弛豫时间分布法分解固体氧化物燃料电池电化学阻抗谱

弛豫时间分布法分解固体氧化物燃料电池电化学阻抗谱

电化学阻抗谱的应用及其解析方法

电化学阻抗谱的应用及其解析方法 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 阻抗谱中的基本元件 交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。 图1. 用大面积惰性电极为辅助电极时电解池的等效电路 图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。通常称为电解阻抗或法拉第阻抗,其数值决定于电极动力学参数及测量信号的频率,Rl 表示辅助电极与工作电极之间的溶液 电阻。一般将双电层电容Cd 与法拉第阻抗的并联称为界面阻抗Z 。 实际测量中,电极本身的内阻很小,且辅助电极与工作电极之间的距离较大,故电容Cab 一般远远小于双电层电容Cd 。如果辅助电极上不发生电化学反映,即Zf ’特别大,又使辅助 电极的面积远大于研究电极的面积(例如用大的铂黑电极),则Cd ’很大,其容抗Xcd ’比串 联电路中的其他元件小得多,因此辅助电极的界面阻抗可忽略,于是图1可简化成图2,这也是比较常见的等效电路。 图2. 用大面积惰性电极为辅助电极时电解池的简化电路 Element Freedom Value Error Error %Rs Free(+)2000N/A N/A Cab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/A Rt Fixed(X)0N/A N/A Cd'Fixed(X)0N/A N/A Zf'Fixed(X)0N/A N/A Rb Free(+)10000N/A N/A Data File: Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdl Mode: Run Fitting / All Data Points (1 - 1) Element Freedom Value Error Error %Rs Fixed(X )1500N/A N/A Zf Fixed(X )5000N/A N/A Cd Fixed(X ) 1E-6 N/A N/A Data File: Circuit Model File:C:\Sai_Demo\ZModels\Tutor3 R-C.mdl Mode: Run Simulation / Freq. Range (0.01 - 10000Maximum Iterations: 100 B

电池测试之电化学阻抗谱的详细资料简介

电池测试之电化学阻抗谱的详细资料简介 许多研究电池的小伙伴,在最开始接触交流阻抗相关知识时,可能会非常排斥。因为无论是巴德的《电化学原理与应用》还是曹楚南、张鉴清的《电化学阻抗谱导论》,书中都是通过严谨公式推导来讲述的。今天,我们将尽量的避开公式,尽可能的分析交流阻抗谱尤其是其在锂电池中的应用。 电化学阻抗谱是一种相对来说比较新的电化学测量技术,它的发展历史不长,但是发展很迅速,目前已经越来越多地应用于电池、燃料电池以及腐蚀与防护等电化学领域。 电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS) 即给电化学系统施加一个频率不同的小振幅的交流正弦电势波,测量交流电势与电流信号的比值(系统的阻抗)随正弦波频率ω的变化,或者是阻抗的相位角f随ω的变化。 可以更直观的从这个示意图来看,利用波形发生器,产生一个小幅正弦电势信号,通过恒电位仪,施加到电化学系统上,将输出的电流/电势信号,经过转换,再利用锁相放大器或频谱分析仪,输出阻抗及其模量或相位角。通过改变正弦波的频率,可获得一些列不同频率下的阻抗、阻抗的模量和相位角,作图即得电化学阻抗谱-这种方法就称为电化学阻抗谱法。由于扰动电信号是交流信号,所以电化学阻抗谱也叫做交流阻抗谱。 利用EIS可以分析电极过程动力学、双电层和扩散等,可以研究电极材料、固体电解质、导电高分子以及腐蚀防护机理等。 基本思路——将电化学系统看成等效电路 利用电化学阻抗谱研究一个电化学系统时,它的基本思路是将电化学系统看作是一个等效电路,这个等效电路是由电阻(R)、电容(C)、电感(L)等基本元件按串联或并联等不同方式组合而成。通过EIS,可以定量的测定这些元件的大小,利用这些元件的电化学含义,来分析电化学系统的结构和电极过程的性质。 我们可以将内部结构未知的电化学系统当作一个黑箱,给黑箱输入一个扰动函数(激励函数),黑箱就会输出一个响应信号。用来描述扰动与响应之间关系的函数,称为传输函数。

