sensitivity was also tested later.XRD and SEM results show that ellipsoidal alpha iron oxide particles with an average particle size of about 28nm were obtained through our method. And these particles show sensitivity to acetone, ethanol and gasoline with a linear dependence on the gas concentration. Key words:Fe2O3Nanoparticles; XRD; SEM; Gas-sensitivity 1.介绍 氧化铁系列化合物,按其价态、晶型和结构之不同可分为(α,β,γ)-Fe2O3、(α,β,γ,δ)- FeOOH、Fe3O4、FeO[1]。随着科学研究的不断深入,纳米氧化铁的优异性能在磁性材料、透明颜料、生物医学、催化剂及其他方面的应用愈来愈受人们的重视和青睐[2]。其催化特性的一个重要应用就是用作气敏材料。Fe2O3的两种变体:α- Fe2O3和γ- Fe2O3都可以作为气敏材料,两者 的气敏性能却有着巨大的差异。γ- Fe2O3属于尖晶石型结构,类似Fe2O4处于亚稳态,在气敏过程中铁离子在Fe3 +和Fe2 +之间相互转化,从而引起材料电导率的变化,其气敏机理主要为体电阻控制型。α- Fe2O3属于刚玉晶型、三角晶系,结构比较稳定其气敏机理为表面控制型[3]。纳米α- Fe2O3表面有配位不饱和的铁原子,可以吸附氧气,并使氧气分子活化,300℃以上可作为催化剂氧化还原性气体。同时表面吸附的氧分子电负性强,它夺取纳米颗粒表面层的电子,使晶粒内部自由电子数目减少,即使材料的电导率降低。当还原性气体通过其表面时,表面上活化的氧气分子与还原性气体反应而释放出电子回到晶粒内部,使材料的电导率增大,即对还原性气体产生响应。纳米氧化铁气敏材料具有选择性好、高温下热稳定性好、对环境湿度的变化不敏感和催化性能较好的优点[4]。虽然通常情况下电阻比常用气敏材料,如SnO2、ZnO大的多,但可通过掺杂予以克服[5]。目前,纳米氧化铁制备方法大体上分为干法和湿法两种。而湿法中的均匀沉淀法由于制备工艺简单,成本低,颗粒均匀而被广泛采用[6]。 2.实验部分 2.1主要仪器 BDX-3000 X射线粉末衍射仪(北京大学仪器厂);日立S-4800型高分辨场发射扫描电镜;

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

相关文档
最新文档