pH值对水热法合成钛酸钡粉体的影响[1]

pH值对水热法合成钛酸钡粉体的影响[1]
pH值对水热法合成钛酸钡粉体的影响[1]

.6 陕西科技大学学报 Dec.2003 6 JOU R NAL OF SHAA NX I U N IVERSIT Y OF SCIENCE&T ECHNOL OGY Vol.21 文章编号:1000-5811(2003)06-0006-04

pH值对水热法合成钛酸钡粉体的影响

蒲永平1,3,高小利2,宁叔帆3,陈寿田3

(1.陕西科技大学材料科学与工程学院,陕西咸阳 712081;2.北方照明电器(集团)服务有限公司,陕西宝

鸡 721006;3.西安交通大学电力设备电气绝缘国家重点实验室,陕西西安 710049)

摘 要:采用BaCl2-T iCl4-NaOH系统,通过水热反应合成了高纯钛酸钡粉体,提出了以

[NaOH]/[TiCl4]作为衡量反应体系碱度的标准,通过精确测量pH值,在[NaOH]/[T iCl4]=

10,Ba/T i=3.0,240 反应6h制得高纯的钛酸钡粉体,经检验没有碳酸钡杂质,本文讨论了溶

液pH值对水热法合成钛酸钡粉体物相组成及颗粒度的影响。

关键词:水热法;pH值;钛酸钡粉体

中图分类号:T Q174 文献标识码:A

0 引言

钛酸钡是一种性能优异的强介电和铁电材料,被广泛用于热敏电阻器(PTCR)、多层陶瓷电容器(MLC)和电光器件、压电换能器等电子元器件的制造,被誉为 电子工业的支柱 。水热法是利用湿化学法直接合成单晶体和高性能氧化物粉体的有效方法之一,其与传统的固相反应法、So-l Gel工艺和化学共沉淀法等相比具有以下优点:(1)组分可控、纯度高;(2)形貌可控;(3)不需要球磨和煅烧。高纯超细钛酸钡粉体的合成对于提高钛酸钡基陶瓷的介电特性和低温烧结精细陶瓷都有很高的实用价值。水热法合成钛酸钡,尤其是合成四方相钛酸钡,是目前此领域研究的一个热点问题。关于水热法合成钛酸钡的工艺参数(如前驱物的Ba/T i、介质的pH值以及反应温度和时间等),共同的认识是合成钛酸钡必须在高碱介质中进行 1 ,但高碱环境会对粉体的纯度产生很大的影响。如果钛酸钡含有碳酸钡杂质,那么在烧结的过程中会造成陶瓷显微结构中含有一定量的气隙,从而大大降低陶瓷的耐电强度。以往对于pH值对水热法合成钛酸钡粉体纯度及粒度的影响研究的很少,而这对于实现工业化生产高纯超细钛酸钡粉体又是至关重要的。本文重点讨论了溶液的pH值对水热合成钛酸钡物相组成及颗粒度的影响。

1 实验方法

1.1 实验试剂

采用的原料BaCl2 H2O、TiCl4、NaOH均为分析纯试剂。

1.2 实验步骤

将四氯化钛逐滴加入到配好的氯化钡溶液中,之后加入一定量的氢氧化钠,充分搅拌均匀后置于内衬为聚四氟乙烯的高压不锈钢反应釜内,密闭后在240 保温一定时间,反应完成后,将所得沉淀物进行过滤,用去离子水充分洗涤,直至滤液中用AgNO3溶液检验没有Cl-为止,然后将沉淀于80 下干燥24h,制得最终样品。

1.3 测试

(1)用pHS-3C精密pH计测量溶液的pH值;

(2)用Shimadzu SA-CP3型粒度分析仪分析粉体的粒度;

