电机学讲义(汤蕴璆)第二章 变压器

电机学讲义(汤蕴璆)第二章   变压器
电机学讲义(汤蕴璆)第二章   变压器

第二章变压器

变压器是一种静止的电器,它利用电磁感应作用将一种电压.电流的交流电能转接成同频率的另一种电压,电流的电能。变压器是电力系统中重要的电气设备,众所周如。输送一定的电能时,输电线路的电压愈高,线路中的电流和损耗就愈小。为此需要用升压变压器把交流发电机发出的电压升高到输电电压:通过高压输电线将电能经济地送到用电地区,然后再用降压变压器逐步将输电电压降到配电电压,供用户安全而方便地使用。在其他工业部门中,变压器应用也很广泛。

本章主要研究一般用途的电力变压器,对其他用途的变压器只作简单介绍。

2.1 变压器的基本结构和额定值

一、变压器的基本结构

铁心和绕组变压器中最主要的部件是铁心和绕组,它们构成了变压器的器身。

变压器的铁心既是磁路,又是套装绕组的骨架。铁心由心柱和铁轭两部分组成,心柱用来套装绕组,铁轭将心柱连接起来,使之形成闭合磁路。为减少铁心损耗,铁心用厚o.30—o.35mm的硅钢片叠成,片上涂以绝缘漆,以避免片间短路。在大型电力变压器中.为提高磁导率和减少铁心损耗,常采用冷轧硅钢片;为减少接缝间隙和激磁电流,有时还采用由冷轧硅钢片卷成的卷片式铁心。

按照铁心的结构,变压器可分为心式和壳式两种。心式结构的心柱被绕组所包围,如图2—1所示;壳式结构则是铁心包围绕组的顶面、底面和侧面,如图2—2所示.心式结构的绕组和绝缘装配比较容易,所以电力变压器常常采用这种结构。壳式变压器的机械强度较好,常用于低压、大电流的变压器或小容量电讯变压器。

绕组是变压器的电路部分,用纸包或纱包的绝缘扁线或圆线绕成。其中输人电能的绕组称为一次绕组(或原绕组),输出电能的绕组称为二次绕组(或副绕组),它们通常套装在同一心柱上。一次和二次绕组具有不同的匝数、电压和电流,其中电压较高的绕组称为高压绕组,电压较低的称为低压绕组。对于升压变压器,一次绕组为低压绕组,二次绕组为高压绕组;对于降压变压器,情况恰好相反,高压绕组的匝数多、导线细;低压绕组的匝数少、导线粗。

从高、低压绕组的相对位置来看,变压器的绕组可分成同心式和交迭式两类。同心式绕组的高、低压绕组同心地套装在心柱上,如图2—1所示。交迭式绕组的高、低压绕组沿心

柱高度方向互相交迭地放置,如图2—2所示。同心式绕组结构简单、制造方便,国产电力变压器均采用这种结构。交迭式绕组用于特种变压器中。

其他部件除器身外,典型的油浸电力变压器还有油箱、变压器油、散热器、绝缘套管、分接开关及继电保护装置等部件。

图2—3a和b是一台三相油浸电力变压器的外型图和器身装配图。

二、额定值

额定值是制造厂对变压器在指定工作条件下运行时所规定的一些量值。在额定状态下运行时,可以保证变压器长期可靠地工作,并具有优良的性能。额定值亦是产品设计和试验的依据。额定值通常标在变压器的铭牌上,亦称为铭牌值,变压器的额定值主要有:

(1)额定容量S N在铭牌规定的额定状态下变压器输出视在功率的保证值,称为额定容量。额定容量用伏安(vA)或千伏安(kVA)裹示。对三相变压器,额定容量系指三相容量之和. (2)额定电压U N,铭牌规定的各个绕组在空载、指定分接开关位置下的端电压,称为额定电压。额定电压用伏(v)或千伏(kV)表示。对三相变压器,额定电压指线电压。

(3)额定电流I N根据额定容量和额定电压算出的电流称为额定电流,以安(A)表示。对三相变压器,额定电流指线电流。

对单相变压器,一次和二次额定电流分别为

对三相变压器,一次和二次额定电流分别为

(4)额定频率f N 我国的标准工频规定为50赫(Hz)。

此外,额定工作状态下变压器的效率、温升等数据亦属于额定值。

2.2 变压器的空载运行

变压器的一次绕组接交流电源,二次绕组开路,负载电流为零(即空载)时的运行,称为空载运行。

一、一次和二次绕组的感应电动势,电压比

图2—4表示单相变压器空载运行的示意图,图中N1和N2分别表示一次和二次绕组的匝

数。当一次绕组外施交流电

压u1,二次绕组开路时,一

次绕组内将流过一个很小

的电流i10,称为变压器的空

载电流。空载电流i l0。产生

交变磁动势N l i10,并建立交

变磁通φ;i10的正方向与磁

动势N1i10的正方向之间符

合右手螺旋关系,磁通φ的

正方向与磁动势的正方向

相同。设磁通φ全部约束在

铁心磁路内,并同时与一次

和二次绕组相交链。根据电

磁感应定律,磁通φ将在一

次和二次绕组内感生电动势e1和e2,

e1、e2的正方向与φ的正方向符合右手螺旋关系。于是根据基尔霍夫定律和图2-4所示正方向,可写出一次和二次绕组的电压方程为

式中,R1为一次绕组的电阻;u20为二次绕组的空载电压(即开路电压)。

在一般变压器中,空载电流所产生的电阻压降i10R1很小,可以忽略不计,于是

k称为变压器的电压比。从式(2-3)可见,空载运行时,变压器一次绕组与二次绕组的电压比就等于一次、二次绕组的匝数比。因此,要使一次和二次绕组具有不同的电压,只要使它们具有不同的匝数即可,这就是变压器能够“变压”的原理。

二、主磁通和激磁电流

主磁通通过铁心并与一次、二次绕组相交链的磁通叫做主磁通,用φ表示。根据

式(2-1),

空载时由于-e1≈u1,而电源电压通常为正弦波,故电动势e1,也可认为是正弦波,即2

=,于是

sin

E

t

1

1

式中,Φm 为主磁通的幅值,

式(2—5)和式(2。6)表明,对

于已经制成的变压器,主磁通的大小和波形主要取决于电源电压的大小和波形。用相量表

示时,

m ?

Φ的相位超前感应电动势1?

E 以90o

相角,如图2—5所示。

激磁电流 产生主磁通所需要的电流叫做激磁电流,用i m 表示。空载运行时,铁心上仅有一次绕组电流i 10所形成的激磁磁动势,所以空载电流就是激磁电流,即i 10=i m 。

激磁电流i m 中包括两个分量,一个是磁化电流i μ,另一个是铁耗电流i Fe 。磁化电流i μ用于激励铁心中的主磁通φ,对已制成的变压器,i μ的大小和波形取决于主磁通φ和铁心磁路的磁化曲线φ=f (i μ)。当磁路不饱和时,磁化曲线是直线,i μ与φ成正比,故当主磁通φ随

时间正弦变化时,i μ亦随时间正弦变化,且i μ与φ同相而与感应电动势e 1相差900

相角,故磁化电流为纯无功电流。若铁心中主磁通的幅值Φm 使磁路达到饱和,则i μ需由图解法来确定。图2—6a 和b 表示主磁通随时间正弦变化,当时间t =t 1、磁通量φ=φ(1)时,由磁化曲线的点l 处查出的对应磁化电流i μ(1);同理可以确定其他瞬间的磁化电流,从而得到i μ=f (t )。

从图2—6可以看出,当主磁通随时间正弦变化时,由磁路饱和而引起的非线性,将导致磁化电流成为与磁通同相位的尖顶波;磁路越饱和,磁化电流的波形越尖,即畸变越严重。但是无论i μ怎样畸变,用傅氏级数分解,可知其基波分量始终与主磁通的波形同相位;换言之,它是无功电流。为便于计算,通常用一个有效值与之相等的等效正弦波电流来代替非正弦的磁化电流。

由于铁心中存在铁心损耗,故激磁电流i m 中除无功的磁化电流i μ外,还有一个与铁心损耗相对应的铁耗电流i Fe ,i Fe 与-e 1同相位。于是用复数发示时,激磁电流m I ?

相应的相量图如图2—5所示。

三、激磁阻抗

主磁通φ、感应电动势e 1与磁化电流i μ之间有下列关系

式中,Λm 为主磁路的磁导;L 1μ则是对应的铁心线圈的磁化电感,L l μ=N 12

。用复数表示时,式(2—8)可写成

式中,X μ称为变压器的磁化电抗,它是表征铁心磁化性能的一个参数,X μ=ωL 1μ。

另外,铁耗电流Fe I ?

与电动势1?

-E 同相,它是一个有功电流,故Fe I ?

与1?

E 关系可写成

式中,R Fe 称为铁耗电阻,它是表征铁心损耗的一个参数,

Fe Fe Fe R I p 2

=。 于是,激磁电流m I ?

与感应电动势1?

