手机锂电池智能充电器设计

摘要

随着手机的普及,手机充电器已经成为现代家庭中常用的电器之一。虽然手机的品牌和型号众多,各种手充电器形状和接口不同,但它们的原理和功能基本一样,电路结构大同小异。所有手机充电器其实都是由一个稳定电源加上必要的恒流、限压、限时等控制电路构成。本论文将以单片机和充电芯片MAX1898为核心来构建一种智能充电器。对基于单片机的充电器的智能部分的设计与实现的研究,是本论文研究的主要任务。

本论文的重点有两方面内容:1.充电的实现;2.智能化的实现。论文共分为五章。

第一章是绪论部分。综述了电池、充电知识与充电器,提出了本论文的研究内容以及系统设计的目标。

第二章是手机锂电池智能充电器的硬件结构设计部分,该部分是本论文的重点之一。首先介绍了设计思路和主要器件,然后详细地介绍了手机锂电池智能充电器硬件部分的总体结构设计和各部分电路的设计,并给出了相应原理图。

第三章是手机锂电池智能充电器软件设计部分,该部分是本论文的另一个重点。这一章详细地介绍了手机锂电池智能充电器软件的总体构架及程序说明;最后介绍了主要功能的具体实现。

第四章是系统实现及调试部分。这一章主要介绍了软硬件调试环境,调试过程,调试中碰到的问题及其解决方法,并给出了系统部分调试的结果。

最后一章后对本文的研究内容做了总结,并对基于单片机的手机智能充电器的发展作了展望。

关键字:智能充电器;MAX1898;预充;充电保护;充电报警。

Abstract

As the popularization of the mobile phone, the mobile charger becomes the universal electric appliance in family. Although the difference of the brands and models exists, the principle and function of mobile phone and mobile charger are similar, and their circuits are also resemblance. The entire mobile phone charger contains a constant voltage source and some circuits that contains the constant current, limit voltage or limit time. In this thesis, an intelligent charger with the center of MCU and a charge chip MAX1898 is elaborates. The main task of the project is the design and realization of an intelligent phone charger based on the MCU.

The emphasis of this thesis contains two parts: first, realization of charge, second, realization of intelligence. There are five chapters composed this thesis.

The first part is preface. It elaborates the knowledge about battery, charger and how to charge the battery. It also introduces the task of the project and the purpose of this design.

The second part introduces the hardware construction of the designed intelligent mobile telephone charger for Lithium battery. It is one of the emphases of this thesis. It introduces the design’s thought and the main chips, and then, introduces the main construction and all parts of the circuit in detail. It also gives the principle schemes.

The third chapter is another emphasis of this thesis. It is software design of mobile phone battery charger. This part introduces the main construction and procedure of the charger in detail. It introduces how to realize the function at last.

The forth part introduces how to realize and debug this charge system. It contains the environment of debugging hardware/software, debugging procedure, the problem that will be found in debug and how to deal with it and also gives some result of debugging.

The last chapter is to summarize this research and gives the prospect of MCU’s mob ile phone intelligent charger.

Keywords:intelligent charger; MAX1898; pre-charge; charge protect;

charge alarm.

目录

第1章绪论 (1)

1.1 充电电池简介 (1)

1.1.1 电池定义 (1)

1.1.2 电池充电 (1)

1.1.3 常见充电电池 (3)

1.2 充电知识简介 (4)

1.2.1 充电方法 (4)

1.2.2 快速充电的基本原理 (4)

1.3 充电器知识简介 (5)

1.3.1 充电器要求 (5)

1.3.2 充电终点控制方法 (5)

1.4 手机锂电池充电知识简介 (6)

1.4.1 锂电池 (6)

1.4.2 锂电池充电 (7)

1.4.3 现代锂离子电池充电器 (7)

1.5 本课题的设计任务 (8)

第2章手机锂电池智能充电器硬件设计 (9)

2.1 设计思路分析 (9)

2.1.1 充电器的智能化要求 (9)

2.1.2 充电器智能化实现 (9)

2.2 主要器件及其功能 (9)

2.2.1 AT89C51引脚说明 (9)

2.2.2 MAX1898引脚说明 (11)

2.2.3 6N137引脚说明 (13)

2.3 电路原理图及说明 (14)

2.3.1 单片机电路 (14)

2.3.2 电压转换及光藕隔离部分电路 (15)

2.3.3 充电控制电路 (15)

2.4 充电过程 (16)

2.4.1 预充 (16)

2.4.2 快充 (16)

2.4.3 满充 (16)

2.4.4 断电 (17)

2.4.5 报警 (17)

第3章手机锂电池智能充电器软件设计 (18)

3.1 实现功能 (18)

3.2.1 流程图一 (18)

3.2.2 流程图二 (19)

3.2.3 流程图三 (19)

3.3 程序说明 (21)

第4章系统调试 (24)

4.1 硬件调试 (24)

4.2 软件调试 (24)

第5章展望 (25)

5.1 设计总结 (25)

5.2 智能充电器发展展望 (25)

结束语 (26)

致谢词 (27)

参考文献 (28)

附录一:原理图 (29)

附录二:PCB板图 (31)

附录三:程序 (32)

中国地质大学学士学位论文

第1章绪论

1.1充电电池简介

1.1.1 电池定义

电池的应用从来没有像现在这么广泛。电池正在变得更小、更轻,在单位容积内可容纳更多能量。电池发展的主要驱动力来自便携装置(移动电话,膝上电脑,摄录像机,MP3播放机)的发展。

电池称之为能量储存系统,这也包括续流和时钟源。从现代技术的角度看,电池通常是产生电能的自储化学系统的便携装置。

一次性电池(称之为不可充电或初级电池)从恒定变化电池的化学反应产生电能。一次性电池的放电引起电池化学成分的永久性和不可逆变化。反之,可充电电池称之为二次电池,二次电池由充电器充电而在应用中放电。因此,二次电池可以多次产生能量和多次储存能量。

充电或放电电流(安培)通常表示为额定容量的倍数(称之为C率)。例如,额定为1安培一小时(1Ah)的电池,C/10放电电流为1Ah/10=100mA。电池的额定容量(Ah或mAh)是在特定条件下完全充电时所能储存(产生)的电量。因此,电池的总能量是容量乘电压,其量度为瓦特一小时。

电池的化学成分和设计一起限定电池所能提供的电流。若没有限制性能的实际因素,电池可产生无穷大的电流。限制电池性能的主要因素是化学成分的反应率、电池设计和发生反应的区域。某些电池具有产生大电流的能力。

没有一个电池能永久地储存能量。不可避免地,电池化学反应能力逐渐下降导致电池储存电荷减少。电池容量和重量(或尺寸)之比称之为电池的存储密度。在给定尺寸和重量的电池中,高存储密度意味着可储存更多能量。[1]

1.1.2 电池充电

下面六个图是不同的充电方式的时间与电流、电压关系示意图。

图 1-1 半恒流充电(主要用在电动剃刀,数字无绳电话和玩具等应用中)

手机锂电池智能充电器设计073032-22 吴未

图 1-2 定时器控制的充电(主要用在笔记本电脑、无线设备和蜂窝电话中)

图1-3 -△V 截止电流(用在笔记本电脑、摄录像机、无线设备和蜂窝电话中)

图1-4 -dT/dt 终止充电(应用在电动工具和电气工具中)

中国地质大学学士学位论文

图 1-5 涓流充电(主要用在应急灯、导向灯、存储器、备用设备中)

图 1-6 恒流,恒压充电(用于蜂窝电话、无线设备和笔记本 PC)

一个新的可充电电池或电池组(一个电池组中有几个电池)不能保证完全充满电。事实上它们很可能几乎被放电。因此,第一件要做的事情是根据制造商提供的化学成分相关指南,对电池/电池组进行充电。