液体T2弛豫时间测量CPMG磁共振脉冲序列实现与应用

Hans Journal of Biomedicine 生物医学, 2017, 7(4), 73-78 Published Online October 2017 in Hans. http://www.hanspub.org/journal/hjbm https://doi.org/10.12677/hjbm.2017.74012 The Implementation and Application of CPMG NMR Pulse Sequence for Measuring T2 Relaxation Time with Clinical MRI Scanner Zijian Zhao1, Jinxi Wang1*, Bin Nie2, Changzheng Shan1, Yang Pan1, Jin Liu1 1Department of Radiology, Taishan Medical College, Tai’an Shandong 2Department of Medical Information Engineering, Taishan Medical College, Tai’an Shandong Received: Sep. 18th, 2017; accepted: Oct. 2nd, 2017; published: Oct. 9th, 2017 Abstract Objective: To implement Carr-Purcell-Meiboom-Gill pulse sequence for T2 relaxation measuring in i_Open 0.36T clinical MRI scanner. Methods: Pascal language is engaged to edit source code. Waveform, phase, amplitude and maintaining time of the excited RF pulse, spacing time of echoes, number of times of data sampling, sampling points, sampling time, and so on are all controlled by sequence parameters. Data logging form was arranged to meet the need of T2 inversion. Source code of sequence was compiled to executable file and is loaded to RINMR software. Comparison was taken between measuring time of sample of CuSO4 solution with our pulse sequence and the given standard value. Results: Source code of CPMG sequence was done as well as the exe file can run with commercial MRI instrumentation. The measuring T2relaxation time of sample was 197.479 ms. Conclusion: The T2 value computed with our data acquired by our CPMG sequence is consistent with the given nominal value. The CPMG sequence adequately satisfies the practical ap-plication and the method can be used to implement the pulse sequence. Keywords Nuclear Magnetic Resonance, Pulse Sequence, CPMG, Implementation and Application 液体T2弛豫时间测量CPMG磁共振脉冲 序列实现与应用 赵子剑1,王进喜1*,聂斌2,单常征1,潘洋1,刘锦1 1泰山医学院放射学院,山东泰安 *通讯作者。

燃料电池专业词汇

Fuel Cell Glossary Activation voltage loss: 活化电压损失 Activation energy: 活化能 Activation impedance loop:活化阻抗回路 Activation kinetics: 活化反应动力学 Activation barrier: 活化壁垒 Activation overpotential: 活化过电位 Air relative permeability: 空气相对渗透率 Air-water two-phase flow: 水-气两相流 Anode heat exchanger: 阳极热交换器 Anode subsystem: 阳极子系统 Arrhenius relationship: 阿伦尼乌斯关系 Associative pathway: 旁路,侧路 Atmospheric CO2 concentration: 大气CO2浓度Automotive fuel cells: 汽车用燃料电池 Avogadro’s number: 阿伏伽德罗常数 AC/DC converter: 交流/直流转换器 Alkaline fuel cell: 碱性燃料电池 AFM: atomic force microscopy: 原子力显微镜 Air blower: 风机 Air pollution: 空气污染 Air supply: 供气 Aqueous potassium hydroxide: 氢氧化钾溶液Ammonium borohydride:NH4BH4硼氢化铵 Anaerobic digester gas(ADG): 厌氧沼气 Anode Galvani potential: 阳极伽伐尼电位 Anode supported MEA: 阳极支撑膜电极 Aqueous alkaline electrolyte: 含水的碱性电解质Aqueous electrolyte/ionic liquids: 含水电解质/离子溶液Area-normalized reaction rates: 面积归一化的反应速率Area-specific resistance: 面阻抗 Arhenius conductivity equation: 阿伦尼乌斯导电率方程Aromatic hydrocarbon membranes: 芳香族碳氢化合物膜Asiplex(Asahi Chemical Industry): 朝日化工 Back-diffusion water fluxes: 反扩散水通量 Backward flux: 反向通量 Batteries: 电池 Binary diffusion coefficient: 二元扩散系数 Biological fuel cells: 生物燃料电池 Bipolar plates: 双极板

