液晶弹性体及结构中应力波的传播特性

无线电波传播方式与各频段的利用

无线电波传播方式与各频段的利用 无线电通信是利用电磁波在空间传送信息的通信方式。电磁波由发射天线向外辐射出去,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。 (1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式; (2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小; (3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。 (4)空间波方式主要指直射波和反射波。电波在空间按直线传播,称为直射波。当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。 (5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。 (6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。利用对流层散射作用进行无线电波的传播称为对流层散射方式。 (7)视距传播指点到点或地球到卫星之间的电波传播。 附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。

在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。无线电通信系统若不进行科学的频率指配和严格的系统设计与场强预测,会使系统之间产生严重干扰而不能正常工作。为了保证无线电通信用户的通信质量,确保无线电波发射的业务覆盖服务区和电波传播的可靠程度,必须仔细地计算从接收天线到发射天线之间的传播损耗。理论上讲,在自由空间无线电波的传播损耗大小与传播距离的平方及使用频率的平方成正比关系,但是在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,同时还要考虑在传播路径上存在着各种各样的影响,如高空电离层影响,高山、湖泊、海洋、地面建筑、植被以及地球曲面的影响等,因而电波具有反射、绕射、散射和波导传播等传播方式。在研究电波传播特性时,通常以数学表达式来描述这些传播损耗特性,即所谓的数学模型。无线电波传播模型通常是很复杂的,必须对不同的频段使用不同的电波传播模型,以预测电台覆盖和传播场强。下面简要地叙述几种传播方式(详细数学公式略)。 VLF(f< 30kHz) 频率低于30kHz的电波,传播损耗近似等于自由空间传播损耗,即相当于电波在理想的、均匀的、各向同性的介质中传播,不发生反射、折射、绕射和吸收现象,只存在因电磁能量扩散引起的传播损耗。在此频段内,电波在电离层与地球之间可以以波导方式沿地球表面进行传播。 LF(30kHz< f< 300kHz) 在这个频段内,有两种重要的传播方式:地波方式及电离层天波方式。天波信号幅度具有明显的昼夜变化,这是由于电离层吸收和变化

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

地震波的概念种类特点及地表影响

关于地震波 摘要:地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。 关键词:地震波辐射地球内部 一:背景 ①2008年5月12日14时28分04秒,四川汶川、北川,8级强震猝然袭来,大地颤抖, 山河移位,满目疮痍,生离死别……西南处,国有殇。这是新中国成立以来破坏性最强、波及范围最大的一次地震。此次地震重创约50万平方公里的中国大地!为表达全国各族人民对四川汶川大地震遇难同胞的深切哀悼,国务院决定,2008年5月19日至21日为全国哀悼日。自2009年起,每年5月12日为全国防灾减灾日。 ②1976年7月28日北京时间03时42分53.8秒,在中国河北省唐山、丰南一带(东经118.2°, 北纬39.6°)发生了强度里氏7.8级(矩震级7.5级),震中烈度Ⅺ度,震源深度23千米的地震。地震持续约12秒。有感范围广达14个省、市、自治区,其中北京市和天津市受到严重波及。强震产生的能量相当于400颗广岛原子弹爆炸。整个唐山市顷刻间夷为平地,全市交通、通讯、供水、供电中断。唐山地震没有小规模前震,而且发生于凌晨人们熟睡之时,使得绝大部分人毫无防备,造成24.2万人死亡,重伤16.4万人,名列20世纪世界地震史死亡人数第一。 ③邢台地震由两个大地震组成:1966年3月8日5时29分14秒,河北省邢台专区隆尧县 (北纬37度21分,东经114度55分)发生震级为6.8级的大地震,震中烈度9度强; 1966年3月22日16时19分46秒,河北省邢台专区宁晋县(北纬37度32分,东经115度03分)发生震级为7.2级的大地震,震中烈度10度。两次地震共死亡8064人,伤38000人,经济损失10亿元。这是一次久旱之后的大震。

超声波特性

2.1 超声波的定义 波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。声波是一种弹性机械波。人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。 在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。 2.2超声波的物理特性 当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ?为反射横波,L ?为反射纵波,L ?为折射纵波,S ?为折射横波。 L 图2.1超声波的反射、折射及其波形转换 这些物理现象均遵守反射定律、折射定律。除了有纵波的反射波折射波以外,还有横波的反射和折射。 因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。在理想介质中,超声波的波动方程描述方法与电磁波是类似的。描述简谐声波向X 正方向传播的质点位移运动可表示为: ()cos()A A x t kx ω=+ (2.1) 0()ax A x A e -= (2.2) 式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。衰减系数与声波所在介质和频率关系: 2af α= (2.3)