每次充电操作根据电池的化学成分依序加电压和电流。因此,充电器和充电算法满足电池化学成分的不同要求。镍和锂基电池要求不同的充电算法。Li+电池需要保护电路来监控和保护过流,短路,过压和欠压以及过温。电池充电经常遇到的术语是:用于NiCl 和NiMH电池的恒流(CC)和用于锂离子和锂聚合物电池的恒流/恒压(CC/CV)。

1.1.3 常见充电电池

现在,常见的充电电池有镍氢NiMH、镍镉NiCd和锂离子LiB电池。由于各自的电化学反应机理不尽相同,因此也各有其特点和不同的应用领域。

手机锂电池智能充电器设计073032-22 吴未

NiCd电池是依靠OH-离子快速移动,反应比铝酸蓄电池平稳。因此,他的重要特征是放电容量尽管在大电流放电时也不出现低下现象(可维持1.2V端电压)。结晶结构基本上不因充放电而变化,使用寿命较长。

NiMH电池的负极材料结构和电化学反应机理不同于NiCd电池,它的能量密度和使用寿命都比NiCd电池优越,从而也能拓出更广阔的应用市场。正是由于这种缘故,世界个工业发达国家都高度重视NiMH电池的研究和开发。

LIB的主要特点是具有较高的重量能量密度,平稳的放电电压为3.6V,可在-20℃~60℃的温度范围内工作,无存储效应,自放电率低(因而不能大电流放电)。为了安全地使用LIB,要求具备严防充电和过充电的保护设施。[2]

1.2 充电知识简介

1.2.1 充电方法

铅酸电池、镉镍电池、氢镍电池、锂离子电池等二次电池,也叫蓄电池或可充电池,充电器对这些电池充电时,可把市售的 EEAF 交流电变成一定电压的直流电,使电能转化为电池内的化学能贮存起来。[3]

充电有两种不同的方法,即对电池进行大电流充电和小电流充电,也就是快速充电和慢速充电。充电主要是通过快速充电来完成。[4]

1.2.2 快速充电的基本原理

1967 年美国人J.A.MAS以最低析气率为前提,找出了蓄电池能够接受的最大充电电流和可以接受的充电电流曲线,如图1-7 所示,方程见式(1)。

e-at(1)

i=I

式中i —任意时刻 t 时蓄电池可接受的充电电流

I

—最大初始可接受充电电流

a—衰减率常数 ,也称充电接受比

图1-7所示是一条自然接受特性曲

线,超过这一充电接受曲线的任何充电

电流,不仅不能提高充电速率,而且会

增加析气,小于此接受曲线的充电电流,

便是蓄电池具有的储存充电电流。

J.A.MAS在实验的基础上提出,蓄

电池在采用任一放电电流后,其充电接

受比和放电放掉的容量的平方根成反

比,即:a=K/C1/2。其中,K为常数,C为

放电容量。可见,a值越大,充电接受电

流越大。

MAS还指出,对于任何放电深度,一个电池的充电接受比a是和放电电流Id

中国地质大学学士学位论文

的对数成正比,即a=Klg(KId),它定量地表明随放电率的不同充电接受比的变化。[5]

可见,充电接受率a取决于其先前放电率以及放电深度。并且当以小电流长时间放电,a值低;而已大电流短时间放电;a值高。

因此,蓄电池在充电过程中采取电量相对很小,而幅度较大且时间很短的放电措施,将恢复或提高蓄电池的充电接受率,从而增大了充电电流,只要对出气率及温升等现象控制得当,就不会对电池的寿命影响太大,而同时却加快了充电速率,缩短了时间,其程度可因不同的设计而成倍缩短。正是在这一理论的基础上,产生了不同于常规充电制度的脉冲充电、放电去极化的快速充电技术。[6]

脉冲充电放电去极化技术发展到现在,因不同的使用对象其分类很多,如定电压、定电流、定周期、定出气率及各种方案的综合等,优劣各不同。许多优秀的快充电设备采用闭环控制,因而对蓄电池充电程度和是否充满电以及对其他现象的检测技术也非常重要,如温升出气与效率等。[7]

1.3充电器知识简介

1.3.1 充电器要求

人们对充电器的要求是:在电池充足电、但不过量充电而把电池充坏的前提下,尽量方便使用。我们用氢镍电池在充电时电池内部发生的变化,如电压、温度和内阻等的变化,来说明什么样的充电器才是合适的。

1.3.2 充电终点控制方法

目前市售的充电器中,控制充电终点的方法大致有5种。

):这种方法考虑到氢镍电池充电时的最高端电压为1.最高电压法(V

max

1.4~1.6V,从充电开始,充电器就不断自动检测电池端电压,当发现电池端电压达到制造者预先设定的电压值后,认为电池已被充足电,则停止充电。

这种充电方法叫定电压充电法,充电刚开始时电流很大,随着电压差的减小,充电电流逐渐变小,直至停止。这种方法的缺点是氢镍电池的内阻会随着电池使用循环次数的增加而增加,新电池能够充足,用一段时间后的电池就充不足了,如果把预设定电压定得太高,过大的初始电流又会充坏电池。而且由于不同厂家的电池内阻不同,充足时的最高电压也不同,制造者不好设定一个都适用的最高电压值。

2.恒流定时法(I×T):使用这种方法的充电器,预设定充电电流在IC 以下,人工或自动控制充电时间,以充入的电量为电池容量的120%~140%为限。市售最常见的,早已用在单体镉镍电池上的充电器,预设定电流一般为50~100mA,充电12~14h,由使用者自行终止充电。因为充电电流不大,稍微过量的充入也不会损坏电池,所以充电终止时间不十分严格。下班时开始充电,充

手机锂电池智能充电器设计073032-22 吴未

一夜,上班时再拔下充电器插头,不误使用。

这种充电方法的缺点一是耗时,二是不管电池状态怎样(是否还有剩余电量、循环使用过多少次、电池实际容量已降低等),不到设定时间不停止充电。在这种情形下,若充电量太多,就会把电池充坏。

3.最高温度法(T

):在充电器上设置一个热敏元件探头,随时检测电

max

池的温度,当电池的温度达到或超过预设定的温度时,减小或中断充电电流。如果充电器和电池配套制造和销售时,可以采用这种方法。但在充电器上对不同厂家生产的电池就很难设定一个都适合的温度。而且充电器检测电池温度还会受到环境温度的影响,导致充电器误动作,所以这种控制方法很有局限性。 4.温升速率法(dT/dt):与最高温度法一样,在充电器上设置一个热敏元件探头。随时检测电池的温度,但是这种方法不是设定最高温度限制,而是设定温升速率的允许值,也就是不断把检测值与上次检测值进行比较。计算出电池在单位时间内温度的变化量,在充电器上预先规定了这个变化量的大小。温升速率过大,则减小或终止充电电流。这种方法的局限性,也和最高温度法一样。

5.零电压降或负电压降法(△V=0或-△V≠0):在定电流充电过程中,充电器不断自动检测电池端电压,当检测到电池的电压不再升高,或是有所下降时,也就是充电电压变化曲线上,出现水平段或出现下降时,认为电池正极上活性物质已全部反应完,即电池已经被充足电了,从而终止充电。这种方法的根据是:充足电时电池内有较大热量产生,电压会突然下降,而小电流充电时,即使充足电,电池的端电压也没有明显的突变。而且对于电池组来说,参与组合的单体电池性能不一致,到达充足的时间不同,电压变化此起彼伏,就不容易测到明显的总电压变化。若预先把-△V值设定得太小,则容易受外电路波动的影响而停止充电,使电池充不足电;若-△V值设定得太大,电池端电压的降低不能控制充电器充电,容易给电池过充电。再说这种方法实质上是在测定电池温度变化后电池端电压的变化,所以也受充电环境温度的影响。

综上所述,在充电器充电过程中,各种控制充电终点的方法都有一定的局限性。有的充电器制造商同时采用几种方法,层层设防,以求万无一失。这里需要指出的是:在一定环境下、对一定电池,充电器上纵然有多种手段,只有一种控制方法在起作用。所以根据不同环境、不同使用要求实际制造不同的充电器,比起设计制造赤道、极地通用、高速慢速都行、各类电池皆可的“万能“充电器来,可能会降低制造成本,也会增加使用可靠性。[3]