电化学曲线极化曲线阻抗谱分析

电化学曲线极化曲线阻抗谱分析 一、极化曲线 1.绘制原理 铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a) 当电极不与外电路接通时,其净电流I总为零。在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1) I(Fe)的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。 图1是Fe在H+中的阳极极化和阴极极化曲线图。图2 铜合金在海水中典型极化曲线 当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。此时,电化学过程以Fe的溶解为主要倾向。通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。 当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。同理,可获得阴极极化曲线rdc。 2.图形分析 (1)斜率 斜率越小,反应阻力越小,腐蚀速率越大,越易腐蚀。斜率越大,反应阻力越大,腐蚀速率越小,越耐腐蚀。 (2)同一曲线上各各段形状变化 如图2,在section2中,电流随电位升高的升高反而减小。这是因为此次发生了钝化现象,产生了致密的氧化膜,阻碍了离子的扩散,导致腐蚀电流下降。 (3)曲线随时间的变动 以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),自腐蚀电位降低,说明更容易腐蚀。对于X轴,七天后曲线正移,腐蚀电流增大,亦说明更容易腐蚀。 二、阻抗谱 1.测量原理 它是基于测量对体系施加小幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。从这些数据中可以计算出电化学响应的实部和虚部。阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因而阻抗谱可以通过多种方式表示。

电化学阻抗谱的解析与应用

电化学阻抗谱解析与应用 交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 1. 阻抗谱中的基本元件 交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。 Element Freedom Value Error Error %Rs Free(+)2000N/A N/A Cab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/A Rt Fixed(X)0N/A N/A Cd'Fixed(X)0N/A N/A Zf'Fixed(X)0N/A N/A Rb Free(+)10000N/A N/A Data File:Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdl Mode: Run Fitting / All Data Points (1 - 1) Maximum Iterations:100Optimization Iterations:0Type of Fitting: Complex Type of Weighting: Data-Modulus 图1. 用大面积惰性电极为辅助电极时电解池的等效电路 图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。通常称为电解阻抗或法拉第阻抗,其数值决定于电极动力学参数 及测量信号的频率,Rl 表示辅助电极与工作电极之间的溶液电阻。一般将双电层电容Cd 与法拉第阻抗的并联称为界面阻抗Z 。 实际测量中,电极本身的内阻很小,且辅助电极与工作电极之间的距离较大,故电容Cab 一般远远小于双电层电容Cd 。如果辅助电极上不发生电化学反映,即Zf ’特别大,又使辅助电极的面积远大于研究电极的面积(例如用大的铂黑电极),则Cd ’很大,其容抗Xcd ’比串联电路中的其他元件小得多,因此 辅助电极的界面阻抗可忽略,于是图1可简化成图2,这也是比较常见的等效电路。 图2. 用大面积惰性电极为辅助电极时电解池的简化电路 2. 阻抗谱中的特殊元件 以上所讲的等效电路仅仅为基本电路,实际上,由于电极表面的弥散效应的存在,所测得的双电层 电容不是一个常数,而是随交流信号的频率和幅值而发生改变的,一般来讲,弥散效应主要与电极表面电流分布有关,在腐蚀电位附近,电极表面上阴、阳极电流并存,当介质中存在缓蚀剂时,电极表面就会为缓蚀剂层所覆盖,此时,铁离子只能在局部区域穿透缓蚀剂层形成阳极电流,这样就导致电流分布 极度不均匀,弥散效应系数较低。表现为容抗弧变“瘪”,如图3所示。另外电极表面的粗糙度也能影响弥散效应系数变化,一般电极表面越粗糙,弥散效应系数越低。 2.1 常相位角元件(Constant Phase Angle Element ,CPE ) 在表征弥散效应时,近来提出了一种新的电化学元件CPE,CPE 的等效电路解析式为: p j T Z )(1ω?=,CPE 的阻抗由两个参数来定义,即CPE-T ,CPE-P ,我们知道, )2sin()2cos(ππp j p j p +=,因此CPE 元件的阻抗Z 可以表示为