(3)用日本理学D/max-2200PC自动X射线衍射仪对粉体进行定性和定量分析。

2 结果与讨论

收稿日期:2002-12-23

作者简介:蒲永平(1971-),男,山西省新绛县人,讲师,博士生,研究方向:电子陶瓷材料

2.1 [NaOH ]/[T iCl 4]对溶液pH 值的影响

徐华蕊 4

采用BaCl 2-T iCl 4-NaOH 系统以水热法合成四方相的BaTiO 3时,认为氢氧化钠需过量2mol/L 时才有利于产物四方相的生成,但并未提及加入氢氧化钠的量。对于BaCl 2-TiCl 4-NaOH 系统,当TiCl 4液体逐滴加入到水中时,开始由于TiCl 4的量较少,溶液的pH 值为中性或弱酸性,并出现乳白色,并有微量的水合氧化钛颗粒生成。随着TiCl 4加入量的不断增加,水解过程产生的部分H Cl 以气体形式挥发,还有部分立即变为盐酸,使溶液逐渐显强酸性(pH =1),只有增大氢氧化钠的浓度才能与之中和并使溶液呈强碱性。在放置一段时间后,溶液逐渐变为完全透明。这说明在强酸性溶液中,水合氧化钛以复杂的粒子形态存在,此现象进一步证明了合成钛酸钡不能在酸性的介质环境中进行。图1为溶液的pH 值随

[NaOH]/[TiCl 4]变化的关系,可以得出反应方程式为BaCl 2+T iCl 4+6NaOH =BaTi(OH)6 +6NaCl 。由于BaT i(OH )6显碱性,因而当[NaOH ]/[TiCl 4]约为4.5时,溶液为中性。由图1可知从[NaOH ]/

[TiCl 4]为5.5开始,随着[NaOH]/[T iCl 4]的增大,溶液的pH 值只呈现缓慢的增大,说明碱已大大过量,所以对于BaCl 2-T iCl 4-NaOH 系统,T iCl 4水解时呈强酸性,[TiCl 4]会显著影响反应介质的碱度,当反应物浓度增大时,矿化剂[NaOH]也要相应增大,但应以[NaOH]/[TiCl 4]

为衡量标准。图1 溶液pH 值随[NaOH]/[TiCl 4] 图2 由不同[NaOH]/[TiCl 4]

的变化曲线

制备的BaT iO 3的XRD 图谱(a)5.5,(b)6.7,(c)10.0,(d)13.5,(e)15.0

2.2 溶液pH 值对产物相含量的影响

图2为在240 、[TiCl 4]=0.6mol/L 、Ba/Ti=3.0条件下不同[NaOH ]/[T iCl 4]水热合成6h 所生成粉体的XRD 结果。施尔畏 5 等认为氢氧根离子在水热合成过程中具有重要的作用,从热力学的角度来讲,钛酸钡粉体必须在强碱的条件下合成反应才能进行。M.M.Lencka 等通过热力学模拟分析发现,pH

值的图3 [NaOH]/[TiCl 4]对BaTiO 3结晶度的影响 图4 不同Ba/T i 制备BaT iO 3的XRD 图谱

(a)1.2,(b)2.0,(c)3.0

提高有利于钛酸钡的合成。图2中(a)图谱也证明了这一观点,当溶液的pH 值为11时,产物中大多为未反应的非晶态物质。图3表明了溶液的pH 值与XRD 图谱所显示的钛酸钡粉体的(111)晶面衍射峰高度间的关系,说明在一定的碱度范围内,随着碱度的增大,钛酸钡晶粒发育的更加完整,在

[NaOH]/[TiCl 4]=10时达到最大值。从图2可以看出,随着碱度的增大,XRD 图谱中碳酸钡的衍射峰明显加强,说明产物中的碳酸钡含量显著增高。分析碳酸钡的来源,认为主要是在配料和反应完成后的洗涤 7 第6期 蒲永平等:pH 值对水热法合成钛酸钡粉体的影响

过程中,由于高的[OH -],溶液会强烈地吸收空气中的CO 2,进而形成的CO 32-与Ba 2+反应生成碳酸钡沉

淀。碳酸钡在水溶液中的溶解度很小,在20 时于100g 水中溶解0.0022g,在100 时于100g 水中溶解0.006g,实验表明在高温高压下的强碱性溶液中碳酸钡也是难溶的,因而在水热法合成过程中BaCO 3沉淀没有发生变化。当[NaOH ]/[T iCl 4]=10时,溶液pH 值为12.50,产物中XRD 衍射峰最强,杂质碳酸钡含量也最少。随着pH 值缓慢的增大,[NaOH]也显著地增大,因而就会大幅度地增加吸收CO 2的趋势,导致产物中杂质碳酸钡含量迅速提高。