1.4 手机锂电池充电知识简介

1.4.1 锂电池

锂离子电池实际上是一种锂离子浓度差电池,正负两极有两种不同的锂

离子嵌入化合物组成,正极采用锂化合物Li x CoO2, Li x NiO2或LiMn2O2,负

中国地质大学学士学位论文

极采用锂-碳层间化合物Li x C6,电解质为LiPF6和LiAsF2等的有机溶液。经过Li+在正负电极间的往返嵌入和脱嵌形成电池的充电和放电的过程。充电时,Li+正极脱嵌经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态。放电时则相反。[8]

1.4.2锂电池充电

近几年来,便携式电子产品的迅猛发展促进了电池技术的更新换代。其中锂离子电池以高能量密度、高内阻、高电池电压、高循环次数、低自放电率等特性,脱颖而出,迅速成为市场的主流。据统计,在笔记本电脑和移动电话领域,锂离子电池的市场占有率分别为80%和60%。根据日本矢野经济研究所的预测,锂离子电池正以53.33%的年增长率快速取代传统的镍铬和镍氢电池市场。

Li+锂电池因具有体积小、重量轻与能量密度高等优势,所以在GSM/CDMA 和数码相机、摄像机及PDA等高端便携式产品中被广泛应用.它们都需要在内建立一个高性能的锂离子电池充电器, 以保证Li+电池在使用中避免过充电、过放电等损害现象的发生,从而,随之带来的是要求锂电池充电器具有严格与完善的保护电路,才能真正实现各项安全保护特性。[9]

其实,镍基电池的充电器是限流型的,而锂离子电池充电器是限制电压和电流。第1代锂离子电池充电电压限制在4.10V/电池。较高的电压意味着较大的容量,通过增加化学添加剂实现了4.20V电池电压。现代锂离子电池一般充电到4.20V(容差±0.05V/电池)。

在充电端电压达到电压阀值和充电电流降到0.03C(接近于3%Ich)之后达到满充电。大多数充电器达到满充电的时间大约为3小时,而一些线性充电器声称大约一小时充电Li+电池。这种充电器通常在电池端电压达到4.2V时终止充电。然而,这种规定只充电电池到其容量的70%。

较大的充电电流不能使充电时间缩短太多。较大的充电电流能较快地达到电压峰值,但浮充需较长时间。凭经验,浮充是初始充电时间的两倍。

锂离子电池具有工作电压高、能量密度高、无记忆效应、自放电小、循环寿命长等一系列优点。但是

必须正确使用,特别是保证正确充电,否则电池的使用性能将受到严重影响甚至于被损坏。设计锂离子

电池充电器要考虑以下几个原则:应充足实际容量,以延长电池的一次充电使用时间,同时又要严格防止过充电。

充电电流要有一定限制,以防止电池过热,发生意外。

为了使新旧电池能够达到“可充”状态,需要一个预充过程。

安全合理地缩短充电时间,方便使用。[10]

1.4.3现代锂离子电池充电器

手机锂电池智能充电器设计073032-22 吴未

第一代的锂离子电池具有电子保护电路,但只是通过被动措施进行电池保护。而最新一代的保护电路在充电保护程序中就变得较为主动,使电池充电要求更加复杂化。

锂离子充电过程与汽车中的密封铅酸电池充电相似。两者都只能在一个限制的温度范围内充电,而且必须在一个电流限制的电压下充电,直到达到特定的电压。他们还需要保持恒定电压,直到电池完全充满。最后,当充电电流达到零时,两者在恒定电压完全充电。对锂离子电池而言,充电的规格限制在0℃到50℃温度范围,而且必须不能超过电池最大充电速率“C”的1/10或C/10,直到电池电压高于2.5V。视其特定的锂离子化学成分,当开路电池电压达到4.1V 或4.2V时电池完全充好。现在,几乎所有的锂离子电池都是4.2V。电压必须精确,因为超过最大充电电压会造成电池灾难性的问题。

要了解锂电池充电器,应该了解这些电池的特点、整个充电过程,并把它们分成不同的阶段。

第一是预调整充电阶段。这个阶段只能在电池容量处于0%容量点以下才会出现。充电器在C/10或低于C/10充电时回检测电池电压,直到电压恢复到电池2.5V以上。通常,要求一个时限以检测无法回复到2.5V以上的损坏电池。

第二是恒定电流充电阶段。需要时限以检测电池无法达到4.2V电压限值的情况,这种情况表明充电过程中可能出现了问题。

第三是恒定电压充电阶段。特定的电池化学成分决定终止电压。当电池电压距终止电压只差10%或更小时,充电电流即开始下降。用一个时限以检测电池不能下降到零电流满充电状态。

第四是结束充电阶段。这实际第三阶段的延续,仅仅是因为现实的技术问题而存在,这与充电器在真正零电流充电状态下的充电器电流监测精确性有关。一般情况下,充电电流降至C/10水平时这个阶段开始。需要一定的时限来表明充电结束并防止连续的浮动充电。

第五也是最后一个阶段是维护。充电器监控开路电池电压。当电池电压降至设定的重启点,即3.90V~4.05V之间时,充电器会重新工作,并提供充电电流使电池电压恢复到 4.2V。[11]

1.5 本课题的设计任务

针对锂电池的充电规律,结合现有锂电池充电器的特点,本课题欲设计

一款智能手机锂电池充电器,要求以单片机为控制核心,选择适当的配套元件,设计硬件电路,并编制相应软件,使所设计的充电器具有智能化特点,

能根据不同手机锂电池的电参数自动确定相应的充电控制规律,自动检测、

充电、断电、报警等,达到理想的充电效果。

中国地质大学学士学位论文

第2章手机锂电池智能充电器硬件设计

2.1 设计思路分析

2.1.1充电器的智能化要求:

充电器实现的方式不同会导致充电效果的不同。由于充电器多采用大电流

的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会

严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电。

手机电池的使用说明和单次使用时间与充电过程密切相关。锂电池是手

机最为常用的一种电池,它具有教高的能量重量比、能量体积比,具有记忆

效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电

器的要求比较苛刻,需要保护电路。为了有效利用电池容量,需将锂电池充

电至作大电压,但是过压充电会造成电池损坏,这就要求较高的控制精度。

另外,对于电压过低的电池需要进行预充,充电器最好带有热保护和时间保护,为电池提供附加保护。[12]

一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当造成的记忆效应,即容量下降(电池活性衰退)现象。

2.1.2充电器智能化的实现

设计比较科学的充电器往往采用专用充电控制芯片配合单片机控制的方法。专用的充电芯片具备业界公认较好的—△V检测,可以检测出电池充电饱和时发出的电压变化信号,比较精确地结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,例如,在充电后增加及时关断电源、蜂鸣报警和液晶显示等功能。充电器的智能化可以缩短充电的时间,同时能够维护电池,延长电池的使用寿命。

目前市场上存在大量的电池充电芯片,它们可直接用于进行充电器的设计。在选择具体的电池充电芯片时,需要参考以下标准:电池类型、电池数目、电流值和充电方式。

本设计要实现的是手机的单节锂电池充电器,要求充电快速且具有优良的电池保护能力,因此选择Maxim公司的MAX1898作为电池充电芯片。

2.2 主要器件及其功能

2.2.1 AT89C51引脚说明

手机锂电池智能充电器设计073032-22 吴未

图2-1 AT89C51引脚分布图

图2-1是AT89C51的引脚分布图。

其引脚说明如下:

VCC:AT89C51电源正极输入,接+5V 电压。

GND:电源接地端。

XTAL1:接外部晶振的一个引脚。在单片机内部,它是一反相放大器输入端,这个放大器构成了片内振荡器。它采用外部振荡器时,些引脚应接地。

XTAL2:接外部晶振的一个引脚。在片内接至振荡器的反相放大器输出端和内部时钟发生器输入端。当采用外部振荡器时,则此引脚接外部振荡信号的输入。

RST:AT89C51的复位信号输入引脚,高电位工作,当要对芯片又时,只要将此引脚电位提升到高电位,并持续两个机器周期以上的时间,AT89C51便能完成系统复位的各项工作,使得内部特殊功能寄存器的内容均被设成已知状态。

ALE/PROG:ALE 是英文"ADDRESS LATCH ENABLE"的缩写,表示允许地址锁存允许信号。当访问外部存储器时,ALE 信号负跳变来触发外部的 8 位锁存器 (如 74LS373),将端口 P0 的地址总线(A0-A7)锁存进入锁存器中。在非访问外部存储器期间,ALE 引脚的输出频率是系统工作频率的 1/16,因此可以用来驱动其他外围芯片的时钟输入。当问外部存储器期间,将以 1/12 振荡频率

中国地质大学学士学位论文

输出。

EA/VPP:该引脚为低电平时,则读取外部的程序代码 (存于外部EPROM 中)来执行程序。因此在 8031 中,EA 引脚必须接低电位,因为其内部无程序存储器空间。如果是使用 AT89C51或其它内部有程序空间的单片机时,此引脚接成高电平使程序运行时访问内部程序存储器,当程序指针 PC 值超过片内程序存储器地址(如 8051/8751/89C51 的 PC 超过 0FFFH)时,将自动转向外部程序存储器继续运行。此外,在将程序代码烧录至 8751 内部 EPROM、89C51 内部 FALSH 时,可以利用此引脚来输入提供编程电压(8751 为 2lV、AT89C51 为 12V、8051 是由生产厂方一次性加工好)。

PSEN:此为"Program Store Enable"的缩写。访问外部程序存储器选通信号,低电平有效。在访问外部程序存储器读取指令码时,每个机器周期产生二次 PSEN 信号。在执行片内程序存储器指令时,不产生 PSEN 信号,在访问外部数据时,亦不产生 PSEN 信号。

P0:P0 口(P0.0~P0.7)是一个 8 位漏极开路双向输入输出端口,当访问外部数据时,它是地址总线(低 8 位)和数据总线复用。外部不扩展而单片应用时,则作一般双向 I/O 口用。P0 口每一个引脚可以推动 8 个 LSTTL 负载。

P1:P1 口(P1.0~P1.7)口是具有内部提升电路的双向 I/0 端口(准双向并行 I/O 口),其输出可以推动 4 个 LSTTL 负载。仅供用户作为输入输出用的端口。

P2:P2 口(P2.0~P2.7)口是具有内部提升电路的双向 I/0 端口(准双向并行 I/O 口),当访问外部程序存储器时,它是高 8 位地址。外部不扩展而单片应用时,则作一般双向 I/O口用。每一个引脚可以推动 4 个 LSTL 负载。

P3:P3 口(P3.0~P3.7)口是具有内部提升电路的双向 I/0 端口(准双向并行 I/O 口),它还提供特殊功能,包括串行通信、外部中断控制、计时计数控制及外部随机存储器内容的读取或写入控制等功能。其特殊功能引脚分配如下:P3.0 RXD 串行通信输入

P3.1 TXD 串行通信输出

P3.2 INT0 外部中断 0 输入,低电平有效

P3.3 INT1 外部中断 1 输入,低电平有效

P3.4 T0 计数器 0 外部事件计数输入端

P3.5 T1 计数器 1 外部事件计数输入端

P3.6 WR 外部随机存储器的写选通,低电平有效

P3.7 RD 外部随机存储器的读选通,低电平有效[14]

2.2.2 MAX1898引脚说明

手机锂电池智能充电器设计073032-22 吴未

图2-2 MAX1898引脚分布图

充电芯片MAX1898有10个引脚,其引脚分布如图2-2所示。

其引脚功能如下:

IN(1脚):传感输入,检测输入的电压或电流。

/CHG(2脚):充电状态指示脚,同时驱动LED。

EN/OK(3脚):使能输入脚/输入电源“好”输出指示脚。EN为输入脚,可以通过输入禁止芯片工作;OK为输出脚,用于指示输入电源是否与充电器连接。

ISET(4脚):充电电流调节引脚。通过串联议和电阻到地来设置最大充电电流。

CT(5脚):安全充电时间设计引脚。接一个时间电容来设置充电时间,电容为100nF时,几乎为3个小时,此引脚直接接地将禁用此功能。

RSTRT(6脚):自动重新启动控制引脚。当此引脚直接接地时,如果电池电压掉至基准电压阀值以下200mV,将会重新开始一轮充电周期。此引脚通过电阻接地时,可以降低他的电压阀值。此引脚悬空或者CT引脚接地(充电时间设计功能禁用)时,自动重新启动功能被禁用。

BATT(7脚):电池传感输入脚,接单个LI+电池的正极。此引脚需旁接一个大电解电容到地。

GND(8脚):接地端。

DRV(9脚):外部晶体管驱动器,接晶体管的基极。

CS(10脚):电流传感输入,接晶体管的发射极。

充电芯片MAX1898的内部电路包括输入电流调节器、电压检测器、充电电流检测器、定时器、温度检测器和主控制器。

输入电流调节器用于限制电源的总输入电流,包括系统负载电流与充电电流。当检测到输入电流大于设定的门限电流时,通过降低充电电流从而控制输入电流。因为系统工作时电源电流的变化范围较大,如果充电器没有输入电流检测功能,则输入电源必须能够提供最大负载电流与最大充电电流之和,这将使电源的成本增高、体积增大,而利用输入限流功能则降低充电器对直流电源的要求,同时也简化了输入电源的设计。

MAX1898外接限流型充电电源和P沟道场效应管,可以对单节锂电池进行安全有效的快充,其最大特点是:在不使用电感的情况下,仍能做到很低的功

中国地质大学学士学位论文

率耗散,可以实现预充电,具有过压保护和温度保护功能,最长充电时间的限制可为锂电池提供二次保护。

本设计的核心器件是MAX189。MAX1898可对所有化学类型的LI+电池进行安全充电,它具有高集成度,在小尺寸内集成了更多功能,尽可能多地覆盖了基本应用电路,只需要少数外部元件。

MAX1898配合外部PNP或PMOS晶体管可以组成完整的单节锂电池充电器。MAX1898提供精确的恒流/恒压充电,电池电压调节精度为±0.75%,提高了电池性能并延长了电池使用寿命。充电电流可由用户设定,采用内部检流,无须外部检流电阻。MAX1898提供了充电状态的输出指示、输入电源是否与充电器连接的输出指示和充电电流指示。MAX1898还具有一写功能,包括输入关断控制、可选的充电周期重启(无须从新上电)、可选的充电终止安全定时器和过放电电流的低电流预充。

MAX1898的关键特性如下:

●简单、安全的线形充电方式。

●使用低成本的PNP或PMOS调整元件。

●输入电压:4.5~12V。

●内置检流电阻。

●±0.75%电压精度。

●可编程充电电流。

●输入电源自动检测。

●LED充电状态指示。

●可编程安全定时器。

●检流监视输出。

●可选/可调节自动重启。

●小尺寸μMAX封装。[13]

2.2.3 6N137引脚说明

图2-3 6N137引脚分布图

光藕模块6N137的引脚分布图如图2-3所示。

其引脚功能如下:

NC(1脚、4脚):悬空。

+(2脚)、-(3脚):发光二极管的正负极。

手机锂电池智能充电器设计073032-22 吴未

GND(5脚):接地端。

OUTPUT(6脚):输出脚。

EN(7脚):使能脚。为低时,无论有无输入,输出都为高。不使用时,悬空即可。

VCC(8脚):电源输出脚。[15]

2.3 电路原理图及说明

硬件电路由单片机电路、电压转换及光藕隔离电路、充电控制电路3部分组成。单片机部分的电路原理图如下图2-4:

2.3.1 单片机电路

图2-4中,U1为单片机AT89C51,工作在11.0592MHz时钟;U2为蜂鸣器,蜂鸣器由单片机的P1.2脚控制发出报警声提示;单片机的P2.0脚输出控制光藕器件,在需要的时候可以及时关断充电电源;单片机的外部中断0由充电芯片MAX1898的充电状态输出信号/CHG经过反相后触发。

图2-4 手机锂电池智能充电器电路单片机部分原理图

2.3.2 电压转换及光藕隔离部分电路

中国地质大学学士学位论文

图2-5所示的为电压转换及光藕隔离部分电路的原理图。

图2-5 手机锂电池智能充电器电路电压转换及光藕隔离部分原理图

图2-5中,U3为输出+5V的电压转换芯片LM7805,它将12V的输入电压转换为固定的5V输出;U4为光藕隔离芯片6N137,其输入为LM7805产生的5V电压,输出为经过隔离的5V电压,U4的2脚和单片机的P2.0相连,由单片机控制适时地关闭充电电源。

2.3.3 充电控制电路

图2-6所示的为充电控制部分的电路原理图,其核心器件为充电芯片MAX1898,其充电状态输出引脚/CHG经过74LS04反相后与单片机INT0相连,触发外部中断。LED_R为红色发光二极管,红灯表示电源接通;LED_G为绿色发光二极管,绿灯表示处于充电状态。Q1为P沟道的场效应管,由MAX1898提供驱动。图4中,R4为设置充电电流的电阻,阻值为2.8kΩ,设置最大充电电流为500mA;C11为设置充电时间的电容,容值为100nF,设置最大充电时间为3小时。

手机锂电池智能充电器设计073032-22 吴未

图2-6 手机锂电池智能充电器电路充电控制部分原理图

2.4 充电过程

在MAX1898和外部单片机的共同作用下,实现了如下的充电过程。

2.4.1 预充

在安装好电池之后,接通输入直流电源,当充电器检测到电池时简化定时器复位,从而进入预充过程,在此期间充电器以快充电流的10%给电流充电,使电池电压、温度恢复到正常状态。预充时间由外接电容C11控制(100nF 时为45分钟)。如果在预充时间内电池电压达到2.5V,且电池温度正常,则充电进入快充过程;如果超过预充时间后,电池电压仍低于2.5V,则认为电池不可充电,充电器显示电池故障,LED指示灯闪烁。

2.4.2 快充

快充过程也称为恒流充电,此时充电器以恒定电流对电池充电。恒流充电时,电池电压缓慢上升,一旦电池电压达到所设定的终止电压,恒流充电终止,充电电流快速减缓,充电进入满充过程。

2.4.3 满充

在满充过程中,充电电流逐渐衰减,直到充电速率降到设置值以下,或满充时间超时,转入顶端截止充电。顶端截止充电时,充电器以极小的充电

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件的设计 锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。 本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并经过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。 设计过程 1 充电原理 电池的特性唯一地决定其安全性能和充电的效率。电池的最佳充电方法是由电池的化学成分决定的<锂离子、镍氢、镍镉还是SLA电池等)。尽管如此,大多数充电方案都包含下面的三个阶

段: ● 低电流调节阶段 ● 恒流阶段 ● 恒压阶段/充电终止 所有电池都是经过向自身传输电能的方法进行充电的,一节电池的最大充电电流取决于电池的额定容量也能够用1/50C(20mA>或更低的电流给电池充电。尽管如此,这只是一个普通的低电流充电方式,不适用于要求短充电时间的快速充电方案。 现在使用的大多数充电器在给电池充电时都是既使用低电流充电方式又使用额定充电电流的方法,即容积充电,低充电电流一般使用在充电的初始阶段。在这一阶段,需要将会导致充电过程终止的芯片初期的自热效应减小到最低程度,容积充电一般见在充电的中级阶段,电池的大部分能量都是在这一阶段存储的。在电池充电的最后阶段,一般充电时间的绝大部分都是消耗在这一阶段,能够经过监测电流、电压或两者的值来决定何时结束充电。同样,结束方案依赖于电池的化学特性,例如:大多数锂离子电池充电器都是将电池电压保持在恒定值,同时检测最低电

锂电池充电器标准.(DOC)

锂电池充电器测试标准

目录 1范围 ----------------------------------------------------------------------------3 2参考标准-----------------------------------------------------------------------3 3技术要求-----------------------------------------------------------------------------------3 3.1使用环境-----------------------------------------------------------------------------------3 3.2外观要求-----------------------------------------------------------------------------------3 3.3供电方式-----------------------------------------------------------------------------------3 3.4充电方式-----------------------------------------------------------------------------------4 3.5绝缘强度-----------------------------------------------------------------------------------4 3.6温升----------------------------------------------------------------------------------------.4 3.7保护功能----------------------------------------------------------------------------------.4 3.8指示功能----------------------------------------------------------------------------------.4 3.9输出电压峰-峰值------------------------------------------------------------------------5 3.10输出电流峰-峰值-----------------------------------------------------------------------5 3.11防反充功能------------------------------------------------------------------------------5 3.12启动、断开电流脉冲限制------------------------------------------------------------5 4试验方法-----------------------------------------------------------------------5 4.1试验环境-----------------------------------------------------------------------------------5 4.2测量仪表要求-----------------------------------------------------------------------------5 4.2.1电压表要求------------------------------------------------------------------------------5 4.2.2电流表要求------------------------------------------------------------------------------5 4.2.3温度仪表要求---------------------------------------------------------------------------5 4.3外观检查-----------------------------------------------------------------------------------5 4.4充电方式,充电电压试验--------------------------------------------------------------6 4.5充电电流试验-----------------------------------------------------------------------------6 4.6绝缘强度试验-----------------------------------------------------------------------------6 4.7短路,反接保护试验,指示性能-----------------------------------------------------6

旧手机智能充电器的破解和利用

旧手机智能充电器的破解和利用(一)——摩托罗拉AAPN4060A 智能,本是一个严谨的学术用语。但经过商家的炒作让你完全弄不懂了,从数千元的智能电脑、智能手机直至几元钱的智能万能充,真不知商家的嘴里面“智能”有多复杂,它又值几个钱? 我是从不相信商家的宣传,只有拆机找到真正的MCU后才确认这是智能充电器。因为这是世界上大型电子企业对这个类型充电器约定成俗的称呼。 MCU(Micro Control Unit)中文名称为微控制单元,又称单片微型计算机(Single Chip Microcomputer)或者单片机,是指将计算机的CPU、RAM、ROM、定时计数器和多种I/O 接口等集成在一片芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。适合智能充电器的应是8位以上单片机,并同时具有几个8位以上ADC模数转换器和20mA 以上输出端口。 手机智能充电器多生产在1995—2004年之间,随着手机电源管理芯片的不断完善、以及廉价产品的致命冲击,现货市场已经找不到它们的踪影。但其优良的充电特征,极佳的保护性能确是二手市场中物美价廉的宝贝。把它们挖掘出来,改造利用,成为我们手中常备的手机电池充电器是非常理想的。我将用连续数贴把不同组合的改造利用方案介绍给大家。以下是我手中的几种手机锂电智能充电器 品牌型号输出电流单片机适用改造类型 韩国DCH128KDK充电器 0.8A双路摩托罗拉MC68HC908 18650充电固定万能充 韩国TC-550充电器0.45/0.75/0.9A 摩托罗拉MC68HC908 多档万能充 摩托罗拉AAPN4060A 6.2V0.65A、4.2V0.5A 义隆EM76P358 万能充18650充电适配器 摩托罗拉CHPN4487A 0.35A 义隆FHP5830ACP 一体式万能充内嵌式充电器 三星DCR037SBS座充0.5A ST62T01C 座充、万能充 厦新BGP-3000座充 0.45A CF745 座充、万能充 关于三星座充的改造网上文章太多了,这类座充就不重复讨论了。今天介绍摩托罗拉AAPN4060A,重点是破解和扩容问题。 摩托罗拉AAPN4060A电路原理: 为更好理解改装的原理,方便网友交流。把我测绘的原理图附上:图中的电流电压值是计算值;而下面白框表中的是实测值。 AAPN4060A的单片机的]1-4脚是对负载检测,以判定采用何种工作模式的关键,其中3、4脚是ADC模数转换方式检测,1、2脚是输入电平检测。开机后有约7mA限制电流用于负载检测。 1脚是FB反馈信号监测:在正常工作状态下为高电位。如果在6.2V或4.2V时短路、断路情况下,都会及时关机。因此对于老旧的电池拒充的可能性极大 2脚是ID信号监测:空载时为高电位,6.2V时为低电位,这时ID线其实直接接地就可,接3K电阻是因为我觉得直接接地Q204的基极电流有点大。在4.2V工作模式下,在开机的初始阶段电池的专用只读存储器发出串行数字信号通过Q204使2脚电平不断高低变化,单片机接收了这些数字信号,判断无误后,便进入锂电池快速充电模式,在此模式正常工作后,只读存储器悬空,2 脚高电位。 3脚是充电电压检测脚。但它检测的是电池电压+测流电阻压降+各种线损电压,它是用来