燃料电池应用手册(横河)JAPAN

FUEL CELL APPLICATION HANDBOOK 燃料电池应用手册 PERFORMANCE TESTING AND DESIGN VALIDATION 性能测试和设计的验证 概述: 燃料电池工业正在向技术的商业化阶段迈进。研究、设计、检测仪表的配置以及燃料电池性能的测试是在该领域获得进步的核心问题。从各种电池化学原理的研究和监测,到模块或电堆水平的设计验证,直至系统及生产测试,燃料电池的测试正面临着独特的挑战。这本手册介绍了典型的燃料电池试验步骤和试验装置的总体结构。 目录: 1. 燃料电池系统概述 ...................................................................................................................................... 1 2. 电池单元电压的监控 (CVM) .................................................................................................................... 2 3. 电堆应力测试 ............................................................................................................................................. 4 4. 温度分布检测 ............................................................................................................................................ 6 5. 过程控制和监控 ................................................ ................................................................................. 7 6. 用电化学阻抗频谱法进行阻抗测试 ............................................................................................. 10 7. 用电流中断法进行阻抗测试 .............................................................................................................. 12 8. 用PZ4000数字功率分析仪进行逆变器测试和功率分析 ........................................................................... 13 9. 用WT1600数字功率分析仪进行逆变器测试 ............................................................................................ 15 10. 用WT2030数字功率分析仪进行逆变器测试 .. (16) 逆变器 电堆 重整器 空气 空气供应 设备 废热回收系统 输出的 电能 热水 燃料电池电堆的测试 功率的调节 燃料的储存、供应和处理

内容(十三)锂离子电池的电化学阻抗谱分析

锂离子电池的电化学阻抗谱分析 1. 锂离子电池的特点 锂离子电池充电时,正极中的锂离子从基体脱出,嵌入负极;而放电时,锂离子会从负极中脱出,嵌入正极。因此锂离子电池正负极材料的充放电容量、循环稳定性能和充放电倍率等重要特性均与锂离子在嵌合物电极材料中的脱出和嵌入过程密切相关。这些过程可以很好地从电化学阻抗谱(EIS )的测量与解析中体现出来。 2. 电化学阻抗谱的解析 2.1. 高频谱解析 嵌合物电极的EIS 谱的高频区域是与锂离子通过活性材料颗粒表面SEI 膜的扩散迁移相关的半圆(高频区域半圆),可用一个并联电路R SEI /C SEI 表示。 R SEI 和C SEI 是表征锂离子活性材料颗粒表面SEI 膜扩散迁移过程的基本参数,如何理解R SEI 和C SEI 与SEI 膜的厚度、时间、温度的关系,是应用EIS 研究锂离子通过活性材料颗粒表面SEI 膜扩散过程的基础。 2.1.1. 高频谱解析R SEI 和C SEI 与SEI 膜厚度的关系 SEI 膜的电阻R SEI 和电容C SEI 与SEI 膜的电导率、介电常数ε的关系可用简单的金属导线的电阻公式和平行板电容器的电容公式表达出来 S l R SEI ρ = (1) l S C SEI ε= (2) 以上两式中S 为电极的表面积,l 为SEI 膜的厚度。倘若锂离子在嵌合物电极的嵌入和脱出过程中ρ、ε和S 变化较小,那么R SEI 的增大和C SEI 的减小就意味着SEI 厚度的增加。由此根据R SEI 和C SEI 的变化,可以预测SEI 膜的形成和增长情 2.1.2. SEI 膜的生长规律(R SEI 与时间的关系) 嵌合物电极的SEI 膜的生长规律源于对金属锂表面SEI 膜的生长规律的分析

电化学阻抗谱的应用分析

电化学阻抗谱的应用分析 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的 重要手段。特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高, 超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化 程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱 发、发展、终止以及活性物质的吸脱附过程。 阻抗谱中的基本元件 交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R,纯电容C,阻抗值为1/j 3 C,纯电感L,其阻抗值为j 3 L。实际测量中,将某一频率为3的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引 起的阻力均视为电阻,则等效电路如图1所示。 Element Freedom Value Error Error % 图中A、B分剁谡示电解池唯e(尊极和辅1200极两端,N/A Ra、Rb分N/表示电极材料本身的电阻,Cab表郴跳电极与辅助豳极立间的电容--7 Cd与N Cd'表示研究翩A和辅助电极的双电 层电容,Zf与C Zf '表示研究电核肉XI助电极的交流阻抗。顺称为电解阻NA法拉第阻抗,其数值决定于电皱动力学参数族苗密令号的频% Rl源A辅助电极与WA作电极之间的溶液Rt Fixed(X) 0 N/A N/A 电阻。一般将双Cd层电容C