E 之间有下列关系

图2—7a表示与上式相应的等效电路,此电路由磁化电抗Xμ和铁耗电阻R Fe两个并联分支构成。若进一步用一个等效的串联阻抗Z m去代替这两个并联分支,如图 2—7b所示,则式(2—11)可改写成

式中,Z m=R m+jX m称为变压器的激磁阻抗,它是表征铁心磁化性能和铁心损耗的一个综合参数;

X m称为激磁电抗,它是表征铁心磁化性能的一个等效参数,

2

2

2

μ

μX

R

R

X

X

Fe

Fe

m+

=

;R m称为

激磁电阻,它是表征铁心损耗的一个等效参数,

2

2

2

μ

μ

X

R

X

R

R

Fe

Fe

m+

=

由于铁心磁路的磁化曲线是非线性的,所以E1和I m之间亦是非线性关系,即激磁阻抗Z m不是常值,而是随着工作点饱和程度的增加而减小.考虑到实际运行时主磁通Φm的变化很小,在此条件下,可近似认为Z m为一常值。

2.3 变压器的负载运行

变压器的一次绕组接到交流电源,二次绕组接到负载阻抗Z l时,二次绕组中便有电流流过,这种情况称为变压器的负载运行,如图2—8所示。图中各量的正方向按惯例规定如

下:i

l的正方向与电

源电压u1的正方向

一致,主磁通φ的

正方向与i1的正方

向符合右手螺旋关

系,e1、e2的正方向

与φ的正方向亦符

合右手螺旋关系;

i2的正方向与e2的

正方向一致,u2的正

方向与i2流人Z l的

正方向一致。

一、磁动势

平衡和能量传递

当二次绕组通过负载阻抗Z l 闭合时,在感应电动势e 2的作用下,二次绕组中便有电流i 2流过,i 2将产生磁动势N 2i 2。由于磁动势N 2i 2的作用,铁心内的主磁通φ趋于改变;相应地一次绕组的电动势e 1亦趋于改变,并引起一次绕组电流i 1发生变化。考虑到电源电压u 1=常值时,主磁通φm ≈常值,故一次绕组电流将变成

即i 1中除用以产生主磁通Φm 的激磁电流i m 外,还将增加一个负载分量i 1L ,以抵消二次绕组电流i 2的作用,换言之,i 1L 产生的磁动势N 1i 1L 应与i 2所产生的磁动势N 2i 2相等、相反,即

此关系称为磁动势平衡关系。

再考虑到一次、二次绕组的电动势之比为21

2

1N N e e

,于是

式中,左端的负号表示输人功率,右端的正号表示输出功率。上式说明,通过一次、二次绕组的磁动势平衡和电磁感应关系,一次绕组从电源吸收的电功率就传递到二次绕组,并输出给负载.这就是变压器进行能量传递的原理。

二、磁动势方程

把式(2—13)两边乘以N l ,可得

N 1i 1=N 1i m 十N 1i 1L

再把N 1i 1L =-N 2i 2可得

N 1i 1十N 2i 2=N 1i M (2—16)

上式就是变压器的磁动势方程。式(2—l6)表明,负载时用以建立主磁通的激磁磁动势是一次和二次绕组的合成磁动势。式中的i m 取决于负载时主磁通的幅值,一般来说,它与空载时的值稍有差别。

正常负载时,i 1和i 2都随时间正弦变化,此时磁动势方程可用复数表示为:

三、漏磁通和漏磁电抗

在实际变压器中,除了通过铁心、并与一次和二

次绕组相交链的主磁通φ之外,还有少量仅与一个绕组交链且主要通过空气或油而闭合的漏磁通。电流i l 所产生、且仅与一次绕组相交链的磁通,称为一次绕组的漏磁通,用φ1φ表示;由电流i 2所产生、且仅与二次绕组相交链的磁通,称为二次绕组的漏磁通,用φ2φ表示.图2—9表示漏磁通的磁路,由于漏磁磁路的磁阻较大,故漏磁通要比主磁通少得多。

漏磁通φ1φ和φ2φ也随时间而交变,它们将分别在一次和二次绕组内感生电动势e 1σ和e 2σ,

式中,L1σ和L2σ分别为一次绕组和二次绕组的漏磁电感,简称漏感。漏感与绕组匝数的平方和漏磁导成正比,即

其中,Λ1σ和Λ2σ为一次和二次漏磁路的磁导。由于漏磁路的主要部分是空气或油,故漏磁导是常值;相应地,漏感亦是常值。

当一次和二次电流随时间正弦变化时,相应的漏磁通和漏磁电动势亦将随时间正弦变化,用复数表示时有

式中,X1σ和X2σ分别称为一次和二次绕组的漏磁电抗,简称漏抗,X1σ=ωL1σ,X2σ=Ωl2σ。漏抗是表征绕组漏磁效应的一个参数,X1σ和X2σ都是常值。

按照磁路性质的不同,把磁通分成主磁通和漏磁通两部分,把不受铁心饱和影响的漏磁通分离出来,用常值参数X1σ和X2σ来表征,而把受铁心饱和影响的主磁路及其参数Z m作为局部的非线性问题,再加以线性化处理,这是分析变压器和旋转电机的重要方法之一。这样做,一方面可以简化分析;另一方面可以提高测试和计算的精度。

2.4 变压器的基本方程和等效电路

上节说明了负载时变压器内部的物理情况.在此基础上即可导出变压器的基本方程和等效电路。

一、变压器的基本方程

负载运行时,变压器内部的磁动势、磁通和感应电动势,可列表归纳如下:

此外,一次和二次绕组内还有电阻压降i1R1和i2R2。这样,根据基尔霍夫第二定律和图2-8中所示的正方向,即可写出一次和二次侧的电压方程为

若一次和二次的电压、电流均随时间正弦变化,则上式可写成相应的复数形式

式中,Z 1σ和Z 2σ分别称为一次和二次绕组的漏阻抗,Z 1σ=R 1十jX 1σ,Z 2σ=R 2十jX 2σ 再考虑到式(2—12)和磁动势方程(2—17),可得变压器的基本方程为

二、变压器的等效电路

在研究变压器的运行问题时,希望有一个既能正确反映变压器内部电磁关系,又便于工程计算的等效电路,来代替具有电路、磁路和电磁感应联系的实际变压器。下面从变压器的基本方程出发,导出此等效电路。

绕组归算 为建立等效电路,除了需要把一次和二次侧漏磁通的效果作为漏抗压降,主磁通和铁心线圈的效果作为激磁阻抗来处理外,还需要进行绕组归算,通常是把二次绕组归算到一次绕组,也就是假想把二次绕组的匝数变换成一次绕组的匝数,而不改变一次和二次绕组原有的电磁关系。

从磁动势平衡关系可知,二次电流对一次侧的影响是通过二次磁动势N 2I 2起作用,所以只要归算前后二次绕组的磁动势保持不变,一次绕组将从电网吸收同样大小的功率和电流,并有同样大小的功率传递给二次绕组。

归算后.二次侧各物理量的数值称为归算值,用原物理量的符号加“′”来表示。设二次绕组电流和电动势的归算值为2?

I ′和2?

E ′,根据归算前、后二次绕组磁动势不变的原则,可得

由此可得二次电流的归算值2?

I ′为

由于归算前、后二次绕组的磁动势未变,因此铁心中的主磁通将保持不变;这样,根据感应电动势与匝数成正比这一关系,便得

即二次绕组感应电动势的归算值2?

E ′为

再把二次绕组的电压方程(式(2—22)中的第二式)乘以电压比k ,可得

式中,R 2′和X 2σ′分别为二次绕组电阻和漏抗的归算值,R 2′=k 2

R 2,X 2σ′= k 2

X 2σ;2?

U ′

则是二次电压的归算值,2?U ′=k 2?

U 。

综上所述可见,二次绕组归算到一次绕组时,电动势和电压应乘以k 倍,电流乘以1/

k 倍,阻抗乘以k 2

倍。不难证明,这样做的结果,归算前、后二次绕组内的功率和损耗均将保持不变。例如,传递到二次绕组的复功率为

式中,*号表示复数的共轭值。二次绕组的电阻损耗和漏磁场内的无功功率为

负载的复功率为

即用归算前、后的量算出的值为相同.因此,所谓归算,实质是在功率和磁动势保持为不变量的条件下,对绕组的电压、电流所进行的一种线性变换。 归算后,变压器的基本方程变为

T 形等效电路 归算以后,一次和二次绕组的匝数变成相同,故电动势1?

E =2?

E ′,一

次和二次绕组的磁动势方程也变成等效的电流关系21??+I I ′=m I ?

,由此即可导出变压器的等效电路。

根据式(2—30)中的第一式和第二式,可画出一次和二次绕组的等效电路,如

图2—lOa 和b 所示;根据第四式可画出激磁部分的等效电路,如图2--10c 所示。然后根据

21??=E E ′和21??+I I ′=m I ?

两式,把这三个电路连接在一起,即可得到变压器的T 形等效

电路,如图2—11所示。

工程上常用等效电路来分

析、计算各种实际运行问题。应当指出,利用归算到一次侧的等效电路算出的一次绕组各量,均为变压器的实际值;二次绕组中各量则为归算值,欲得其实际值,对电流应乘以k(22?

?

=kI I ′),

对电压应除以k(即22?

?