锂电池充电电路

所有的 输入关键字 联系我们 | TI 全球网站: 中国 (简体中文) | my.TI 登录 返回目录页 先进的锂电池线性充电管理芯片BQ2057及其应用 北京理工大学机电工程学院 魏维伟 李杰 摘要:本文介绍美国TI 公司生产的先进锂电池充电管 理芯片BQ2057,利用BQ2057系列芯片及简单外围电 路可设计低成本的单/双节锂电池充电器,非常适用于 便携式电子仪器的紧凑设计。本文将在介绍BQ2057 芯片的特点、功能的基础上,给出典型充电电路的设 计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管 理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或 双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol) 电池的充电需要,同时根据不同的应用提供了MSOP 、 TSSOP 和SOIC 的可选封装形式,利用该芯片设计的 充电器外围电路及其简单,非常适合便携式电子产品 的紧凑设计需要。BQ2057可以动态补偿锂电池组的内 阻以减少充电时间,带有可选的电池温度监测,利用 电池组温度传感器连续检测电池温度,当电池温度超 出设定范围时BQ2057关闭对电池充电。内部集成的 恒压恒流器带有高/低边电流感测和可编程充电电流, 充电状态识别可由输出的LED 指示灯或与主控器接 口实现,具有自动重新充电、最小电流终止充电、低 功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可 选封装及型号,其封装形式如图2-1所示,有MSOP 、

锂电池充电器的设计毕业设计

毕业设计课题名称:锂电池充电器的设计

总目录 第一部分任务书 第二部分开题报告 第三部分毕业设计正文

第一部分 任 务 书

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

太阳能手机锂电池充电器-精选资料

太阳能手机锂电池充电器 1.课题背景 随着科技的快速发展,越来越多的资源得到了利用,太阳能太阳光的辐射能量,已然成为一种巨大的干净可再生能源。目前各国已经开始争相开发并使用它,如何将太阳能转换为电能并对手机进行充电也就成为一个热门的小制作方向。我们需要设计一个合适的电路,基于手机电池的输入伏安特性,让它能够对手机电池进行高效率的充电,最后做出一个实物进行调试和各项参数的测试、评估。 2.模块说明 2.1太阳能电池的原理 太阳能电池工作原理的基础是半导体PN结的光生伏特效 应。也就是指半导体在光照时产生电动势的现象。具体而言就是,当光照射到PN结的一个面,有光伏发电时,若光子能量大于半导体材料的禁带宽度,那么每吸收一个光子就产生一对自由电子和空穴,在半导体内部结附近生成的载流子没有被复合而到达空间电荷区,受内建电场的吸引,电子流入n 区,空穴流入p 区,结果使n 区储存了过剩的电子,p 区有过剩的空穴。它们在pn 结附近形成与势垒方向相反的光生电场,最后建立一个与光照强度有关的电动势。 2.2稳压模块

可供选择的芯片有XL6009/LT3757,本研究选择XL6009。 升级型号XL6009拥有足够技术含量,对比LT3757其强势在 于:可以满足LT3757所有应用领域;大功率开关管内置;系统软启动功能内置,LT3757需要外置电容;环路频率补偿电容内置, LT3757必须外置阻容元器件;振荡频率内置,LT3757需要外接振 荡阻;LT3757 还需要外接采样电阻(由于功率管外置造成),外 接内部供电电源的滤波电容。因此,XL6009同比LT3757性能提 升,外围简单,系统设计方便灵活,芯片可靠性提高了,是一个非常优秀的高性价比方案。这个芯片可以实现大功率的升压,升降,正负转换; 并且每种拓朴大功率输出时效率都比较高; 由于功 率管内置,系统性能比LT3757好,可以解决我们目前升压,升 降压针对供电电压方面的困扰,最高电压比LT3757还要 强;XL6009来实现buck-boost的拓朴,随便输入5?40V,输出 2.5?36V,最大电流能力视功率变换而定,没有任何电压方面的困扰了。 2.3降压模块 三端集成稳压器与DC-DC电源模块的功能是相同的,即均用于直流- 直流电压变换,但是这两种模块的变换原理及相关参数存在一定的差别,因此就导致其使用场合的不同。通过比较两者的优缺点:DC-DC电源模块具有电流及静态电流小、效率高的优点,但是输出纹波和开关噪音较大、成本相对较高; 而三端稳压芯片具有提供大电流、噪声较小的优点,但是效率较前者低。本

BQ2057锂电池充电器原理

摘要:本文介绍美国TI 公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP 、TSSOP 和SOIC 的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED 指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP 、TSSOP 和SOIC 三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C 、BQ2057T 和BQ2057W 四种信号,分别适合4.1V 、4.2V 、8.2V 和8.4V 的充电需要。 BQ2057的引脚功能描述如下: VCC (引脚1):工作电源输入; TS (引脚2):温度感测输入,用于检测电池组的温度; STA T(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; VSS (引脚4):工作电源地输入; CC (引脚5):充电控制输出; COMP(引脚6):充电速率补偿输入; SNS (引脚7):充电电流感测输入; BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。 元件型号 充电电压 BQ2057 4.1V BQ2057C 4.2V BQ2057T 8.2V BQ2057W 8.4V

锂电池充电器标准

锂电池充电器测试标准 目录 1范围----------------------------------------------------------------------------3 2参考标准-----------------------------------------------------------------------3 3技术要求-----------------------------------------------------------------------------------3 3.1使用环境-----------------------------------------------------------------------------------3 3.2外观要求-----------------------------------------------------------------------------------3 3.3供电方式-----------------------------------------------------------------------------------3 3.4充电方式-----------------------------------------------------------------------------------4 3.5绝缘强度 -----------------------------------------------------------------------------------4 3.6温升----------------------------------------------------------------------------------------.4 3.7保护功能 ----------------------------------------------------------------------------------.4 3.8指示功能

智能手机锂电池充电管理—一种集成化的解决方案

智能手机锂电池充电管理—一种集成化的解决方案 手机的锂离子电池充电安全性日益受到消费者重视,因此智能手机 制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善 电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成 的危险。 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池 因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低 设定电压以下便要停止放电,避免因过放电而降低使用寿命。此外,为确保电 池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险。 本文以帝奥微电子一款开关充电芯片DIO5425为例,详细探讨关于智能手机充电管理的系统级设计。DIO5425部署于手机电源输入接口:USB/DC Source 之后,通过开关转换可以将输入电流同时用于手机系统供电和电池充电。DIO5425具有优秀的充电管理功能和锂电池保护功能,支持USB2.0和USB3.0协议。DIO5425具有智能电源路径管理功能。 Figure.1 DIO5425参考设计电路 锂离子电池充电管理芯片必须具备以下几点特性: 可提供固定电流给充电电池 当电池电压到达最大值且不再上升时,其充电电流便会开始下降,如此可避免对电池过度充电,造成电池损伤;当充电电流降至一定程度时,充电器将停止充电。 确保电池具备可使用电压 电池在充电完成后,若长时间放置不 使用会有自然放电的情形出现,为避免电池过度自放电导致电池电压下降,当 电池电压低于所设定电压时,充电器会重新开始对电池充电,确保电池在使用