电化学阻抗谱的应用分析

电化学阻抗谱的应用分析 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 阻抗谱中的基本元件 交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。 图1. 用大面积惰性电极为辅助电极时电解池的等效电路 图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。通常称为电解阻抗或法拉第阻抗,其数值决定于电极动力学参数及测量信号的频率,Rl 表示辅助电极与工作电极之间的溶液 电阻。一般将双电层电容Cd 与法拉第阻抗的并联称为界面阻抗Z 。 实际测量中,电极本身的内阻很小,且辅助电极与工作电极之间的距离较大,故电容Cab 一般远远小于双电层电容Cd 。如果辅助电极上不发生电化学反映,即Zf ’特别大,又使辅助 电极的面积远大于研究电极的面积(例如用大的铂黑电极),则Cd ’很大,其容抗Xcd ’比串 联电路中的其他元件小得多,因此辅助电极的界面阻抗可忽略,于是图1可简化成图2,这也是比较常见的等效电路。 图2. 用大面积惰性电极为辅助电极时电解池的简化电路 Element Freedom Value Error Error %Rs Free(+)2000N/A N/A Cab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/A Rt Fixed(X)0N/A N/A Cd'Fixed(X)0N/A N/A Zf'Fixed(X)0N/A N/A Rb Free(+)10000N/A N/A Data File: Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdl Mode: Run Fitting / All Data Points (1 - 1) Element Freedom Value Error Error %Rs Fixed(X )1500N/A N/A Zf Fixed(X )5000N/A N/A Cd Fixed(X ) 1E-6 N/A N/A Data File: Circuit Model File:C:\Sai_Demo\ZModels\Tutor3 R-C.mdl Mode: Run Simulation / Freq. Range (0.01 - 10000Maximum Iterations: 100 B

电化学交流阻抗谱(可编辑)

电化学交流阻抗谱(可编辑) Work report 万逸电化学交流阻抗谱注意事项: 1. Rp近似Rct+Zw,但不是完全的相等 2. 极化阻抗通过计划曲线也可以得到 (腐蚀电位出切线的斜率) . 等效电路元件下一步计划: 2. 动电位极化曲线简介极化的分类极化曲线获取信息腐蚀电位 Ecorr ,腐蚀电流(icorr) 获得Tafel参数(阴极极化斜率ba,阳极极化斜率bk) 研究防腐蚀机理,可以知道是阳极机制剂、阴极抑制剂或者是混合型抑制剂。通过腐蚀电流可以计算腐蚀抑制效率(IE% 1-i1.corr/i2.corr) 极化曲线在腐蚀与防护中应用线性极化简介活化控制的腐蚀体系线性极化法铝合金在含有氯离子的乙二醇-硼酸溶液中的腐蚀行为研究氨基苯唑在3.5% NaCl中铜镍合金的防腐蚀的研究缓蚀剂的存在改变了阳极钝化过程,使铜镍合金更加容易钝化,增加抗腐蚀的性能。 * 1. 电化学交流阻抗谱简介 1.1 交流阻抗谱方法是一种以小振幅的正弦波电位为扰动信号的电测量方法。优点: 体系干扰小提供多角度的界面状态与过程的信息,便于分析腐蚀缓蚀作用机理数据分析过程相对简单,结果可靠缺点: 复杂的阻抗谱的解释 1.2 物理参数和等效电路元件物理参数溶液电阻 (Rs) 双电层电容 (Cdl) 极化阻抗 (Rp) 电荷转移电阻 (Rct) 扩散电阻 (Zw) 界面电容 (C)和常相角元件(CPE) 电感 (L) 对电极和工作电极之间电解质之间阻抗工作电极与电解质之间电容当电位远离开路电位时时,导致电极表面电流产生,电流受到反应动力学和反应物扩散的控制。电化学反应动力学控制反应物从溶液本体扩散到电极反应界面的阻抗通常每一个界面之间都会存在一个电容。溶液电阻 (Rs) B. 极化阻抗 (Rp) C. 电荷转移电阻 (Rct) D. 扩散电阻(Zw) E. 界面电容 (C) 和常相角元件(CPE) R 阻抗 C 电容 L 电感 W 无限扩散阻抗 O 有限扩散阻抗 Q 常相角元件阻抗导纳 1.3 等效电路 (A)一个时间常数 Nyquist图相位图