=U U ′/k)。

亦可以把一次侧各量归算到二次侧,以得到归算到二次侧的

T 型等效电路。一次侧各量归算到二次侧时,电流应乘以k ,电压除以k ,阻抗乘以l /k 2

。 近似和简化等效电路 T 形等效电路属于复联电路,计算起来比较繁复。对于一般的电力变压器,额定负载时一次绕组的漏阻抗压降I 1N Z 1σ仅占额定电压的百分之几,加上激磁电流I m 又远小于额定电流I 1N ,因此把T 形等效电路中的激磁分支从电路的中间移到电源端,对变压器的运行计算不会带来明显的误差。这样,就可得到图2—12a 所示近似等效电路。

若进一步忽略激磁电流(即把激磁分支断开).则等效电路将简化成一串联电路,如图2—12b 所示,此电路就称为简化等效电路。在简化等效电路中,变压器的等效阻抗表现为一串联阻抗Z k ,Z k 称为等效漏阻抗,

下面将看到,等效漏阻抗Z k 可用短路试验测出,故Z k 亦称为短路阻抗;R k 和X k 则称为短路电阻和短路电抗。用简化等效电路来计算实际问题十分简便,在多数情况下其精度已能满足工程要求。

2.5 等效电路参数的测定

等效电路的参数,可以用开路试验和短路试验来确定。它们是变压器的主要试验项目。

一、开路试验

开路试验亦称空载试验,试验的接线图

如图2—13所示。试验时,二次绕组开路,

一次绕组加以额定电压,测量此时的输人功

率P0、电压U1和电流Io,由此即可算出激磁

阻抗。

变压器二次绕组开路时,一次绕组的电

流I。就是澈磁电流I m。由于一次漏阻抗比激

磁阻抗小得多,若将它略去不计,可得激磁

阻抗|Z m|为

由于空载电流很小,它在一次绕组中产生的电阻损耗可以忽略不计,这样空载输人功率可认为基本上是供给铁心损耗的,故激殖电阻R m应为

于是激磁电抗X m为

为了试验时的安全和仪表选择的方便,开路试验时通常在低压侧加上电压,高压侧开路,

此时测出的值为归算到低压侧时的值.归

算到高压侧时,各参数应乘以k2,k=N高压/N

低压

二、短路试验

短路试验亦称为负载试验,图2—14

表示试验时的接线图。试验时,把二次绕

组短路,一次绕组上加一可调的低电压。调节外加的低电压,使短路电流达到额定电流,测量此时的一次电压U k输入功率P k几和电流I k,由此即可确定等效漏阻抗。

从简化等效电路可见,变压器短路时,外加电压仅用于克服变压器内部的漏阻抗压降,当短路电流为额定电流时,该电压一般只有额定电压的5%一10%左右;因此短路试验时变压器内的主磁通很小.激磁电流和铁耗均可忽略不计;于是变压器的等效漏阻抗即为短路时所表现的阻抗Z k,

不计铁耗时,短路时的输入功率P k可认为全部消耗在一次和二次绕组的电阻损耗上,故

等效漏抗X k则为

短路试验时,绕组的温度与实际运行时不一定相同;按国家标准规定,测出的电阻应换算到75℃时的数值。若绕组为铜线绕组,电阻可用下式换算

式中,θ为试验时的室温。

短路试验常在高压侧加电压,由此所得的参数值为归算到高压删时的值。

短路试验时,使电流达到额定值时所加的电压U1k,称为阻抗电压或短路电压。阻抗电压用额定电压的百分值表示时有

阻抗电压的百分值亦是铭牌数据之一。

变压器中漏磁场的分布十分复杂,所以要从测出的X k中把X1σ和X2σ′分开是极为困难的。由于工程上大多采用近似或简化等效电路来计算各种运行问题.因此通常没有必要把X1σ和X2σ′分开。有时假设X1σ= X2σ′以把两者分离。

2.6 三相变压器

目前电力系统均采用三相制,因而三相变压器的应用极为广泛。三相变压器对称运行时,其各相的电压、电流大小相等,相位互差120o;因此在运行原理的分析和计算时,可以取三相中的一相来研究,即三相问题可以化为单相问题。于是前面导出的基本方程、等效电路等方法,可直接用于三相中的任一相。关于三相变压器的特点,如三相变压器的磁路系统,三相绕组的联接方法等间题,将在本节中加以研究。

一、三相变压器的磁路

三相变压器的磁路可分为三个单相独立磁路和三相磁路两类。图2—16表示三台单相变压器在电路上联接起来,组成一个三相系统,这种组合称为三相变压器组。三相变压器组的

磁路彼此独立,三相各有自

己的磁路。

如果把三台单相变压器的铁心拼成如图2—17a 所示的星形磁路,则当三相绕组外施三相对称电压时,由

于三相主磁通A ?

Φ、B ?

Φ和

c ?

Φ也对称(图2-17b),故三

相磁通之和将等于零,即

这样,中间心柱中将无磁通通过,因此可以把它省略。进一步把三个心柱安排在同一平面内,如图2—17c 所示,就可以得到三相心式变压器。三相心式变压器的磁路是一个三相磁路,任何一相的磁路都以其他二相的磁路作为自己的回路。

与三相变压器组相比较,三相心式变压器的材料消耗较少、价格便宜、占地面积亦小,维护比较简单;但对大型和超大型变压器,为了便于制造和运输,并减少电站的备用容量,往往采用三相变压器组。

二、三相变压器绕组的联结

三相心式变压器的三个心柱上分别套有A 相、B 相和c 相的高压和低压绕组,三相共六个绕组,如图2—18所示.为绝缘方便,常把低压绕组套在里面、靠近心柱,高压绕组套装在低压绕组外面。三相绕组常用星形联结(用Y 或y 表示)或三角形联结(用D 或d)表示。星形联结是把三相绕组的三个首端A 、B 、C 引出,把三个尾端X 、Y 、z 联结在一起作为中点,如图2—19a 所示。三角形联结是把一相绕组的尾端和另一相绕组的首端相联,顺次联成一个闭合的三角形回路,最后把首端A 、B 、C 引出,如图2—19b 所示。

国产电力变压器常用Y,yn;Y,d和YN,d三种联结,前面的大写字母表示高压绕组的联结法,后面的小写字母表示低压绕组的联结法,N(或n)表示有中点引出的情况。

在并联运行时,为了正确地使用三相变压器,必须知道高、低压绕组线电压之间的相位关系。下面先说明高、低压绕组相电压的相位关系。

高、低压绕组相电压的相位关系三相变压器高压绕组的首端通常用大写的A、B、C(或U1、V1,、W1)表示,尾端用大写的X、Y、Z(或U2,V2、W2)表示,低压绕组的首端用小写的a、b、c(或u1、v1:、w1)表示,尾端用x、y、z(或u2、v2、w2)表示。现取三相中的A相来分析。

同一相的高压和低压绕组绕在同一心柱上,被同一磁通φ所交链。当磁通φ交变时,在同一瞬间,高压绕组的某一端点相对于另一端点的电位为正时,低压绕组必有一端点其电位

也是相对为正,这两个对应的端点就称为同名端,同名端在对应的端点旁用“*”标注.同名端取决于绕组的绕制方向,如高;低压绕组的绕向相同,则两个绕组的上端(或下端)就是同名端;若绕向相反,则高压绕组的上端与低压绕组的下端为同名端,如图2—20a 和b 所示。

为了确定相电压的相位关系,高压和低压绕组相电压相量的正方向统一规定为从绕组的首端指向尾端。高压和低压绕组的相电压既可能是同相位,也可能是反相位,取决于绕组的同名端是否同在首端或尾端。若高压和低压绕组的首端为同名端,相电压A U ?

和a U ?

应为同相,如图2—20a 和b 所示;若高压和低压绕组的首端为非同名端,则A U ?

和a U ?认为反相。如图2—20c 和d 所示。

高、低压绕组线电压的相位关系 三相绕组采用不同的联结时,高压侧的

线电压与低压侧对应的线电压之间(例如AB U ?和b U a ?

)可以形成不同的相位。为了表明高、低压线电压之间的相位关系,通常采用“时钟表示法”,即把高、低压绕组两个线电压三角形的重心重合,把高压侧线电压三角形的一条中线作为时钟的长针,指向钟面的12,再把低压侧线电压三角形中对应的中线作为短针.它所指的钟点就是该联结组的组号。例如Y ,dll 表示高压绕组为星形联结,低压绕组为三角形联结,高压侧线电压滞后于低压侧对应的线电压30°。这样从O 到11共计12个组号.每个组号相差30°。 联结组的组号可以根据高、低压绕组的同名端(极性)和绕组的联结方法来确定。下面以Y ,y0和Y ,dll 这两种联结组为例,说明其联结方法。

Y ,y0联结组 图2—2la 表示Y ,y0联结组的绕组联结图.此时高、低压绕组绕向相同.故A 和a 为同名端,同理B 和b 、C 和c 亦是同名端。由于高、低压绕组的首端为同名端,故高、低压绕组对应的相电压相址应为同相位,即A U ?

和a U ?

同相,B U ?

和b U ?

同相,

C U ?和c U ?同相,如图2--21b 所示。相应地,高,低压侧对应的线电压亦为同相位;即AB

U ?

和ab U ?

同相,BC U ?

和bc U ?

同相,AC U ?

和ac U ?

同相。若使高压和低压侧两个线电压三角形的重心O 和o 重合,并使高压倒三角形的中线OA 指向钟面的12,则低压澜对应的中线oa 也

将指向12,从时间上看为O 点,故该联结组的组号为0,记为丫,yO 。

此例中,如果把低压边的非同名端标为首端a 、b 、c ,再把尾端x 、y 、z 联结在一起,首端a 、b 、c 引出、联结组将变成Y ,y6。 Y ,dll

联结组 图2--22a 是Y ,dll 联结组的绕组联结图。此时高压绕组为星形

联结,低压绕组按a —y ,b —z ,c —x 的顺序依次联结成三角形。由于把高、低压绕组的同名端作为首端,故高压和低压对应相的相电压为同相位。因高压测为星形联结。故高压侧的相量图仍和Y ,y0时相同;低压侧为三角形联结.其相量图要根据a U ?