式(2.3)中,a 为介质常数,f 为振动频率。 2.2.1超声波的衰减 从理论上讲,超声波衰减主要有三个方面: (1) 由声速扩展引起的衰减 在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。 (2) 由散射引起的衰减 由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。 (3) 由介质的吸收引起的衰减 超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。 扩散衰减仅取决于波的几何形状而与传播介质的性质无关。对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率 η:动力粘滞系数 C :超声波传播速度 v C :定容比热 p C :定压比热 ρ:传播介质密度 式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示: 223 83f C πηβρ= (2.5) 把C = 2.5)可得: 3223 322283()M f R T β πηργ=?? (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。在实际应用中,一般选

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

超声波物理特性

声速 声速与介质的体弹性系数和密度有关。由于介质的弹性系数与温度有关,因此声速也与温度有关。在超声诊断的频段中,人体组织的超声速度与频率无关,而且软组织中的声速都很接近,约为1540m/s。 波长、周期和频率 声波在介质中传播时,两个相邻的同相位点之间的距离,如相邻两点稠密部之间的距离(超声 波在人体中一般是以纵波方式传播),称为声波的波长,以λ表示。波向前移动一个波长的距离所需的时间,称为声波的周期,以T表示。介质中任何一给定点在单位时间内通过的波敝,称为声波的频率,以f 表示。它们之间的关系为 λ=C/f=CT 式中为声波的传播速度。 医学诊断中采用的超声波频率在1-20MHz范围内。 声阻抗 介质中任意点的密度ρ与该点处声波的传播速度C之积为此介质在该点处的声阻抗,以Z表示,即Z=ρC。它是表征介质的声学特性的一个重要物理量。声阻抗的变化将影响超声波的传播。声阻抗是采用反射回波法进行超声诊断的物理基础。 声压级与声强级 声压级LP是以分贝表示的某个声压P与参考分压P0的比值,即LP=20lg(P/P0) 声强级LI是以分贝表示的某个声强I与参考声强I0的比值,即LI=10lg(I/I0) 声强是表示声的客观强弱的物理量,它表示通过垂直于传播方向上单位面积的能流率。声强为I=1/2(ρCω02A2)= p02/(2Z) 声强的单位是mW/cm2或W/m2。 声强与声源的振幅有关,振幅越大,声强也越大。对于平面超声波,他的总功率为强度I和面积S的乘积,即W=IS。 由于超声强度太大会破坏人体正常细胞组织,因其不可逆的生物效应。因此,国际上对诊断用 超声强度安全剂量作出规定,一般接受的安全剂量为20mW/cm2。

电磁波传播

电磁波传播特性实验报告 Part1 电磁波参量的测量 一、实验目的 1、了解电磁波综合测试仪的结构,掌握其工作原理 2、利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v。 二、实验原理 1、自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 得到电磁波的主要参数K和v等。 电磁波参量测试原理如图1-1所示,和分别表示发射和接收喇叭天线,A和B分别表示固定和可移动的金属反射板,C表示半透射板(有机玻璃板)。由TP发射平面电磁波,在平面波前进的方向上放置成°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A板方向传播,另一束向B板方向传播。由于A和B为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线处。于是收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。 移动反射板B,当的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波

当入射波以入射角向介质板C斜入射时,在分界面上产生反射波和折射波。设C板的反射系数为R,为由空气进入介质板的折射系数,为由介质板进入空气的折射系数。固定板A和可移动板B都是金属板,反射系数均为1?。在一次近似的条件下,接收喇叭天线处的相干波分别为 这里 其中,为B板移动距离,而与传播的路程差为2ΔL。 由于与的相位差为,因此,当2ΔL满足 和同相相加,接收指示为最大。 当2ΔL时满足 和反相抵消,接收指示为零。这里,n表示相干波合成驻波场的波节点数。

无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性 无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。 在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。 英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。 在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。 赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。 1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