电化学阻抗谱的应用及其解析方法

电化学阻抗谱的应用及其解析方法 交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 1.阻抗谱中的基本元件 交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R,纯电容C,阻抗值为1/jωC,纯电感L,其阻抗值为jωL。实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。 图1. 用大面积惰性电极为辅助电极时电解池的等效电路 图中A、B 分别表示电解池的研究电极和辅助电极两端,Ra、Rb分别表示电极材料本身的电阻,Cab表示研究电极与辅助电极之间的电容,Cd与Cd’表示研究电极和辅助电极的双电层电容,Zf与Zf’表示研究电极与辅助电极的交流阻抗。通常称为电解阻抗或法拉第阻抗,其数值决定于电极动力学参数及测量信号的频率,Rl表示辅助电极与工作电极之间的溶液电阻。一般将双电层电容Cd与法拉第阻抗的并联称为界面阻抗Z。 实际测量中,电极本身的内阻很小,且辅助电极与工作电极之间的距离较大,故电容Cab一般远远小于双电层电容Cd。如果辅助电极上不发生电化学反映,即Zf’特别大,又使辅助电极的面积远大于研究电极的面积(例如用大的铂黑电极),则Cd’很大,其容抗Xcd’比串联电路中的其他元件小得多,因此辅助电极的界面阻抗可忽略,于是图1可简化成图2,这也是比较常见的等效电路。 图2. 用大面积惰性电极为辅助电极时电解池的简化电路 2.阻抗谱中的特殊元件 以上所讲的等效电路仅仅为基本电路,实际上,由于电极表面的弥散效应的存在,所测得的双电层电容不是一个常数,而是随交流信号的频率和幅值而发生改变的,一般来讲,弥散效应主要与电极表面电流分布有关,在腐蚀电位附近,电极表面上阴、阳极电流并存,当介质中存在缓蚀剂时,电极表面就会为缓蚀剂层所覆盖,此时,铁离子只能在局部区域穿透缓蚀剂层形成阳极电流,这样就导致电流分布极度不均匀,弥散效应系数较低。表现为容抗弧变“瘪”,如图3所示。另外电极表面的粗糙度也能影响弥散效应系数变化,一般电极表面越粗糙,弥散效应系数越低。 2.1常相位角元件(Constant Phase Angle Element,CPE) 在表征弥散效应时,近来提出了一种新的电化学元件CPE,CPE的等效电路解析式为:,CPE的阻抗由两个参数

纵向弛豫T和横向弛豫T

纵向弛豫T1和横向弛豫T2 摘要: 在磁共振成像中。存在着两种组织磁性,即纵向磁性Mz,它与Bo平行,涉及T1;横向磁性Mxy,它与Bo垂直,涉及T2。这两种磁性涉及到两种不同的机制:Mz:质子从E1能级跃迁到E2能级,和从E2能级回到E1能级的状态。Mxy:自... 在磁共振成像中。存在着两种组织磁性,即纵向磁性Mz,它与Bo平行,涉及 T1;横向磁性Mxy,它与Bo垂直,涉及T2。这两种磁性涉及到两种不同的机制: Mz:质子从E1能级跃迁到E2能级,和从E2能级回到E1能级的状态。 Mxy:自旋相位的重聚和相散。示意图如下: 纵向弛豫T1 人体进入主磁场B0中后将形成一个与主磁场B0方向一致的净磁矩Mz,给予RF 脉冲激励,为了使得两个能级上的自旋等量化,造成B0偏离纵轴的改变,纵向 磁矩Mz减小,横向磁矩Mxy的出现。当RF终止后,Mz又将逐渐向纵向恢复大 最大。从微观角度来讲,在这个过程中能量被吸收,一半数量的额外自旋吸收能 量从E1跃迁到E2,但处于此状态系统不稳定,当激励结束后,系统又将回到稳 定状态,从E2到E1,纵向磁矩的缓慢恢复过程就是纵向弛豫。如下图所示: 由于质子从高能级E2到低能级E1,通过与周围分子晶格的相互作用,热交换和 释放能量,所以纵向弛豫也叫自旋—晶格弛豫。纵向弛豫的回复过程是一个从零 恢复到最大的一个一个递增的指数函数,如下图所示: T1值对应于恢复完成63%的时间。纵向磁矩在2T1恢复了87%,在3T1恢复95%。