、b U ?

、c U ?

的相位和绕组的具体联法画出。考虑到a U ?

与A U ?

同相,b U ?

与B U ?

同相,c U ?

与C U ?同相,且a 与y 相联,b 与z 相联,c 与x 相联,故低压侧可得图2—22b 所示相量图。再把高、低压两个线电压三角形的重心O 和o 重合,并使高压侧三角形的中线OA 指向钟面的12,则低压侧的对应中线oa 将指向1l ,如图2—22c 所示。这种联结组的组号为11,用Y ,dll 表示。

此例中,如果把非同名端标为首端,则得Y ,d5联结组。

其他联结组 对于上述Y ,y 和Y ,d 联结组,如果高压侧的三相标号A 、B 、C 保持不变,把低压侧的三相标号a 、b 、c 顺序改标为c 、a 、b ,则低压侧的各线电压相量将分别转过120°,相当于短针转过4个钟点;若改标为b 、c 、a ,则相当于短针转过8个钟点。因而对Y 、y 联结而言,可得0,4,8,6,10,2等六个偶数组号;对Y ,d 联结而言,可得ll ,3,7,5,9,1等六个奇数组号;总共可得12个组号。

各种联结组的应用场合 变压器联结组的种类很多,为了制造和并联运行时的方便,我国规定Y ,yn0;Y ,dll ;YN ,d11;YN ,y0和Y ,y0等五种作为标准联结组。五种标准联结组中,以前三种最为常用。Y ,yn0联结组的二次侧可引出中线,成为三相四线制,用于配电变压器时可兼供动力和照明负载。Y ,dll 联结组用于二次侧电压超过400V 的线路中,此时变压器有一侧接成三角形,对运行有利。YN ,dll 联结组主要用于高压输电线路中,使电力系统的高压侧可以接地。

·三、绕组接法和磁路结构对二次电压波形的影响

在2.2节中已经说明,铁心磁路达到饱和时,为使主磁通成为正弦波,激磁电流将变成尖顶波;此时激磁电流中除含有基波分量帆外,还含有一定的三次谐波

动势仍为正弦波,但是e φ峰值的提高将危害到各相绕组的绝缘。

对于三相心式变压器,由于磁路为三相星形磁路,故同大小、同相位的各相三次谐波磁通不能沿铁心磁路闭合,而只能通过油和油箱等形成闭合磁路.如图2—26所示。由于这条磁路的磁阻较大,限制了三次谐波磁通,使绕组内的三次谐波电动势变得很小,此时相电动势e φ可认为接近于正弦形。另一方面,三次谐波磁通经过油箱壁等钢制构件时,将在其中引起涡流杂散损耗。

由此可见,三相变压器组不宜采用Y,y联结组。三相心式变压器可以采用Y,y联结组,但其容量不宜过大。

Y,d联结组 Y,d联结组的高压侧为星形联结。若高压侧接到电源,则一次侧三次谐波电流不能流通,因而主磁通和一次、二次侧的相电动势中将出现三次谐波;但因二次侧为三角形联结,故三相的三次谐波电动势将在闭合的三角形内产生三次谐波环流,如图2--27所示。由于主磁通是由作用在铁心上的合成磁动势所激励,所以一次侧正弦激磁电流和二次侧三次谐波电流共同激励时,其效果与一次侧尖顶波激磁电流的效果完全相同,故此时主磁通和相电动势的波形将接近于正弦形。

上述分析表明,为使相电动势波形接近于正弦形,—次或二次侧中最好有一侧为三角形联结。在大容量高压变压器中,当需要一次、二次侧都是星形联结时,可另加一个接成三角形的小容量的第三绕组.兼供改善电动势波形之用。

2.7 标幺值

在工程计算中,各物理量有时用标幺值来表示和计算。所谓标幺值就是某一物理量的实际值与选定的基值之比。即

在本书中,标幺值用加“。”的上标来表示。标幺值乘以l00,便是百分值。

应用标幺值时.首先要选定基值(用下标b表示)。对于电路计算而言,四个基本物理量U、I、Z和S中,有两个量的基值可以任意选定,其余两个量的基值可根据电路的基本定律导出。例如对单相系统,若选定电压和电流的基值为U b和I b,

则功率基值S b和阻抗基值Z b便等于

计算变压器或电机的稳态问题时,常用其额定值作为相应的基值。此时一次和二次电压的标幺值为

式中,U1Nφ和U2Nφ为一次和二次的额定相电压。一次和二次相电流的标幺值为

式中,I 1N φ和I 2N φ为一次和二次额定相电流。归算到一次侧时,等效漏阻抗的标幺值Z k *

在三相系统中,线电压和线电流亦可用标幺值表示,此时以线电压和线电流的额定值为基值。不难证明,此时相电压和线电压的标幺值恒相等,相电流和线电流的标幺值亦相等。三相功率的基值取为变压器(电机)的三相额定容量,即

当系统中装有多台变压器(电机)时.可以选择某一特定的S b 作为整个系统的功率基值。这时系统中各变压器(电机)的标幺值需要换算到以S b 作为功率基值时的标幺值。由于功率的标幺值与对应的功率基值成反比,在同一电压基值下,阻抗的标幺值与对应的功率基值成正比,所以可以用下式进行换算:

式中,*1S 和*1Z 为功率基值选为S b1时功率和阻抗的标幺值;*

S 和*

Z

则是功率基值选为S b ,

时功率和阻抗的标幺值。 应用标幺值的优点为:

(1)不论变压器或电机容量的大小,用标幺值表示时,各个参数和典型的性能数据通常都在一定的范围以内,因此便于比较和分析。例如,对于电力变压器,漏阻抗的标幺值

*k Z =o .03~o .1:空载电流的标幺值*0I =o .02~o .05。

(2)用标幺值表示时,归算到高压侧或低压侧时变压器的参数恒相等,故用标幺值计算时不必再进行归算。

标幺值的缺点是没有量纲,无法用量纲关系来检查。

[例2—2] 对于例2-l 的单相20000kVA 变压器,试求出激磁阻抗和漏阻抗标幺值。

电机学变压器经典习题及答案

第二章 变压器 一、填空: 1. ★★一台单相变压器额定电压为380V/220V ,额定频率为50HZ ,如果误将低压侧接到380V 上,则此时m Φ ,0I ,m Z ,Fe p 。(增加,减少或不变) 答:m Φ增大,0I 增大,m Z 减小,Fe p 增大。 2. ★一台额定频率为50Hz 的电力变压器接于60Hz ,电压为此变压器的6/5倍额定电压的电 网上运行,此时变压器磁路饱和程度 ,励磁电流 ,励磁电抗 , 漏电抗 。 答:饱和程度不变,励磁电流不变,励磁电抗增大,漏电抗增大。 3. 三相变压器理想并联运行的条件是(1) , (2) ,(3) 。 答:(1)空载时并联的变压器之间无环流;(2)负载时能按照各台变压器的容量合理地分担 负载;(3)负载时各变压器分担的电流应为同相。 4. ★如将变压器误接到等电压的直流电源上时,由于E= ,U= ,空 载电流将 ,空载损耗将 。 答:E 近似等于U ,U 等于IR ,空载电流很大,空载损耗很大。 5. ★变压器空载运行时功率因数很低,其原因为 。 答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。 6. ★一台变压器,原设计的频率为50Hz ,现将它接到60Hz 的电网上运行,额定电压不变, 励磁电流将 ,铁耗将 。 答:减小,减小。 7. 变压器的副端是通过 对原端进行作用的。 答:磁动势平衡和电磁感应作用。 8. 引起变压器电压变化率变化的原因是 。 答:负载电流的变化。 9. ★如将额定电压为220/110V 的变压器的低压边误接到220V 电压,则激磁电流 将 ,变压器将 。 答:增大很多倍,烧毁。 10. 联接组号不同的变压器不能并联运行,是因为 。 答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。 11. ★★三相变压器组不宜采用Y,y 联接组,主要是为了避免 。 答:电压波形畸变。 12. 变压器副边的额定电压指 。 答:原边为额定电压时副边的空载电压。 13. ★★为使电压波形不发生畸变,三相变压器应使一侧绕组 。 答:采用d 接。 14. 通过 和 实验可求取变压器的参数。 答:空载和短路。 15. 变压器的结构参数包括 , , , , 。

电机学主要知识点复习提纲

电机学主要知识点复习提纲 一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2 U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率P em 电枢铜耗p Cua

励磁铜耗 p Cuf 电机铁耗 p Fe 机械损耗 p mec 附加损耗 p ad 输出机械功率 P 2 可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、 软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动; 启动电流 22. DM 的调速方法:电枢串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ==

电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --= DM 的效率:2111 2100%100%(1)100%P P p p P P P p η-∑∑= ?=?=-?+∑ 他励DM 的转速调整率: 0N N 100%n n n n -?=? DM 的机械特性:em 2 T j a j a a ) (T ΦC C R R ΦC U ΦC R R I U n E E E +-=+-= . 并联DM 的理想空载转速n 0: 二、变压器 A. 主要概念 1. 单相、三相;变压器组、心式变压器;电力变压器、互感器; 干式、油浸式变压器 2. 铁心柱、轭部 3. 额定容量、一次侧、二次侧 4. 高压绕组、低压绕组