超声波是怎么产生的

超声波是怎么产生的声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20190Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的一般上限(20190Hz),人们将这种听不见的声波叫做超声波。由于其频率高,因而具有许多特点:首先是功率大,其能量比一般声波大得多,因而可以用来切削、焊接、钻孔等。再者由于它频率高,波长短,衍射不严重,具有良好的定向性,工业与医学上常用超声波进行超声探测。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声波频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,1兆Hz=10PHz,即每秒振动100万次,可闻波的频率在16-20190HZ 之间)。 超声波在媒质中的反射、折射、衍射、散射等传播规律, 与可听声波的规律没有本质上的区别。但是超声波的波长很 短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声 波具有许多奇异特性:传播特性——超声波的波长很短,通 常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波 的衍射本领很差,它在均匀介质中能够定向直线传播,超声 波的波长越短,该特性就越显著。功率特性——当声音在空 气中传播时,推动空气中的微粒往复振动而对微粒做功。 声波功率就是表示声波做功快慢的物理量。在相同强度下,声波

的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用当超声波在介质的传播过程中,存在一个正负 压强的交变周期,在正压相位时,超声波对介质分子挤压,改变介质原来的密度,使其增大; 在负压相位时,使介质分子稀疏,进一步离散,介质的密度减小,当用足够大振幅的超声波作用于液体介质时,介质分子间的平均距离会超过使液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。

11.5 电磁波传播特性

实验11.5 电磁波传播特性 Part 1 电磁波参量的测量 一、实验目的 1. 研究电磁波在良导体表面的反射。 2. 利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v 。 二、实验仪器 (1)三厘米固态信号发生器1台; (2)电磁波综合测试仪1套; (3)反射板(金属板)2块; (4)半透射板(玻璃板)1块。 三、实验原理和方法 1. 自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路程上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 2K v f K πλλω=?? ==? 得到电磁波的主要参数K 和v 等。 电磁波参量测试原理如图1所示,P T 和P R 分别表示发射和接收喇叭天线,A 和B 分别表示固定和可移动的金属反射板,C 表示半透射板(有机玻璃板)。由P T 发射平面电磁波,在平面波前进的方向上放置成45°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A 板方向传播,另一束向B 板方向传播。由于A 和B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线P R 处。于是P R 收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。

移动反射板B ,当P R 的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波 0j i E E e φ-= 当入射波以入射角θ1向介质板C 斜入射时,在分界面上产生反射波r E 和折射波t E 。设C 板的反射系数为R ,T 0为由空气进入介质板的折射系数,T c 为由介质板进入空气的折射系数。固定板A 和可移动板B 都是金属板,反射系数均为-1。在一次近似的条件下,接收喇叭天线P R 处的相干波分别为 12100200j r c j r c E RT T E e E RT T E e φφ--=-=- 这里 ()()()1131 223132 K l l KL K l l K l l L KL φφ=+==+=++?= 其中,ΔL =|L 2-L 1|为B 板移动距离,而1r E 与2r E 传播的路程差为2ΔL 。 由于1r E 与2r E 的相位差为21=2K L φφφ?-=?,因此,当2ΔL 满足 ()20,1,2, L n n λ?== 1r E 与2r E 同相相加,接收指示为最大。 当2ΔL 时满足 图1 电磁波参量测试原理图

电磁波的传播

实验二电磁波的传播 实验目的: 1、掌握时变电磁场电磁波的传播特性; 2、熟悉入射波、反射波和合成波在不同时刻的波形特点; 3、理解电磁波的极化概念,熟悉三种极化形式的空间特点。 实验原理: 平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。若E的末端总在一条直线上周期性变化,称为线极化波;若E末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。 实验步骤: 1、电磁波的传播 (1)建立电磁波传播的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中电磁波随时间的传播规律 2、入射波、反射波和合成波 (1)建立入射波、反射波和合成波的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种波形在不同时刻的特点和关系 3、电磁波的极化 (1)建立线极化、圆极化和椭圆极化的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种极化形式的空间特性 实验报告要求: (1)抓仿真程序结果图 (2)理论分析与讨论

1、电磁波的传播 clear all w=6*pi*10^9; z=0::; c=3*10^8; k=w/c; n=5; rand('state',3) for t=0:pi/(w*4):(n*pi/(w*4)) d=t/(pi/(w*4)); x=cos(w*t-k*z); plot(z,x,'color',[rand,rand,rand]) hold on end title(‘电磁波在不同时刻的波形’) 由图形可得出该图形为无耗煤质中传播的均匀电磁波,它具有以下特点:(1)在无耗煤质中电磁波传播的速度仅取决于煤质参数本身,而与其他因素无关。 (2)均匀平面电磁波在无耗煤质中以恒定的速度无衰减的传播,在自由空间中其行进速度等于光速。 2、入射波、反射波、合成波 (1)axis equal; n=0;%改变n值得到不同时刻的电磁波状态z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); axis([0 10 ]); (2)axis equal; n=1/4;;%改变n值得到不同时刻的电磁波状态 z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); 电磁波在不同时刻的波形