2.2.1 Ba/T i 摩尔比的影响

水热法合成中,原料的钡钛比(氯化钡与四氯化钛的浓度摩尔比)对水热产物的钡钛比影响很大。文献报道,提高前驱物中Ba/Ti 的摩尔比可提高BaT iO 3晶粒完全反应的程度。当Ba/Ti 摩尔比小于1时,不能合成纯相的BaT iO 3粉体,随着Ba/Ti 摩尔比的增大,BaT iO 3晶粒发育完整而且逐渐由立方相转变为四方相,SONG W 在pH 值大于13.5的介质中以Ba/Ti 摩尔比为3合成了BaTiO 3粉体,在反应结束时,由于溶液中存在大量过剩的Ba 2+

,为杂质碳酸钡的生成提供了非常有利的条件,导致粉体的纯度下降,因此必须严格控制Ba/T i 的摩尔比。综合图2和图4的结果可以得到,当Ba/T i 相对较小时,溶液pH 值不可过大,否则将会大大降低钛酸钡的纯度。

2.2.2 反应时间的影响

图5为在240 、[NaOH]/[TiCl 4]=10.0,Ba/T i=3.0条件下水热合成6、9、12h 所生成粉体的XRD 图谱,结果表明在一定的水热条件下,随着恒温时间的延长,晶粒成核速度和生长速度都有一定的提高,这就增大了BaTiO 3晶粒完全反应的程度,

也使钛酸钡粉体的纯度提高。图5 不同水热反应时间制备 图6 钛酸钡粉体的XRD 半高宽以及晶粒尺寸与

的BaT iO 3的XRD 图 [NaOH]/[TiCl 4]的关系

(a)6h,(b)9h ,(c)12h

2.3 溶液pH 值对晶粒度的影响

表1为240 、[T iCl 4]=0.6mol/L 、Ba/T i=3.0条件下不同[NaOH]/[TiCl 4]水热合成6h 所生成钛酸钡粉体的XRD 结果以及通过粒度分析得到的粉体的D 50值。晶粒尺寸根据谢乐公式D =K /B cos 计算而得(式中D 为晶粒尺寸/nm,K 为常数0.9,B 为X 射线结果的半高宽, 为衍射角)。

表1 钛酸钡粉体的XRD 结果

[NaOH]/[T iCl 4]

半高宽/ 衍射角2 / 晶粒尺寸/nm 颗粒的D 50/nm 6.7

0.5638.7215.047510.0

0.3638.8823.408013.3

0.2838.9830.1095150.3239.0626.3590

pH 值的改变实际上是加入了不同量的矿化剂NaOH ,在水热法合成钛酸钡时,矿化剂的引入量有一个临界点,在这个临界点附近晶体有一个最佳的生长环境。在高温高压下,水分子、Ba 2+和Ti 2+运动非常快,晶粒的结晶和溶解总是处于一个矛盾的统一体,只不过结晶速度远远大于溶解速度。从图6可以看出晶粒尺寸有一个临界值,大约在[NaOH ]/[T iCl 4]=13附近,进而带来颗粒度的变化。 8 陕西科技大学学报 第21卷

2.4 消除pH 值影响粉体纯度的工艺因素

反应在高碱条件下进行是反应本身的需求,BaCO 3主要是由Ba 2+和CO 32-

结合生成的,从工艺的角度考虑如何降低pH 过高所带来的不良影响时主要应注意以下几个方面:

(1)在进行配料和最终的过滤洗涤过程中,应采用经过一定时间煮沸的去离子水,防止从溶液中将CO 32-带入体系。

(2)尽量缩短配料时间,矿化剂在配料的最后一步加入,以减少反应体系从空气中吸收CO 2气体。

(3)通过调整工艺因素,如反应温度、反应时间、Ba/Ti 以及[NaOH ]/[TiCl 4]增大反应的完全程度,减少过剩的Ba 2+。

(4)因为干燥过程是在100 左右缓慢蒸发水的过程,因而必须在真空干燥的环境中进行。3 结论

(1)对于BaCl 2-T iCl 4-NaOH 系统,T iCl 4水解时呈强酸性,[TiCl 4]会显著影响反应介质的碱度,当反应物Ba/Ti 浓度增大时,矿化剂[NaOH]也要相应增大,但应以[NaOH ]/[T iCl 4]为衡量标准。

(2)pH 值增大时将使反应体系强烈地吸收空气中CO 2气体而形成BaCO 3杂质,当[NaOH ]/[TiCl 4]=10时,反应进行的完整程度最好,钛酸钡粉体中的碳酸钡杂质最少。

(3)在相同pH 值情况下,增大反应时间或降低Ba/Ti 可以提高钛酸钡粉体的纯度。

(4)矿化剂[NaOH ]对晶粒度的影响有一临界值,当[NaOH ]/[TiCl 4]=13时,可得到较大的晶粒尺寸。

参考文献

1 Wei LuSong,Lee Burtrand I,Lin W ang,et al.Hydrothermal synthesis and structural characterizati on of BaTiO 3nanocrys tals J .J.Crystal

Grow th ,2000,219(3):269~276.