西安交通大学电机学课件 免费下载

第一篇 直流电机 一. 直流电机(DC Machines)概述 直流电机是电机的主要类型之一。直流电机可作为发电机使用,也可作为电动机使用。 用作发电机可以获得直流电源,用作电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,得到广泛使用。 直流电机的用途:作电源用:发电机;作动力用:电动机;信号的传递:测速发电机,伺服电机 作电源用:直流发电机将机械能转化为直 流电能 作动力用:直流电动机将直流电能转化为机械能 信号传递:直流测速发电机将机械信号转 换为电信号 信号传递-直流伺服电动机将控制电信号转换为机 械信号 二. 直流电机的优缺点 1.直流发电机的电势波形较好,受电磁干扰的影响小。 2.直流电动机的调速范围宽广,调速特性平滑。 3.直流电动机过载能力较强,起动和制动转矩较大。 4.由于存在换向器,其制造复杂,成本较高。 第1章 直流电机的工作原理和结构

1-1 直流电机工作原理 一、原理图(物理模型图) 磁极对N、S不动, 线圈(绕组)abcd 旋转, 换向片1、2旋转, 电刷及出线A、B不动 二、直流发电机原理(机械能--->直流电能)( Principles of DC Generator) 1.原动机拖动电枢以转速n(r/min)旋转; 2.电机内部有磁场存在;或定子(不动部件)上的励磁绕组通过直流电流(称为励磁电流 I f)时产生恒定磁场(励磁磁场,主磁场) (magnetic field, field pole) 3.电枢线圈的导体中将产生感应电势 e = B l v ,但导体电势为交流电,而经过换向器 与电刷的作用可以引出直流电势E AB,以便输出直流电能。(看原理图1,看原理图2) (commutator and brush)

电机学_第三章变压器习题

第二章变压器 一、填空: 1.★一台额定频率为60HZ的电力变压器接于50HZ,电压为此变压器的5/6倍额定电压的电 网上运行,此时变压器磁路饱和程度,励磁电流,励磁电抗,漏电抗。 答:饱和程度不变,励磁电流不变,励磁电抗减小,漏电抗减小。 2.三相变压器理想并联运行的条件是(1), (2),(3)。 答:(1)空载时并联的变压器之间无环流;(2)负载时能按照各台变压器的容量合理地分担负载;(3)负载时各变压器分担的电流应为同相。 3.★如将变压器误接到等电压的直流电源上时,由于空载电流将,空载损耗 将。 答:空载电流很大,空载损耗很大。 4.★一台变压器,原设计的频率为50HZ,现将它接到60HZ的电网上运行,额定电压不变, 励磁电流将,铁耗将。 答:减小,减小。 5.变压器的副边是通过对原边进行作用的。 答:电磁感应作用。 6.引起变压器电压变化率变化的原因是。 答:负载电流的变化。 7.★如将额定电压为220/110V的变压器的低压边误接到220V电压,则激磁电流 将,变压器将。 答:增大很多,烧毁。 8.联接组号不同的变压器不能并联运行,是因为。 答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。 9.★★三相变压器组不宜采用Y,y联接组,主要是为了避免。 答:相电压波形畸变。 10.变压器副边的额定电压指。 答:原边为额定电压时副边的空载电压。 11.★★为使电压波形不发生畸变,三相变压器应使一侧绕组。 答:采用d接。 12.通过和实验可求取变压器的参数。 答:空载和短路。 13.变压器的参数包括,,,,。答:激磁电阻,激磁电抗,绕组电阻,漏电抗,变比。 14.在采用标幺制计算时,额定值的标幺值为。 答:1。 15.既和原边绕组交链又和副边绕组交链的磁通为,仅和一侧绕组交链的磁通 为。 答:主磁通,漏磁通。 16.★★变压器的一次和二次绕组中有一部分是公共绕组的变压器是。 答:自耦变压器。 17.并联运行的变压器应满足(1),(2)

电机学课后答案上课讲义

第二章 变压器 2-1 什么叫变压器的主磁通,什么叫漏磁通?空载和负载时,主磁通的大小取决于哪些因素? 答:变压器工作过程中,与原、副边同时交链的磁通叫主磁通,只与原边或副边绕组交链的磁通叫漏磁通。 由感应电动势公式 Φ=1144.4fN E 可知,空载或负载情况下11E U ≈,主磁通的大小取决于外加电压1U 、频率f 和绕组 匝数 1N 。 2-2 一台50Hz 的变压器接到60Hz 的电源上运行时,若额定电压不变,问激磁电流、铁耗、漏抗会怎样变化 答:(1)额定电压不变,则 '1'11144.444.4Φ=Φ=≈N f fN E U N 又 5060'=f f ?60 50 '=ΦΦ, 即 Φ=Φ65'磁通降低,此时可认为磁路为线性的,磁阻s l R m μ= 不变,励磁磁势m m R N I Φ=?1,∴m m I I 65' =; (2)铁耗: β αf B p m Fe ∝,βα>Θ铁耗稍有减小; (3) σσσπ11''1562x L f x = ?=, σσσπ22' '25 62x L f x =?= 2-3 在导出变压器的等效电路时,为什么要进行归算?归算是在什么条件下进行的? 答:因为变压器原、副边只有磁的联系,没有电的联系,两边电压 21E E ≠、电流不匹配,必须通过归算,才能得到两边直接连接的等效 电路; 归算原则:保持归算前后副边的磁动势不变。 2-4 利用T 型等效电路进行实际问题计算时,算出的一次和二次侧电压、电流和损耗、功率是否为实际值,为什么? 答:一次侧没有经过归算,所以为实际值; 二次侧电压、电流不是实际值,因为归算前后绕组匝数不同,但损耗、功率为实际值。 2-5 变压器的激磁阻抗和等效漏阻抗如何测定? 答:激磁阻抗由空载试验测量;等效漏阻抗由短路试验测量。 (具体测量方法略) 2-14 有一台三相变压器,额定容量 kKA S N 5000=,额定电压kV kV U U N N 3.61021=,Y ,d 联结,试求:(1)一次、 二次侧的额定电流;(2)一次、二次侧的额定相电压和相电流。 解:(1)A A U S I N N N 68.2881035000311=?== A A U S I N N N 21.4583 .635000 322=?== (2)原边Y 联结: kV kV U U N N 77.53 10 311=== Φ A I I N N 68.28811==Φ 副边 ?联结:kV U U N N 3.611==Φ

电机学第三章变压器

第三章 变压器 3.1变压器的分类、基本结构、额定值 3.1.1变压器的分类 变压器:利用电磁感应原理,把一种电压的交流电能转变成频率相同的另一种电压的交流电能。 (来升高或降低电压的一种静止的电能转换装置) 结构原则:两个相互绝缘的绕组套在一个共同的铁心上,它们之间只有磁的耦合,没有电的联系。 一次侧:通入交流电流侧,即吸收电能侧。一次侧通入电流产生交变磁通,进而感应电势dt d N e φ11-=。 二次侧:接负载侧,即输出电能侧。与一次侧产生的磁通交链,进而产生感应电势dt d N e φ2 2 -=。 原理:e 1/e 2=N 1/N 2≈U 1/U 2 (画示意图) 1.按用途分类:电力变压器、特种变压器、仪用互感器、调压器、试验用高压变压器 2.按绕组数分:双绕组、三绕组、多绕组变压器以及自耦变压器 1.按铁心结构分:心式、壳式变压器 2.按相数分:单相变压器、三相变压器 3.按冷却方式和冷却介质分:空气冷却的干式变压器和用油冷却的油浸式变压器。 3.1.2 变压器的基本结构

3.1.3 变压器的额定值 额定容量S N1=S N2=S N (V A, kV A, MV A) 额定电压:一次侧U 1N , 二次侧U 2N :一次侧外加额定电压时,二次侧空载电压即为U 2N 。 额定电流:一次侧I 1N 。二次侧I 2N 。 额定频率:50H Z 额定运行时温升、阻抗电压、联接组别、空载损耗、短路损耗等。 单相变压器:S N1=I 1N U 1N =S N 2= I 2N U 2N =S N 三相变压器:N N N N N U I U I S 221133= = 注意:额定线电压、额定线电流 绕组Y 接法:φ φφφ221122113,3;,U U U U I I I I N N N N = = == 绕组Δ接法:φφφφ22112211,;3,3U U U U I I I I N N N N ==== 3.2变压器的空载运行 3.2.1空载运行时的磁通、感应电动势 此时,二次侧开路,一次侧接入交流电压,产生电流i 0,建立磁势F 0,产生磁场有: 主磁通:同时与一次侧和二次侧交链,并且沿着铁心闭合。磁路非线性。主磁通是能量传递的媒介。 漏磁通:仅与绕组自身交链,通过油或空气闭合。线性磁路。 感应主电势:dt d N e φ1 1-= ,假设电流频率为f ,t m ωφφ sin =,则 t N e m ωφωcos 11-=, 电势有效值复量为:m m m m fN j fN j fN j E E . 1. 1. 11. 1 . 44.422 22 φ φπφ π-=-=-== (滞 后磁通90度) 感应漏电势:() dt di L dt di N dt i N d N dt d N e 01012 11011 11 1σ σ σ σσ φ-=Λ-=Λ-=-= 正弦稳态下,σ σσ ω10. 10. . 1X I j L I j E -=-= 这说明,漏电动势可以用漏电抗压降来表示。且σ1X 为常数(漏 磁路磁导率为常数)。