智能型充电器的电源和显示的设计论文

前言 随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全的充电。因此需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。AVR 已经在竞争中领先了一步,被证明是下一代充电器的完美控制芯片。Atmel AVR 微处理器是当前市场上能够以单片方式提供Flash、EEPROM 和10 位ADC的最高效的8 位RISC 微处理器。由于程序存储器为Flash,因此可以不用象MASK ROM一样,有几个软件版本就库存几种型号。Flash 可以在发货之前再进行编程,或是在PCB贴装之后再通过ISP 进行编程,从而允许在最后一分钟进行软件更新。EEPROM 可用于保存标定系数和电池特性参数,如保存充电记录以提高实际使用的电池容量。10位A/D 转换器可以提供足够的测量精度,使得充好后的容量更接近其最大容量。而其他方案为了达到此目的,可能需要外部的ADC,不但占用PCB 空间,也提高了系统成本。AVR 是目前唯一的针对像“C”这样的高级语言而设计的8 位微处理器。C 代码似的设计很容易进行调整以适合当前和未来的电池,而本次智能型充电器显示程序的编写则就是用C语言写的。

第一章概述 第一节绪论 1.1.1课题背景 如今,随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全的充电。因此需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。与此同时,对充电电池的性能和工作寿命的要求也不断地提高。从20世纪60年代的商用镍镉和密封铅酸电池到近几年的镍氢和锂离子技术,可充电电池容量和性能得到了飞速的发展。目前各种电器使用的充电电池主要有镍镉电池(NiCd)、镍氢电池(NiMH)、锂电池(Li-Ion)和密封铅酸电池(SLA)四种类型。 电池充电是通过逆向化学反应将能量存储到化学系统里实现的。由于使用的化学物质的不同,电池有自己的特性。设计充电器时要仔细了解这些特性以防止过度充电而损坏电。 目前,市场上卖得最多的是旅行充电器,但是严格从充电电路上分析,只有很少部分充电器才能真正意义上被称为智能充电器,随着越来越多的手持式电器的出现,对高性能、小尺寸、轻重量的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全地充电,因此,需要对充电过程进行更精确地监控(例如对充、放电电流、充电电压、温度等的监控),以缩短充电时间,达到最大的电池容量,并防止电池损坏。因此,智能型充电电路通常包括了恒流/恒压控制环路、电池电压监测电路、电池温度检测电路、外部显示电路(LED或LCD显示)等基本单元。其框图如下:

基于单片机的锂电池智能充电器的设计

基于AVR的锂电池智能充电器的设计与实现 1 引言 锂电池闲其比能量高、自放电小等优点,成为便携式电子设备的理想电源。近年来,随着笔记本电脑、PDA,无绳电话等大功耗大容量便携式电子产品的普及,其对电源系统的要求也日益提高。为此,研发性能稳定、安全可靠、高效经济的锂电池充电器显得尤为重要。 本文在综合考虑电池安全充电的成本、设计散率及重要性的基础上,设计了一种基于ATtiny261单片机PWM控制的单片开关电源式锂电池充电器,有效地克服了一般充电器过充电、充电不足、效率低的缺点,实现了对锂电池组的智能充电,达到了预期效果。该方案设计灵活,可满足多种型号的锂电池充电需求,且ATtiny261集成化的闪存使其便于软件调试与升级。 2 锂电池充电特性 锂电池充电需要控制它的充电电压,限制其充电电流。锂电池通常都采用三段充电法,即预充电、恒流宽电和恒压充电。锂电池的充电电流通常应限制在1C(C为锂电池的容量)一下,单体充电电压一般为4.2V,否则可能由于电聪过高会造成键电池永久性损坏。 预充电主要是完成对过放的锂电池进行修复,若电池电压低于3V,则必须进行预充电,否刚可省略该阶段。这也是最普遍的情况。在恒流阶段,充电器先给电池提供大的恒定电流,同时电池电压上升,当魄池电压达到饱和电压对,则转入憾压充电,充电电压波动应控制在50mV以内,同时充电电流降低,当电流逐渐减小到规定的值时,可结束充电过程。电池的大部分电能在惯流及恒压阶段从充电器流入电池。曲上可知,充电器实际上是一个精密电源,其电流电压都被限制在所要求的范围之内。 3 硬件电路设计 该系统在电路设计上主要由单片开关电源、控制电路及保护电路三部分组成。 3.1单片开关电源 单片开关电源负责将电能转化为电池充电所需要的形式,构成了充电器的主要功率转换方式。与传统线性充电器大损耗、低效率的缺点相比,由美国Power Integrations公司的TNY268P构成的单片开关电源,其输入电压范围宽(85265VAC)、体积小、重量轻、效率高,其有调压、限流、过热保护等功能,特别适合于构成充电电源。其原理图如图1所示。 图1单片开关电源 该电源采用配稳压管的光藕反馈电路实现15V的低压直流输出,当输出电压发生变化时,通过线性光藕PC817的发光管的电流发生相应的变化,使得TNY268P的EN脚流出电流也发生变化,从而控制其片内功率MOSFET的断、通、调节输出电压,使输压电压稳定。具体反馈原理分析详见后文脉宽调制(PWM)的控制。 在电路结构上,线性光藕PC817,不但可以起到反馈作用还可起到隔离作用。由PNP管Q2和电阻R9、R1O及R12组成的限流电路,则从源头上防止了过电流的问题。由C6及R11构成的缓启电路,则有效抑止了电源上电瞬间的产生的电压尖峰。而二极管D9则防止了电池组的反向放电。此外,对整个充电系统而言,当因意外情况系统失控时,开关电源所提供的15V直流低压也在某种程度上起到了限制其最高电压的作用。

手机充电器设计报告

手机充电器设计报告 题目:手机充电器设计 指导老师:翟永前 专业班级:电子信心工程专业12级 组别:第六组 组长:曹广振 团队成员:王沛、索彬、赵小芳、曹广振

院系名称:通信信号学院 智能充电器的设计 【摘要】 随着手机在世界范围内的普及,手机电池充电器的使用越来越广泛。充电器种类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 该设计利用51单片机的处理控制能力实现充电器的智能化,在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。该设计包括了六个功能模块: ·单片机模块:实现充电器的智能控制,如自动断电,充电完成报警提示。·充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。·光耦模块:控制通电和断电,在电池充满电后及时关断充电电源。 ·充电电压提供模块:将一般家用交流电压经过变压器、电压转换芯片等转换为5V直流电压。 ·电压测试模块:利用AD转换把充电电池两端的电压通过数码管显示出来。·C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电状态给出有关的指示。 【关键字】 单片机、电压转换、MAX1898、智能、充电器

【目录】 一、设计综述 (4) 二、基本方案 (4) 三、软硬件设计 (5) 四、软硬件仿真 (13) 五、测试 (13) 六、设计体会 (14)

一、设计综述 手机电池的使用寿命和单次使用时间预充电过程密切相关,锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比,具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求也比较苛刻,需要保护电路,为了有效利用电池容量,须将锂电池充点值最大电压,但是过压充电会导致电池损坏,这就要求较高的充电精度。 而大部分充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电,这样就使充电时间增长了。 一部好的充电器不但能在短时间内将电量充足,而且还可以对锂电池起到一定的维护作用,修复由于记忆造成的记忆效应,即电池容量下降现象。设计比较科学的充电器往往采用专用充电芯片配合单片机控制的方法。专用的充电芯片可以检测出电池充电饱和时发出的电压变化信号,比较精确的结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,以缩短充电时间,同时能够维护电池,延长电池使用寿命。 另外,比起一般充电器,智能充电器还增加了充电电压的显示,让我们能直观的看到电池的由预充、快充、满充充电阶段,从而加强对电池的维护。 二、基本方案 (一)方案分析 该设计采用逐个功能模块分析再组合的方法来实现方案。1、单片机模块 智能的实现利用单片机控制,经过分析,单片机芯片可以选择Atmel公司的AT89C52,来控制充满电时蜂鸣器报警声,以及通过中断控制光耦器件通电和断电。 2、充电过程控制模块