2 M oon Jooho,S uvaci,Ender,et al.Phase development of barium titanate from chem ically modified -amorphous ti tanium (hydrous)oxide

precursor J .J.Eur.Ceram.Soc.,2002,22(6):809~815.

3 M ingmei Wu.T he influence of anions on the products of BaT i O 3under hydrothermal condi tions J .J.M aterials Science,1996,31(12):

6201~6205.

4 H uarui Xu.Hydrothermal sythesi s of tetragonal barium titanate from bari um chloride and titanium tetrachloride under moderate conditions

J .J.Am.Ceram.Soc.,2002,85(3):727~729.

5 仲维卓,华素坤.晶体生长形态学 M .北京:科学出版社,1999,326~335.

EFFECT O F pH VALUE ON BARIUM TITANATE POWDER

SYNTHES IZED BY HYDROTHERMAL PROCESS

PU Yong -ping 1,3,GAO Xiao -li 2,NING Shu -fan 3,CHEN Shou -tian 3

(1.College of M aterial Science &Engineering,Shaanx i U niv ersity of Science &T echnology ,Xianyang 712081,China; 2.Nort h L ig hting I ndustrial (Group)CO.,L T D,Baoji 721006,China; 3.State K ey Lab.of Electrical Insulation for Pow er Equipment,X i an Jiaotong University,X i an 710049,China)

Abstract :H ig h purity barium titanate pow der w ithout barium carbonate w as prepared by hy drothermal method at 240 ,in 6hours,using BaCl 2 2H 2O and T iCl 4 NaOH w as a mineralizer and the ratio betw een Ba 2+and T i 4+is 3.0for the process.It is reasonable that [NaOH ]/[TiCl 4]should be a measure of acidity and alkalinity of reaction system but not [NaOH ].Effects of pH value on barium titanate pow der quality were discussed.Key words :hydrothermal synthesis;pH value;barium titanate pow der

9 第6期 蒲永平等:pH 值对水热法合成钛酸钡粉体的影响

制备纳米钛酸钡粉体

化学共沉淀法 ——制备纳米钛酸钡粉体 目录 (1) 成绩考评表 (2) 中文摘要 (3) 英文摘要 (4) 1前言 (5) 1 .1制备方法介绍 (6) 1.2所制备的材料介绍 (9) 1.3本实验主要研究内容 (12) 2.实验实施阶段 2.1方案介绍 (13) 2.2方案具体实施 (15) 3实验结果分析与讨论 (17) 参考文献 (22)

综合实验感想 (23) 3Ba TiO 纳米粉体的制备 摘要 以4TiCl 为钛源,2BaCl 为钡源,采用草酸共沉淀法制备batio3粉体, 研究了前驱体的煅烧温度对产物的影响,实验结果表明当煅烧温度控制在800度以上时,可制的纯度高结晶好的batio3超细粉体。 关键词:钛酸钡,草酸共沉淀,前驱体,温度

English abstract Thought of 4TiCl for titanium source 2BaCl for barium source, using oxalate coprecipitation preparation of batio3 powders, studied the precursor of the influence of calcining temperature on the product, the experimental results show that when the calcination temperature control over 800 degrees, can be made of high purity crystal good batio3 ultrafine powders. Key words: barium titanate, oxalate coprecipitation, precursor , temperature