第二章 变压器

第二章变压器 变压器是一种静止的电器,它利用电磁感应作用将一种电压.电流的交流电能转接成同频率的另一种电压,电流的电能。变压器是电力系统中重要的电气设备,众所周如。输送一定的电能时,输电线路的电压愈高,线路中的电流和损耗就愈小。为此需要用升压变压器把交流发电机发出的电压升高到输电电压:通过高压输电线将电能经济地送到用电地区,然后再用降压变压器逐步将输电电压降到配电电压,供用户安全而方便地使用。在其他工业部门中,变压器应用也很广泛。 本章主要研究一般用途的电力变压器,对其他用途的变压器只作简单介绍。 2.1 变压器的基本结构和额定值 一、变压器的基本结构 铁心和绕组变压器中最主要的部件是铁心和绕组,它们构成了变压器的器身。 变压器的铁心既是磁路,又是套装绕组的骨架。铁心由心柱和铁轭两部分组成,心柱用来套装绕组,铁轭将心柱连接起来,使之形成闭合磁路。为减少铁心损耗,铁心用厚o.30—o.35mm的硅钢片叠成,片上涂以绝缘漆,以避免片间短路。在大型电力变压器中.为提高磁导率和减少铁心损耗,常采用冷轧硅钢片;为减少接缝间隙和激磁电流,有时还采用由冷轧硅钢片卷成的卷片式铁心。 按照铁心的结构,变压器可分为心式和壳式两种。心式结构的心柱被绕组所包围,如图2—1所示;壳式结构则是铁心包围绕组的顶面、底面和侧面,如图2—2所示.心式结构的绕组和绝缘装配比较容易,所以电力变压器常常采用这种结构。壳式变压器的机械强度较好,常用于低压、大电流的变压器或小容量电讯变压器。 绕组是变压器的电路部分,用纸包或纱包的绝缘扁线或圆线绕成。其中输人电能的绕组称为一次绕组(或原绕组),输出电能的绕组称为二次绕组(或副绕组),它们通常套装在同一心柱上。一次和二次绕组具有不同的匝数、电压和电流,其中电压较高的绕组称为高压绕组,电压较低的称为低压绕组。对于升压变压器,一次绕组为低压绕组,二次绕组为高压绕组;对于降压变压器,情况恰好相反,高压绕组的匝数多、导线细;低压绕组的匝数少、导线粗。 从高、低压绕组的相对位置来看,变压器的绕组可分成同心式和交迭式两类。同心式绕组的高、低压绕组同心地套装在心柱上,如图2—1所示。交迭式绕组的高、低压绕组沿心

电机学知识点总结

电机学知识点总结 电机学课程是高等学校电气类专业的一门重要技术基础课课程的特点是理论性强、概念抽象、专业性特征明显它涉及的基础理论和知识面较广牵涉电、磁、热、机械等综合知识。下面请看我带来的电机学知识点总结。 电机学知识点总结 直流电动机知识点 1、直流电动机主要结构是定子和转子;定子主要包括定子铁心、励磁绕组、电刷。转子主要包括转子铁心、电枢绕组、换向器。 2、直流电动机通过电刷与换向器与外电路相连接。 3、直流电动机的工作原理:通过电刷与换向器之间的切换,导体内的电流随着导体所处的磁极性的改变而同时改变其方向,从而使电磁转矩的方向始终不变。 4、通过电刷和换向器将外部通入的直流电变成线圈内的交变电流的过程叫做“逆变”。 5、励磁方式分为他励式和自励式;自励式包括并励式、串励式和复励式。(只考他励式和并励式,掌握他励式和并励式的图形) 6、直流电机的额定值:①额定功率PN 对于发电机额定功率指线端输出的电功率;对于电动机额定功率指轴上输出的机械功率。②额定电压、额定电流均指额定状态下电机的线电压线电流。 7、磁极数=电刷数=支路数(2p=电刷数=2a,p为极对数,a为支路对数) 8、空载时电极内的磁场由励磁绕组的磁动势单独作用产生,分为主磁通和

漏磁通两部分。 9、电枢反应:负载时电枢磁动势对气隙主磁场的影响。 10、电刷位置是电枢表面电流分布的分界线。 11、交轴电枢反应的影响:①使气隙磁场发生畸变;②物理中线偏离几何中线;③饱和时具有一定的去磁作用。 12、电刷偏离几何中线时,出现直轴。 13、Ea=CeΦn Te=CTΦIa CT=9.55Ce 14、发电机 Ea=U+IaRa 电动机 U=Ea+IaRa 15、他励发电机的特性(主要掌握外特性U=f(I)) 曲线向下倾斜原因①U=Ea‐IaRa;随着负载电流I增大,电枢电阻压降 IaRa 随之增大,所以U减小。②交轴电枢反应产生一定的去磁作用;随着负载的增加,气隙磁通Φ和电枢电动势Ea将减小,再加上IaRa的增大使电压的下降程度增大。 16、并励发电机自励条件:①电机的磁路中要有剩磁;②励磁绕组的接法要正确,使剩磁电动势所产生的电流和磁动势,其方向与剩磁方向相同;③励磁回路的总电阻必须小于临界电阻。 17、并励发电机的外特性U=f(I),曲线下降原因①②同上他励发电机;③励磁电流减小,引起气隙磁通量和电枢电动势的进一步下降。 18、为什么励磁绕组不能开断? 若励磁绕组开断,If=0,主磁通将迅速下降到剩磁磁通,电枢电动势也将下降到剩磁电动势,从而使电枢电流Ia迅速增大,如果负载为轻载,则电动机转

电机学知识点讲义汇总

电机学知识点讲义汇总 第一章 基本电磁定律和磁路 电机的基本工作原理是建立在电磁感应定律、全电流定律、电路定律、磁路定律和电磁力定律等定律的基础上的,掌握这些基本定律,是研究电机基本理论的基础。 ▲ 全电流定律 全电流定律 ∑? = I Hdl l 式中,当电流方向与积分路径方向符合右手螺旋关系时,电流取正号。 在电机和变压器的磁路计算中,上式可简化为 ∑∑=Ni Hl ▲电磁感应定律 ①电磁感应定律 e=- dt d N dt d Φ -=ψ 式中,感应电动势方向与磁通方向应符合右手螺旋关系。 ②变压器电动势 磁场与导体间无相对运动,由于磁通的变化而感应的电势称为变压器电动势。电机中的磁通Φ通常是随时间按正弦规律变化的,线圈中感应电动势的有效值为 m fN E φ44.4= ③运动电动势 e=Blv ④自感电动势 dt di L e L -= ⑤互感电动势 e M1=-dt di 2 e M2 =-dt di 1 ▲电磁力定律 f=Bli ▲磁路基本定律 ① 磁路欧姆定律 Φ= A l Ni μ=m R F =Λm F 式中,F=Ni ——磁动势,单位为A ; R m = A l μ——磁阻,单位为H -1; Λm = l A R m μ=1——磁导,单位为H 。

② 磁路的基尔霍夫第一定律 0=?s Bds 上式表明,穿入(或穿出)任一封闭面的磁通等于零。 ③ 磁路的基尔霍夫第二定律 ∑∑∑==m R Hl F φ 上式表明,在磁路中,沿任何闭合磁路,磁动势的代数和等于次压降的代数和。 磁路和电路的比较 第二章 直流电动机 一、直流电机的磁路、电枢绕组和电枢反应 ▲磁场是电机中机电能量转换的媒介。穿过气隙而同时与定、转子绕组交链的磁通为主磁通;仅交链一侧绕组的磁通为漏磁通。直流电机空载时的气隙磁场是由励磁磁动势建立的。空载时,主磁通Φ0与励磁磁动势F 0的关系曲线Φ0=f (F 0)为电机的磁化曲线。从磁化曲线可以看出电机的饱和程度,饱和程度对电机的性能有很大的影响。 ▲ 电机的磁化曲线仅和电机的几何尺寸及所用的材料有关,而与电机的励磁方式无关。电 机的运行特性与磁化曲线密切相关。设计电机时,一般使额定工作点位于磁化曲线开始弯曲的部分,这样既可保证一定的可调节度,又不至于浪费材料。 ▲ 直流电机电枢绕组各元件间通过换向器连接,构成一个闭合回路,回路内各元件的电动 势互相抵消,从而不产生环流。元件内的电动势和电流均为交变量,通过换向器和电刷间的相对运动实现交直流转换。电刷的放置原则是:空载时正、负电刷之间获得最大的电动势,这时被电刷短路的元件的电动势为零。因此,电刷应放在换向器的几何中性线上。对端接对称的元件,换向器的几何中性线应与主极轴线重合。 ▲ 不同型式的电枢绕组均有①S=K=Z ;②y 1=Z i /2p ε=整数;③y=y 1+y 2。其中,S 为元 件数,K 为换向片数,Z i 为虚槽数,p 为极对数,y 1为第一节距,y 2为第二节距,y 为合成节距,ε为小于1的分数,用来把y 1凑成整数。对单叠绕组,y=±1,y 2小于0,并联支路对数a=p ,即每极下元件串联构成一条支路。对单波绕组,y 2大于零,a=1,即所有同极性下元件串联构成一条支路。