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠ Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。 在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。

无线电波的传播特性

无线电波的传播特性 传播特性(一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1.表面波传播 表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播. 当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射. 从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播. 2.天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波. 电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广. 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作. 传播特性(二) 1.空间波传播 当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响. 空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右. 空间波除了受地面的影响以外,还受到低空大气层即对流层的影响. 移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

超声波的基本原理及传播特点 (1)

目录 摘要 (2) 引言 (3) 1.超声波的基本原理及传播特点 (4) 1.1什么是超声波 (4) 1.2超声波的基本原理 (4) 1.2.1压电效应及脉冲超声波的产生 (4) 1.2.2超声波波形 (5) 1.3超声波传播的特点 (6) 2.超声波的应用 (6) 2.1超声波在制浆造纸中的应用 (7) 2.2超声波传感器 (8) 2.3超声波测距 (9) 2.4超声波在医学诊断中的应用 (10) 2.5超声波在生物技术领域的应用 (11) 2.5.1用于培养液及药物的雾化 (11) 2.5.2提高种子发芽率和遗传物质的转化率 (11) 2.6超声波在军事中的应用 (11) 3. 结束语 (12) 参考文献 (12) 致谢 (13)

摘要 超声波是一种高能机械波,本文通过介绍超声波的产生机制和基本原理。让读者更深层次的认识超声波,文中根据超声波的自身特点从超声波传感器、超声波测距、及超声波在纸浆造纸中、医学诊断中、生物技术领域中、军事中的应用这六个方面进行详细讲述。超声波是一门年轻的学科,随着超声研究技术的不断成熟,未来将会更好的应用在生产生活中。 关键词:超声波;传感器;测距;医学诊断 Abstract Ultrasonic is a kind of high-energy mechanical wave, this paper introduces the basic principle of ultrasonic generation mechanism and give readers a deeper understanding of ultrasound, in this paper, according to the characteristics of ultrasonic sensors, ultrasonic distance measurement, and ultrasonic in pulp papermaking, medical diagnosis, in the field of biotechnology, the application of the military in these six aspects in detail. Ultrasonic is a young discipline, with the ultrasonic technology matures, the future will be better application in the production and living. Key words: ultrasonic ;the sensor ;ranging; medical diagnosis 引言 超声波最早被人类发现是在1793年由意大利科学家斯帕拉捷在蝙蝠身上发现其存在,随后的30多年里人们进行了有关超声波的产生机理方面的大量研究,直到1830年F ·Savar 用齿轮产生4104.2 HZ 的超声,首次实现了人类在人工控制下超声波的产生,开启了超声历史的新纪元,其他新技术如压电效应与逆压电效应的发现大大推动了超声波的快速发展,在随后的60年间,世界各地区有关超声技术的研究不断的取得突破性成果,20世纪的40年代超声技术开始应用于临床医疗方面,这也同样推动了人类医疗事业的发展,有关超声波在医学方面的应用与研究取得突破性进展,国际间也有过许多的交流与合作,共同推动了超声科技的发展和进步。我国在超声方面的研究相对落后于国际主流国家,我国由于当时特别的时期和特别的情况,20世纪60年代才开始超声方面的研究,有关超声学的相关研究始于也在这个时期真正开始,并且在随后的几年发展中取得了许多重要成果和重要的应用,如金属探伤、种子的培育、印染等。在基础研究方面也取得了重要进展,如研制出有关超声波在固体中衰减所用的检测设备,进行了有关超声乳化等课题的研究,研制出分子声学试验等设备,表面换能器的相关研究在1960年左右开始。改革开放的新时期,超声技术开始了实际应用之路,并且在该领域的一些列成果开始走进我们的生