钛酸锶钡(BST)材料及其应用

钛酸锶钡(BST)材料及其应用 摘要 钛酸锶钡(BST)是一种电子功能陶瓷材料,广泛应用于电子、机械和陶瓷工业。本文对钛酸锶钡材料的组成、结构、性能、制备与应用等方面进行了一个比较全面的总结,重点展示了钛酸锶钡的铁电性、结构性能与掺杂改性,并详细介绍了钛酸锶钡薄膜和块体分别在微波移相器和高储能介电陶瓷中的应用。 1 BST的组成与结构 钛酸锶钡与钛酸锶、钛酸钡在结构方面具有非常高的相似性,这预示着它们之间的性能必然有着很紧密的联系。 1.1 钛酸钡简介 钛酸钡(BaTiO3)是一种强介电材料,是电子陶瓷中使用最广泛的材料之一,被誉为“电子陶瓷工业的支柱”。钛酸钡的电容率大(常温下介电常数 约2000)、非 r 线性强(可调性高),但严重依赖于温度和频率。 钛酸钡是一致性熔融化合物(即熔化时所产生的液相与化合物组成相同),其熔点为1618℃,在整个温区范围内,钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低[1]。在1460-1618℃结晶出来的钛酸钡属于非铁电的稳定六方晶系6/mmm点群;在1460-130℃之间钛酸钡转变为立方钙钛矿型结构,此时的钛酸钡晶体结构对称性极高,呈现顺电性(无偶极矩产生,无铁电性,也无压电性);当温度下降到130℃时,钛酸钡发生一级顺电-铁电相变(即居里点T c=130℃),在130-5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著的铁电性,其自发极化强度沿c轴[001]方向,晶胞沿着此方向变长;当温度从5℃下降到-90℃温区时,钛酸钡晶体转变成正交晶系mm2点群(通常采用单斜晶系的参数来描述此正交晶系的单胞,有利于从单胞中看出自发极化的情况),此时晶体仍具有铁电性,其自发极化强度沿着原立方晶胞的面对角线[011]方向;当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具

固相烧结法制备钛酸钡陶瓷材料

固相烧结法制备BaTiO3 (BTO陶瓷材料 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(ptc)、多层陶瓷电容器(MLccs)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一在此温度以下,1460C以上结晶出来的钛酸钡属于非铁电的六 方晶系6/mmn直是国内外关注的焦点之一。 1材料结构 钛酸钡是一致 性熔融化合物,其 熔点为1618C。点 群。此时,六方晶 系是稳定的。在 1460~130C之间钛 酸钡转变为立方钙

钛矿型结构。在此结构中Ti4+(钛离子)居于02-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130C 时,钛酸钡发生顺电-铁电相变。在130~5C的温区内,钛酸钡为四方晶系4mn点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。 当温度下降到5C以下,在5~-90C温区内,钛酸钡晶体 转变成正交晶系mm庶群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。为了方便起见, 通常采用单斜晶系的参数来描述正交晶系的单胞。这样处理的 好处是使我们很容易地从单胞中看出自发极化的情况。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看, 相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。

钛酸钡制法汇总

电子陶瓷材料纳米钛酸钡制备工艺的研究进展 1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制 粉体粒度、形造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO 3 貌的研究一直是国内外关注的焦点。 钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法 在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法 将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm 左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法 柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

钛酸钡粉体制备

钛酸钡纳米粉体的制备方法 摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。 关键词:钛酸钡;粉体;制备方法; 1.引言 钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直 是各国科学家的研究重点。钛酸钡的应用越来越广泛。目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。 2.钛酸钡粉体的制备工艺 2.1固相研磨-低温煅烧法 传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅 烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧 温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。 朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃ 2.2水热法合成 水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的 自生压力下, 原始混合物进行反应的一种合成方法。由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反 应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长 基元, 进行成核结晶生成粉体或纳米晶[2]。 水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。而且粉体无须煅烧, 可以直接用于加工成型, 这就可以避免在煅烧过程中晶粒的 团聚、长大和容易混入杂质等缺点[2]。 2.3 溶胶凝胶法 钛酸钡( BaTiO3 ) 在当今科技领域里占有重要地位, 它是电子陶瓷领域应用最广泛的材料之一。钛酸钡是钛酸盐系电子陶瓷的主要原料, 是一种具有高介电常数和低介电损耗的铁电材料,被广泛应用于制作热敏电阻器( PTCR) 、多层陶瓷电容器(MLCC) 、电光器件和DRAM 器件。现代技术要求BaTiO3 粉料具有高纯、

钛酸钡的制备工艺以及制备方法

1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点。钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀 BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