2009电机学变压器直流电机题解

电机学题解 一.填空题(20分,每小题2分) 1. 变压器铁心在叠装时由于装配工艺不良,铁心间隙较大,主磁通将,励磁 电流将。 2. 一台单相变压器进行空载试验,在高压侧加额定电压测得的损耗和在低压侧加 额定电压测得的损耗______。 3. 三相变压器组不宜采用Y,y联接组,主要是为了避免。 4.不考虑铁心损耗时,当变压器的磁通随时间正弦变化时,磁路饱和的非线性性 质将导致激磁电流成为与磁通同相位的波。 5.变压器的绕组归算,实质上是在保持为不变量的条件下, 对绕组的电压、电流所进行的一种线性变换。 6. 直流电机的主磁路包括以下几段:电枢齿两个、电枢轭一段、主极铁心两个、定 子轭一段以及。 7.直流电机单叠绕组的并联支路对数为,单波绕组的并联支路对数。 8.直流电机的交轴电枢反应结果是:引起气隙磁场畸变;使物理中性线偏离几何中 性线一个角度;计及饱和时,对主磁场有。 9. 一台并励直流电动机拖动恒定的负载转矩,做额定运行时,如果将电源电压降低 了20℅,则稳定后电机的电枢电流为倍的额定电枢电流(假设磁路不饱和)。 10.一台串励直流电动机与一台并励直流电动机,都在满载下运行,它们的额定功 率和额定电流都相等,若它们的负载转矩同样增加1 N.m,则可知:电动 机转速下降得多,而电动机的电流增加得多。 1.不变,增加; 2.相等; 3.电压波形畸变; 4.尖顶波; 5.一次或二次侧磁动势; 6.两段气隙; 7. 2p,2;8.去磁作用;9. 1.25倍;10.串励,并励。 二.问答题(40分)

v U 110=的电源上运行时,问:励磁电流,铁耗,一、二次侧漏抗,负载能力如何变化?为什么?(8分) 答:由式m fN E U Φ=≈11144.4可知,前后两种情况主磁通相同。从磁路欧姆定律知,励 磁电流不变。主磁通未变,磁密不变,频率减小,则铁耗减小(3.12f B p m Fe ∝) 。一、二次侧的漏电抗随频率的减小成正比减小。另外,二次侧感应电动势比原来减少一倍,故负载能力减小一倍。 2.变压器在额定电压和额定频率的电源下空载运行时,当频率保持不变,电源电压增加到 1.1N U ,励磁电抗和铁耗如何变化,为什么?若变压器二次侧短路,励磁电抗和铁耗如何变化,为什么?(8分) .答:(1)此时主磁通增大,主磁路饱和程度增加,铁心磁导率减小,磁阻增大,由磁路欧姆定律知,励磁电流大大增加,反映在等效电路中就是励磁电抗减小。(2)二次侧短路,二次侧电流大大增加,由磁动势平衡知一次侧电流也大大增加,再从一次侧电压平衡方程式知,电压U 1不变,漏阻抗压降大大增加,则电动势E 1减小很多,主磁通随之减小,可知励磁电抗有所增加。 计算题(30分) 3.已知一台两极直流电机,主磁极不加励磁电流,只在电刷通以直流电流且电枢以一定的转速旋转,问电枢导体是否感应电动势、电刷两端的感应电动势为多少?为什么?(8分) 答:此时气隙磁密友电枢磁动势单独产生,而正、负电刷间导体电流的大小和方向不变,故气隙磁密相对于定子时静止的,旋转的电枢导体切割此气隙磁密而感应电动势。电刷两端的感应电动势为零,因正、负电刷间(支路间)导体感应电动势彼此抵消了。从辜承林教材 图2.35可清楚的知道这一点。 4.一台直流发电机,定子为6极,电枢绕组为单叠型式。正常运行时有三对电刷,如保持额定运行时转速及励磁电流不变,因故去掉一对电刷,忽略电枢反应的影响,试分析电机可能发出的最大功率。(8分) 答:单叠绕组的并联支路数为2p ,故原来有6条并联支路数,去掉相邻一对电刷后,支路数变为4条,其中三条是原来的,另一条由原来的三条支路串联而成。 正常运行时,a a a i ai I 62== ; 现在,a a a a I i i I 9 5313'= +=,a a I U P =。P I U P a a 95'max ==,此为电机可能发出的最大功率。

第三章 变压器习题答案

第三章 变压器 一、填空: 1. 变压器空载运行时功率因数很低,其原因为 。 答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。 2. 变压器的副端是通过 对原端进行作用的。 答:磁动势平衡和电磁感应作用。 3. 引起变压器电压变化率变化的原因是 。 答:负载电流的变化。 4. 联接组号不同的变压器不能并联运行,是因为 。 答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。 5. 变压器副边的额定电压指 。 答:原边为额定电压时副边的空载电压。 6. 通过 和 实验可求取变压器的参数。 答:空载和短路。 7. 变压器的结构参数包括 , , , , 。 答:激磁电阻,激磁电抗,绕组电阻,漏电抗,变比。 8. 在采用标幺制计算时,额定值的标幺值为 。 答:1。 9. 既和原边绕组交链又和副边绕组交链的磁通为 ,仅和一侧绕组交链的磁通为 。 答:主磁通,漏磁通。 10. 变压器的一次和二次绕组中有一部分是公共绕组的变压器是 。 答:自耦变压器。 11. 并联运行的变压器应满足(1) ,(2) , (3) 的要求。 答:(1)各变压器的额定电压与电压比应相等;(2)各变压器的联结组号应相同;(3)各变压器的短路阻抗的标幺值要相等,阻抗角要相同。 12. 变压器运行时基本铜耗可视为 ,基本铁耗可视为 。 答:可变损耗,不变损耗。 二、选择填空 1. 三相电力变压器带电阻电感性负载运行时,负载电流相同的条件下, cos 越高,则 。 A :副边电压变化率Δu 越大,效率η 越高, B :副边电压变化率Δu 越大,效率η 越低, C :副边电压变化率Δu 越大,效率η 越低, D :副边电压变化率Δu 越小,效率η 越高。 答:D 2. 一台三相电力变压器N S =560kVA ,N N U U 21 =10000/400(v), D,y 接法,负载时忽略励磁电流,低压边相电流为808.3A 时,则高压边的相电流为 。 A : 808.3A , B: 56A , C: 18.67A , D: 32.33A 。 答:C 3. 一台变比为k =10的变压器,从低压侧作空载实验,求得副边的励磁阻抗标幺值为16,那末原边的励磁阻抗标幺值是 。 A:16, B:1600,

电机学变压器经典习题及答案

第二章变压器 一、填空: 1. ★★一台单相变压器额定电压为380V/220V,额定频率为50HZ如果误将低压侧接到380V 上,则此时m_—I。,Z m——P Fe __________________ 。(增加,减少或不变) 答:m增大,I 0增大,Z m减小,P Fe增大。 2. ★一台额定频率为50Hz的电力变压器接于60Hz,电压为此变压器的6/5倍额定电压的电 网上运行,此时变压器磁路饱和程度________ ,励磁电流_________ ,励磁电抗__________ ,漏电抗___________ 。 答:饱和程度不变,励磁电流不变,励磁电抗增大,漏电抗增大。____ 3. 三相变压器理想并联运行的条件是(1)_________________________________________________ , (2)_______________________________ ,(3)________________________________________ 。答:(1)空载时并联的变压器之间无环流;(2 )负载时能按照各台变压器的容量合理地分担 负载;(3)负载时各变压器分担的电流应为同相。 4. ★如将变压器误接到等电压的直流电源上时,由于E= ___________ ,U= _________ ,空 载电流将_____________ ,空载损耗将____________ 。 答:E近似等于U, U等于IR,空载电流很大,空载损耗很大。 5. ★变压器空载运行时功率因数很低,其原因为 ___________________________________ 。 答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。 6. ★一台变压器,原设计的频率为50Hz,现将它接到60Hz的电网上运行,额定电压不变, 励磁电流将_______ ,铁耗将 _____ 。 答:减小,减小。 7. 变压器的副端是通过__________________ 对原端进行作用的。 答:磁动势平衡和电磁感应作用。 8. 引起变压器电压变化率变化的原因是 _____________________ 。 答:负载电流的变化。 9. ★如将额定电压为220/110V 的变压器的低压边误接到220V电压,则激磁电流 将__________ ,变压器将 ____________ 。 答:增大很多倍,烧毁。 10. 联接组号不同的变压器不能并联运行,是因为 _____________ 。 答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。 11. ★★三相变压器组不宜采用Y,y联接组,主要是为了避免____________ 。 答:电压波形畸变。 12. 变压器副边的额定电压指____________________________ 。 答:原边为额定电压时副边的空载电压。 13. ★★为使电压波形不发生畸变,三相变压器应使一侧绕组 _____________ 。 答:采用d接。 14. 通过_________ 和_________ 实验可求取变压器的参数。 答:空载和短路。