智能充电器使用说明书

WM-S2425C系列智能型充电器使用说明书 一:功能简介 WM-2460C 系列充电器是目前一款比较先进的智能型蓄电池充电器,它一改传统充电器的充电模式。自行研发的蓄电池充电管理功能,具有优化的充放电曲线。充电时、只要接好蓄电池和充电器插件,开通电源,本机可自动检测待充蓄电池现存电量和环境温度,根据待充蓄电池不同的放电量和实时的环境温度进行充电,蓄电池充足后自动关闭充电系统。 二:应用范围 本系列充电器广泛应用于剪叉式升降平台、电瓶车、电动叉车、电动汽车、电动摩托车、电动洗地车、电动船、电动观光车、电动巡逻车、电动高尔夫球车、电动牵引车、电动残疾车、电动代步车、电动医疗设备、电动搬运车等各类电动车的铅酸免维护蓄电池、铅酸加水蓄电池、铅酸胶体蓄电池循环充电。 三:技术参数 1 ;输入电压AC185V-265V 47Hz-~63Hz 2: 最大功耗0.75KW 3: 输出电压出厂时内部软件设定(28.8V在线式) 4 输出电流25A ; 5: 充电时间蓄电池放电80%时,全程充电6-11小时 6 体积344 X177 X81(L X W XH) ;

7: 重量 3.6Kg 8: EMC EMI LVD符合欧洲CE标准 9:环境温度-40 C to +55 C 10:湿度< 95% 11:安全等级1(IEC364-4-41) 12 :防护等级IP65 1、使用和安装充电器之前请仔细阅读说明书。 2、机内有相当于电网量的同等电压,非专业人员不得带电拆机 3、充电电器应该安装在一个干燥、清洁的环境中,以防潮湿和尘污; 4、充电器只能与相对应容量的电池充电,否则会产生危险或重大事故

11.1V锂电池充电器设计

11.1V锂电池充电器设计 【摘要】本文介绍了锂电池充电的控制方法,讨论了充电器的电路结构和软件设计思想。该设计以ATmega8作为控制核心,对充电过程进行全面管理,通过对充电电流、电压的自动检测与调整,完成对不同充电阶段的精确控制及充满后的自动停充,实现了智能化充电。 【关键词】锂电池充电器;ATmega8;脉宽调制 1.引言 11.1V锂电池常用于涵道机、固定翼、直升机等航模中,具有放电稳定,工作温度宽;允许较大的充电电流、充电速度快,仅需1~2个小时就可以充满;无记忆效应;自放电率低,储存寿命长;能量高、储存能量密度大;输出电压高(单节锂电池的额定电压一般为3.6V,而单节镍氢和镍镉电池的电压只有1.2V)等优点。但锂电池在使用过程中也存在娇气的一面。在对锂电池进行充电时要防止过度充电,如果充电电压高于规定电压或充电电流大于规定电流,就会损坏锂电池或者使之报废。在过充电的情况下,能量过剩锂电池温度上升,电解液将分解产生气体,使之内压上升而导致自燃或破裂的危险。通常单节锂电池的终止充电电压为4.2V,精度控制在±1%之内,充电电流不大于1C(C代表充放电速率,1C代表电池正好在1小时内,充满电或放完电所要求的速率)。锂电池在使用时也要防止过度放电,过度放电会导致电池特性及耐久性变差,可充电次数降低。通常要求放电电流不大于2C,终止放电电压控制在2.4~2.7V左右。 2.锂电池的充电方法 锂电池在充电过程中需要控制它的充电电压和充电电流并精确测量电池电压,根据锂电池电压将充电过程分为四个阶段。每个阶段的需要用不同的电压和电流进行充电,下面以单节锂电池为例分别说明每个阶段的状态。阶段一为预充电,先用0.1C的小电流对锂电池进行预充电,当电池电压≥2.5V时转到下一阶段。阶段二为恒流充电,用1C的恒定电流对锂电池快速充电,点电池电压≥4.2V 时转到下一阶段。阶段三为恒压充电,逐渐减小充电电流,保证电池电压恒定=4.2V,当充电电流≤0.1C时转到下一阶段。阶段四为涓流充电,恒压充电结束后,电池已经基本充满,为了维持电池电压,可以用0.1C甚至更小的电流对电池进行补充充电,到此锂电池充电过程结束。 3.充电器的硬件电路设计 本系统主要有微控制器、电压检测电路、电流检测电路、电池状态指示电路和充电控制电路组成,电路原理图如图1所示。 3.1 主控芯片

Q2057W锂电池充电器原理(适用)

摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器BQ2057 1 引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。 元件型号 BQ2057 BQ2057C BQ2057T BQ2057W 8.4V BQ2057的引脚功能描述如下: ?VCC (引脚1):工作电源输入; ?TS (引脚2):温度感测输入,用于检测电池组的温度; ?STAT(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; ?VSS (引脚4):工作电源地输入; ?CC (引脚5):充电控制输出; ?COMP(引脚6):充电速率补偿输入; ?SNS (引脚7):充电电流感测输入; ?BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。

锂电池充电器的设计-精品剖析

锂电池充电器的设计 摘要 锂离子电池由于能量密度高和长循环寿命等优点,在便携式设备中得到了广泛的应用。充电管理是锂电池管理的重要组成部分,安全、可靠、快速、高效的锂电池充电器对锂电池的性能及应用起着至关重要的作用。 本文从锂电池的结构原理着手,通过对锂电池性能及常用充电方法的研究,分析了充电过程及充电方法对锂电池性能的影响,并在此基础上设计了一款智能锂离子的充电器。此充电器可对目前市场上具有的各种型号和容量的锂电池进行快速安全的充电。采用这种方案进行锂电池充电器的开发具有成本廉价和易于编程升级的优点,有着广阔的市场前景。 在硬件方面,完成了单片机系统的设计,包括系统电压、电流、温度的采样及功能按键等。软件方面,采用模块化的程序设计,介绍了模块划分和各模块的功能,实现的具体算法,给出了流程图,并根据系统工作需求进行了低功耗和软件抗干扰设计,确保了系统运行的可靠稳定性。本设计提高了充电器智能化水平,更精确的实现充电过程控制,保护电池,延长电池寿命。 关键词:ADC(模数转换);PWM(脉宽调制);C8051F300 单片机

The design of lithium battery charger Abstract Lithium battery is being widely used in the suitable selection for portable application for their high energy density and long life. Charging management is the essential part in battery management. Safe, reliable, fast and high efficient charger guarantees good performance and application of the battery. The structure, performance and charging method of Lithium battery is studied in this thesis. And different impacts on the performance of battery via different charging ways and process are analyzed in detail, based on which, an intelligent charger for Lithium battery is designed.The charger can charge all kinds of lithium batteries quickly and safely. Exploiting the charger of lithium batteries this way has the advantage of low cost and easy to upgrade in programming, which has a vast market prospect. In hardware,the thesis achieves the hardware detail circuit including the MCU system,voltage,current,temperature sampling circuit and key-press. In software, the design adopts modular procedures,which analysis the plotting and function of each module,and the specific way of realization,are introduced. According to the work demands of the system,low power consumption and software anti-interference are designed,which in sure the safety and reliability of the system. The design can improves the intellectualization level of the battery charger, realize the control to the charge process more precisely, and lengthens the battery life. Key Words:ADC; PWM; C8051F300

相关文档
最新文档