我们人为的把纵向磁矩恢复到原来的(最大值)63%时,所需的时间为一个单位T1时间,即T1值,单位为s或ms。T1是反映组织纵向磁矩恢复快慢的一个的物理指标,人体内各种组织都具有不同的T1值,一般在500~1000ms。液体的T1值要比固态物质的T1更长一些。 横向弛豫T2 RF脉冲激励后,造成B0偏离纵轴的改变,纵向磁矩Mz减小,横向磁矩Mxy的出现。当RF终止后,Mxy逐渐减小,逐渐恢复到RF作用前的零状态,这个过程叫横向弛豫。所需的时间为横向弛豫时间。横向弛豫和纵向弛豫是同时发生的。从微观角度来讲,RF通过质子的相重聚,造成了组织的横向分量磁矩Mxy的出现,当RF终止后,系统将发生相反的现象(质子的快速相散),横向磁矩快速的减少以致最后相互抵消。如图所示: 该现象是质子自旋相互间的作用,所以又称为自旋—自旋弛豫,横向弛豫不涉及能量的交换。横向磁矩的消失过程是一个快速下降的指数函数,如下图所示:T2值对应于消失量达到63%所需的时间,横向磁矩在2T2减少了87%,在3T2减少了95%。 人为的将横向磁矩消失量达到63%所需的时间,即是减少至最大时37%时所需的时间称为一个单位T2时间,即T2值单位为s或ms。 生物组织的T2值一般为T1值的10%,即50~100ms。相对于固态物质和大分子

内容(十三)锂离子电池的电化学阻抗谱分析报告

锂离子电池的电化学阻抗谱分析 1. 锂离子电池的特点 锂离子电池充电时,正极中的锂离子从基体脱出,嵌入负极;而放电时,锂离子会从负极中脱出,嵌入正极。因此锂离子电池正负极材料的充放电容量、循环稳定性能和充放电倍率等重要特性均与锂离子在嵌合物电极材料中的脱出和嵌入过程密切相关。这些过程可以很好地从电化学阻抗谱(EIS )的测量与解析中体现出来。 2. 电化学阻抗谱的解析 2.1. 高频谱解析 嵌合物电极的EIS 谱的高频区域是与锂离子通过活性材料颗粒表面SEI 膜的扩散迁移相关的半圆(高频区域半圆),可用一个并联电路R SEI /C SEI 表示。 R SEI 和C SEI 是表征锂离子活性材料颗粒表面SEI 膜扩散迁移过程的基本参数,如何理解R SEI 和C SEI 与SEI 膜的厚度、时间、温度的关系,是应用EIS 研究锂离子通过活性材料颗粒表面SEI 膜扩散过程的基础。 2.1.1. 高频谱解析R SEI 和C SEI 与SEI 膜厚度的关系 SEI 膜的电阻R SEI 和电容C SEI 与SEI 膜的电导率、介电常数 的关系可用简单的金属导线的电阻公式和平行板电容器的电容公式表达出来 S l R SEI ρ= (1) l S C SEI ε= (2) 以上两式中S 为电极的表面积,l 为SEI 膜的厚度。倘若锂离子在嵌合物电极的

嵌入和脱出过程中、和S 变化较小,那么R SEI 的增大和C SEI 的减小就意味着SEI 厚度的增加。由此根据R SEI 和C SEI 的变化,可以预测SEI 膜的形成和增长情况(这是理解高频容抗弧的关键)。 2.1.2. SEI 膜的生长规律(R SEI 与时间的关系) 嵌合物电极的SEI 膜的生长规律源于对金属锂表面SEI 膜的生长规律的分析而获得。对金属锂电极而言,SEI 膜的生长过程可分为两种极端情况:(A )锂电极表面的SEI 膜不是完全均匀的,即锂电极表面存在着锂离子溶解的阳极区域和电子穿过SEI 膜导致的溶剂还原的阴极区域;(B )锂电极表面的SEI 膜是完全均匀的,其表面不存在阴极区域,电子通过SEI 膜扩散至电解液一侧为速控步骤。这对于低电位极化下的炭负极和过渡金属氧化物负极以及过渡金属磷酸盐正极同样具有参考价值。下面分别讨论这两种情况。 (A )锂电极的SEI 膜不完全均匀 电极过程的推动力源自金属锂与电解液组分之间的电位差 V M-S 。假设:(1)腐蚀电流服从欧姆定律;(2)SEI 膜的电子导电率( e )随时间变化保持不变,此时腐蚀电流密度可表示为: l V i e S M corr ρ/-?= (3) 式中导电率e 的量纲为 m ,SEI 膜的厚度l 的量纲为m 。通过比较(3)式两端的量纲,可以判断公式成立。 进一步假设腐蚀反应的全部产物都沉积到锂电极上,形成一个较为均匀的薄膜,那么 corr Ki dt dl = (4) K 为常数,其量纲为m 3A -1s -1。