无线电波传播模型与覆盖预测

无线电波传播模型 与 覆盖预测 河北全通通信有限责任公司 工程部网络服务组 二0 0二年四月二十日

第一节无线传播理论 1.1 无线传播基本原理 在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传播特性的研究、了解和据此进行的场强预测。它是进行系统工程设计与研究频谱有效利用、电磁兼容性等课题所必须了解和掌握的基本理论。 众所周知,无线电波可通过多种方式从发射天线传播到接收天线:直达波或自由空间波、地波或表面波、对流层反射波、电离层波。如图1-1所示。就电波传播而言,发射机同接收机间最简单的方式是自由空间传播。自由空间指该区域是各向同性(沿各个轴特性一样)且同类(均匀结构)。自由空间波的其他名字有直达波或视距波。如图1-1(a),直达波沿直线传播,所以可用于卫星和外部空间通信。另外,这个定义也可用于陆上视距传播(两个微波塔之间),见图1-1(b)。 第二种方式是地波或表面波。地波传播可看作是三种情况的综合,即直达波、反射波和表面波。表面波沿地球表面传播。从发射天线发出的一些能量直接到达接收机;有些能量经从地球表面反射后到达接收机;有些通过表面波到达接收机。表面波在地表面上传播,由于地面不是理想的,有些能量被地面吸收。当能量进入地面,它建立地面电流。这三种的表面波见图1-1(c)。第三种方式即对流层反射波产生于对流层,对流层是异类介质,由于天气情况而随时间变化。它的反射系数随高度增加而减少。这种缓慢变化的反射系数使电波弯曲。如图1-1(d)所示。对流层方式应用于波长小于10米(即频率大于30MHz)的无线通信中。第四种方式是经电离层反射传播。当电波波长小于1米(频率大于300MHz)时,电离层是反射体。从电离层反射的电波可能有一个或多个跳跃,见图1-1(e)。这种传播用于长距离通信。除了反射,由于折射率的不均匀,电离层可产生电波散射。另外,电离层中的流星也能散射电波。同对流层一样,电离层也具有连续波动的特性,在这种波动上是随机的快速波动。蜂窝系统的无线传播利用了第二种电波传播方式。这一点将在后文中论述。 在设计蜂窝系统时研究传播有两个原因。第一,它对于计算覆盖不同小区的场强提供必要的工具。因为在大多数情况下覆盖区域从几百米到几十公里,地波传播可以在这种情况下应用。第二,它可计算邻信道和同信道干扰。 预测场强有两种方法。第一种纯理论方法,适用于分离的物体,如山和其他固体物体。但这种预测忽略了地球的不规则性。第二种基于在各种环境的测量,包括不规则地形及人为障碍,尤其是在移动通信中普遍存在的较高的频率和较低的移动天线。第三种方法是结合上述两种方法的改进模型,基于测量和使用折射定律考虑山和其他障碍物的影响。在蜂窝系统中,至少有两种传播模型,第一种是FCC建议的模型。第二种设计模型由Okumura提供,覆盖边

电磁波及其传播 (教案)

《电磁波及其传播》教学设计 吴江经济技术开发区实验初级中学张玉妹 一、教材分析 (一)教材分析 《电磁波及其传播》是苏科版九年级下册,第17章第二节内容,是本章的重点,也是难点。本节由“波的基本特征”“了解电磁波”和“电磁波谱”三部分内容组成,其中“了解电磁波”又由“活动17.2 验证电磁波的存在”和“活动17.3探究电磁波的传播特性”组成。内容相对比较抽象,所以在每部分内容呈现的时候,都采取学生体验的方式,让学生在体验中感知,在感知中探究从而获得新知。 本节课在教学顺序安排上做了较大幅度的调整,开始用对讲机引入课题,然后直接让学生感受电磁波的存在和电磁波可以在空气中传播,从而过渡到电磁波的传播特性的教学,最后从问题“电磁波究竟是什么”进入波的基本特征和电磁波谱的教学。物理新课程理念要求“从生活走向物理,从物理走向社会”,在课堂的最后环节设计了“高压线会产生电磁污染,是真的吗?”这个教学环节,让学生带着问题走出课堂。 (二)学情分析 虽然电磁波在我们的生活中有广泛的应用,但毕竟它看不见、摸不着,非常 的抽象,所以学生还是很难理解的。本节课通过学生直观的体验,让学生根据已有的知识经验去设计实验并自己去验证,充分发挥学生的主观能动性,使学生轻松、愉快的掌握知识,形成技能并锻炼能力。 本节课的难点在于如何理解“波的基本特征”,所以需要在教师实验演示、动画、视频等多种手段的辅助引导下,让学生理解波能传播周期性变化的运动状态,从而了解几个物理量的意义。 二、教学目标 (一)知识与技能 (1)认识波的基本特征,知道波能够传播周期性变化的运动形态。 (2)了解振动的振幅、周期与频率,波长与波速的物理意义,知道它们是描述波的性质的物理量。 (3)了解电磁波的意义,体验电磁波的存在。了解电磁波可以在真空中传播的特

相关文档
最新文档