电机学上册复习重点第2篇变压器

第二篇 变压器 一、填空: 1. 一台单相变压器额定电压为380V/220V ,额定频率为50HZ ,如果误将低压侧接到380V 上, 则此时m Φ ,0I ,m Z ,Fe p 。(增加,减少或不变) 答:m Φ增大,0I 增大,m Z 减小,Fe p 增大。 2. 一台额定频率为50Hz 的电力变压器接于60Hz ,电压为此变压器的6/5倍额定电压的电网上运行,此时变压器磁路饱和程度 ,励磁电流 ,励磁电抗 ,漏电抗 。 答:饱和程度不变,励磁电流不变,励磁电抗增大,漏电抗增大。 3. 三相变压器理想并联运行的条件是(1) , (2) ,(3) 。 答:(1)空载时并联的变压器之间无环流;(2)负载时能按照各台变压器的容量合理地分担负载;(3)负载时各变压器分担的电流应为同相。 4. 变压器空载运行时功率因数很低,其原因为 。 答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。 5. 一台变压器,原设计的频率为50Hz ,现将它接到60Hz 的电网上运行,额定电压不变,励 磁电流将 ,铁耗将 。 答:减小,减小。 6. 引起变压器电压变化率变化的原因是 。 答:负载电流的变化。 7. 如将额定电压为220/110V 的变压器的低压边误接到220V 电压,则激磁电流 将 ,变压器将 。 答:增大很多倍,烧毁。 8. 联接组号不同的变压器不能并联运行,是因为 。 答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。 9. 变压器副边的额定电压指 。 答:原边为额定电压时副边的空载电压。 10. 通过 和 实验可求取变压器的参数。 答:空载和短路。 11. 变压器的结构参数包括 , , , , 。 答:激磁电阻,激磁电抗,绕组电阻,漏电抗,变比。 12. 既和原边绕组交链又和副边绕组交链的磁通为 ,仅和一侧绕组交链的磁通 为 。 答:主磁通,漏磁通。 13. 变压器的一次和二次绕组中有一部分是公共绕组的变压器是 。 答:自耦变压器。 14. 并联运行的变压器应满足(1) , (2) ,(3) 的要求。 答:(1)各变压器的额定电压与电压比应相等;(2)各变压器的联结组号应相同;(3)各变压器的短路阻抗的标幺值要相等,阻抗角要相同。

电机学主要知识点复习提纲

电机学主要知识点复习提纲 一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2?U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E 、转矩常数C T 16. 电磁功率 P em 电枢铜耗 p Cua 励磁铜耗 p Cuf 电机铁耗 p Fe 机械损耗 p mec 附加损耗 p ad 输出机械功率 P 2 可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动;启动电流 22. DM 的调速方法:电枢串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ==

电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --= DM 的效率:21 112 100%100%(1)100%P P p p P P P p η-∑∑=?=?=-?+∑ 他励DM 的转速调整率: 0N N 100%n n n n -?=? DM 的机械特性:em 2T j a j a a )(T Φ C C R R ΦC U ΦC R R I U n E E E +-=+-= . 并联DM 的理想空载转速n 0: 二、变压器 A. 主要概念 1. 单相、三相;变压器组、心式变压器;电力变压器、互感器;干式、油浸式变压器 2. 铁心柱、轭部 3. 额定容量、一次侧、二次侧 4. 高压绕组、低压绕组 5. 空载运行,主磁通Φ、漏磁通Φ1σ及其区别,主磁路、漏磁路 空载电流、主磁通、反电动势间的相位关系,铁耗角 6. Φ、i 、e 正方向的规定。 7. 变比、二次侧空载电压、二次侧额定电压 8. 励磁电抗X m 、励磁电阻R m 、一次侧漏电抗X 1σ、二次侧漏电抗X 2σ 9. 负载运行时变压器的原理示意图 10. 变压器的磁势平衡 11. 绕组折算原则、折算方法、作用 12. 功率因数滞后时的变压器相量图画法 13. T 型等效电路、Γ型等效电路、简化等效电路 14. 空载试验、短路试验的用途、注意事项 15. 标幺值、基准的选择 16. (不同负载时的)电压变化率,短路阻抗、短路电阻、负载系数 17. 效率最大值发生的条件 18. 三相变压器的磁路:组式、心式

电机学变压器报告

1 / 7 变压器节能降耗技术调研 一.电网损耗的构成 电能是由一次能源转换而得的二次能源,它可以很方便的转化为机械能,热能,磁能,光能,化学能,等等。随着社会的发展,电能的应用已经深入到生产,生活的每一领域,电能已成为国民经济的命脉。世界上科技水平较高的国家都比较重视电能的开发、利用、节约、管理。通过各种技术手段降低电能损耗,节约能源,以最大的电能利用率进行生产活动。 电力系统是由发电,供电,用电三个部分组成,所以电力系统的电能损失也包含发电,供电,用电设备的全部损失。就变压器损耗部分展开讨论。 二.变压器的基本作用原理与理论分析 1.电力变压器的基本结构 通常的电力变压器大部分为油浸式,铁心和绕组都浸放在盛满变压器油的油箱中。主要由五个部分组成:铁芯,带有绝缘的绕组,变压器油,油箱,绝缘套管。 2.变压器的技术参数 (1)额定值 变压器的铭牌标注的额定值,额定容量S N ,就是总容量; 额定电压是由制造厂商规定的,是变压器在空载时额定分接头 上的电压保证值U 1N ,U 2N ;额定电流是额定容量除以各绕组的 额定电压所计算出来的线电流值,空载电流(励磁电流)。 空载电流的作用是在变压器空载运行时建立主磁通,因此 空载电流又称为励磁电流。

(2)空载损耗(铁芯损耗) 空载损耗是在变压器接入额定电压条件下,铁芯内由励磁电流引起周期性变化时产生的损耗,也称铁芯损耗。 (3)短路阻抗(短路电压) 变压器的短路电压是指在副绕组短路时在原绕组施加额定频率的低电压。当副绕组 流过额定电流时,原绕组所施加的电压U K称为变压器的短路电压,又称阻抗电压。短 路阻抗与变压器的结构密切相关,其值的大小主要取决于原、副绕组的几何尺寸,例如 直径,绕组厚度,绕组高度,原、副绕组的距离等。 (4)额定负载损耗(短路损耗) 当变压器在额定负载运行时,原、副绕组流过额定电流,此时绕组中所产生的损耗称为额定负载损耗。 三.变压器综合功率损耗 综合功率损耗的概念:综合功耗是指变压器有功功率损耗和无功功率的损耗之和。 计算式 △p z=△P+K Q△或△p z=p0z+β2p kz K Q——无功经济当量 p0z——空载综合功率损耗 p kz——额定负载综合功率损耗 K Q, p0z ,p kz计算式 K Q=△p c △`Q p0z = p0 +K Q Q0 p kz=P+K Q Q0k 式中△p c——变压器联接系统的有功功率损耗下降值 2 / 7

电机学复习重点整理

第一章变压器 1.变压器基本工作原理,基本结构、主要额定值 变压器是利用电磁感应原理将一种电压等级的交流电能变换为另一种同频率且不同电压等级的交流电能的静止电气设备,它在电力系统,变电所以及工厂供配电中得到了广泛的应用,以满足电能的传输,分配和使用。变压器的原理是基于电磁感应定律,因此磁场是变压器的工作媒介 变压器基本结构组成: 猜测可能出填空题或选择题 三相变压器按照磁路可分为三相组式变压器和三相芯式变压器两类 变压器的型号和额定值 ~

考法:例如解释S9-1250/10的各项数值的含义 2.变压器空载和负载运行时的电磁状况;空载电流的组成、作用、性质。变压器一次侧接到额定频率和额定电压的交流电源上,其二次侧开路,这种运行状态称为变压器的空载运行。 变压器空载运行原理图 、 变压器一次绕组接交流电源,二次绕组接负载的运行方式, 称为变压器的负载运行方式。 变压器负载运行原理图 实际运行的电力变压器的磁路总是工作在饱和状态下。 通过磁化曲线推得的电流波形可以发现: 空载电流(即励磁电流)呈尖顶波,除了基波外, 还有较强的三次谐波和其他高次谐波。

21 21N N E E = ; 产生主磁通所需要的电流称为励磁电流,用m i 表示; 同理产生主磁通的磁动势称为励磁磁动势,用 m F 表示。 变压器铁芯上仅有一次绕组空载电流0i 所形成的磁动势0F , 即空载电流0i 建立主磁通,所以空载电流0i 就是励磁电流m i ,即m 0i i = 同理,空载磁动势0F 就是励磁磁动势,即m 0F F =或m 101i N i N = 因为空载时,变压器一次绕组实际上是一个铁芯线圈, 空载电流的大小主要决定于铁芯线圈的电抗和铁芯损耗。 铁芯线圈的电抗正比于线圈匝数的平方和磁路的磁导。 因此,空载电流的大小与铁芯的磁化性能,饱和程度有密切的关系。 3. } 4. 变压器变比的定义;磁动式平衡关系的物理含义,用此平衡关系分析变压器 的能量传递;变压器折算概念和变压器折算方法,变压器基本方程组、等效电路和相量图 在变压器中,一次绕组的感应电动势1E 与二次绕组的感应电动势2E 之比称为变比,用k 表示,即k = 变压器负载运行时,作用于变压器磁路上111N I F ? =和222N I F ? =两个磁动势。 对于电力变压器,由于其一次侧绕组漏阻抗压降很小,负载时仍有 m 111fN 44.4E U φ=≈,故变压器负载运行时铁芯中与1E 相对应的主磁通? m φ近似等 于空载时的主磁通,从而产生? m φ的合成磁动势与空载磁动势近似相等,即 m 021F F F F ==+ m 1012211I N I N I N I N ? ?? ? ==+ 变压器空载运行时的电压平衡方程

相关文档
最新文档