阻抗图谱

金属支撑固体氧化物燃料电池阻抗谱动态分析 金属支撑固体氧化物燃料电池阻抗谱动态分析 黄秋安1,2 汪秉文1 徐玲芳2 王亮1 (1华中科技大学控制科学与工程系,湖北武汉430074; 2湖北大学物理学与电子技术学 院,湖北武汉430062) 摘要:采用悬浮等离子喷涂工艺制造金属支撑固体氧化物燃料电池(SOFC),阴极为SSCo-SDC (质量分数比为75%∶25%),电解质为SDC,阳极为NiO-SDC (质量分数比为70%∶30%),支撑体为多孔Hastelloy X合金.在450~600℃下,对极化电阻、欧姆电阻、本体电阻与界面接触电阻分别进行了静态分析,分析结果显示接触电阻对欧姆极化损失的影响较大.电池经受3次慢速热循环(3℃/min)和12次快速热循环(60℃/ min),并记录600℃时动态阻抗谱和开路电压.基于对欧姆电阻和极化电阻的动态分析,给出了金属支撑 SOFC可能的降解机理.动态分析结果也显示,金属支撑体的抗氧化性 在金属支撑SOFC稳定性中发挥重要作用. 关键词:固体氧化物燃料电池;电化学阻抗谱;热循环;动态分析;降解机理 固体氧化物燃料电池(solid oxide fuel cell, SOFC)被视作21世纪最有潜力的绿色发电系统[1],然而,高成本、短寿命和低稳定性仍严重制约着其发展.降低SOFC操作温度是解决上述问题的重要方向,当操作温度降至中温(600~800 ℃)甚或低温(450~600℃)时,不仅可采用廉价的不锈钢作为支撑材料和电池堆的连接材料,而且可以降低密封难度,简化电池堆设计,减缓电极界面间的相互反应以及电极材料微结构的退化, 并有望实现SOFC的快速启动和关闭[2,3].金属支撑SOFC因具有成本低、强度高、加工性好、导热快和启动迅速等特点,已成为低温SOFC领域的研究热点[4].金属支撑SOFC经历多次热循环后,极化电阻和欧姆电阻显著增加,严重影响电池性能[5,6].截止目前,尚未发现国内关于金属支撑 SOFC的报道,国际上这方面的报道也甚少.本研究定量分析了450~600℃低温区间金属支撑 SOFC极化电阻与欧姆电阻的静态特性,并对电池在600℃下阻抗谱进行了动态分析,探讨金属支撑SOFC可能的降解机理和制约其性能的关键因素. 1 试验程序 金属支撑SOFC组成如下:电解质采用氧化钐掺杂的氧化铈(samaria doped ceria, SDC),沉积工艺为悬浮等离子喷涂(suspension plasma spray, SPS),阳极为NiO-SDC (质量分数比为70%∶30%),阴极为SSCo-SDC (质量分数比为75%∶25%),电极的有效面积为0.34 cm2,商品化的多孔 Hastelloy X合金作为支撑体,Hastel- loy X合金孔隙率由阿基米德方法测量,其孔隙率值为 27.5%,详细制造过程见文献[5].热电池以2℃/min将加到650℃,并停留5 h,停留期间逐步增加氢 气浓度(维持体积分数为3%的水蒸气浓度)以充分还原阳极;随后,以3℃/min升温至800℃,烧结阴极0.5 h;之后,以2℃/min冷却至400℃,在冷却过程中,每间隔50℃记录两次阻抗谱和极化曲线数据,电池两极均采用铂网作为集流体.Solartron 1480A衡电位仪以4 mV/ s扫描至 0.3 V.Solartron 1260频率相应分析仪 (frequency response analysis, FRA)与Solartron 1480A 衡电位仪用来测量开路条件下电化学阻抗谱,频率范围为0.1~100 kHz.最后,将电池浸入环氧基树脂,固化、横切、打磨,在不同放大倍数下用扫描电镜(Hitachi S-3500N)检测电池横截面的微观结 构.

相关文档
最新文档