实验二 溶胶-凝胶法制备钛酸钡纳米陶瓷粉体

醋酸钡255.21、钛酸丁酯340.3 实验二溶胶-凝胶法制备纳米钛酸钡陶瓷粉体 一、实验目的 1、了解溶胶-凝胶制备纳米粉体的方法 2、制备纳米钛酸钡陶瓷粉体 二、实验背景和原理 1. 实验背景 钛酸钡(BaTiO )具有良好的介电性,是电子陶瓷领域应用最广的材料之一。传 3 制备方法是固相合成,这种方法生成的粉末颗粒粗且硬,不能满足高统的BaTiO 3 科技应用的要求。现代科技要求陶瓷粉体具有高纯、超细、粒径分布窄等特性,与粗晶材料相比在物理和机械性能方面有极大的差别:熔点降低,烧结温度降低、荧光谱峰向低波长移动、铁电和铁磁性能消失、电导增强等。溶液化学法是制备超细粉体的一种重要方法,其中以溶胶-凝胶法最为常用。 2. 溶胶-凝胶法合成BaTiO3纳米粉体的基本原理 溶胶—凝胶(简称Sol—Gel)法是以金属醇盐的水解和聚合反应为基础的。其反应过程通常用下列方程式表示: (1)水解反应: M(OR)4 + χ H2O = M(OR)4- χ OH χ + χ ROH (2)缩合-聚合反应: 失水缩合-M-OH + OH-M-=-M-O-M-+H2O 失醇缩合-M-OR + OH-M-=-M-O-M-+ROH 缩合产物不断发生水解、缩聚反应,溶液的粘度不断增加。最终形成凝胶——含金属—氧—金属键网络结构的无机聚合物。正是由于金属—氧—金属键的形成,使Sol—Gel法能在低温下合成材料。Sol—Gel技术关键就在控制条件发生水解、缩聚反应形成溶胶、凝胶。

本次实验使用的钛酸丁酯(亦称丁醇钛)是一种非常活泼的醇盐,遇水会发生剧烈的水解反应。在Sol—Gel工艺中,让溶液系统暴露在空气中从空气中吸收水分,使水解反应不充分(或不完全),其反应式可表示为 Ti(OR)4 + χ H2O = Ti(OR)4- χ OH χ + χ ROH (1) 式中,R=C 4H 9 为丁烷基,RO或OR为丁烷氧基。未完全水解反应的生成物 Ti(R) 4-χ (OH)χ中的(OH)-极易与丁烷基(R)或乙羰基(R′=CH3CO)结合,生成丁醇或乙酸,而使金属有机基团通过桥氧聚合成有机大分子。如本实验可能发生典型的聚合反应的结构反应式为 R′-O-Ba-O-R Ti OH+Ti O Ba O R'+ R'OH (2) 或 Ti OR Ti OH +Ti O Ti+ ROH (3)实验中的水解及聚合反应在缓慢吸收空气中水分的过程中不断地进行着,实际 上是金属有机化合物经过脱酸脱醇反应,金属Ti4+和Ba2+通过桥氧键聚合成了有机大分子团链,随着这种分子团链聚合度的增大,溶液粘度增加,溶胶特征明显,经过一定时间就会变成半固体透明的凝胶。凝胶经过烘干,煅烧得到钛酸钡粉末。三、主要仪器与药品 仪器:烧杯,机械搅拌、烘箱; 药品:醋酸钡,乙酸,钛酸丁酯,无水乙醇。 四、实验步骤 1.称取醋酸钡0.02mol (5g),量取36%的乙酸20ml,倒入烧杯中,搅拌使醋 酸钡完全溶解。 2.称取钛酸丁酯0.02mol (6.8g), 量取无水乙醇10ml,倒入锥形瓶中, 摇匀。 3.将上述两种溶液迅速混合,快速搅拌,溶液澄清后减慢搅拌速度,继续搅拌 2小时,停止搅拌,此时已经形成透明溶胶,使透明溶胶在空气中静置3-4小时,得到透明凝胶。 4.将凝胶取出,置于干燥皿中,在120°C下烘干。得到干凝胶,研磨得到淡 黄色粉末。

钛酸钡

题目:关于压电陶瓷之钛酸钡的简单分析班级: 姓名: 学号:

摘要: 传统的压电陶瓷大多是含铅陶瓷,其中氧化铅(或四氧化三铅)约占原料总质量的70%左右,在制备、使用及废弃处理过程中,都会给环境和人类带来危害。从生态环境保护和社会可持续发展战略的实施来看,压电陶瓷的无铅化是其发展的必然趋势。ABO3型钙钛矿结构的BaTiO3(BT)是最早发现的无铅压电陶瓷,也是最先获得应用的压电陶瓷材料。 关键字:无铅陶瓷钛酸钡环保 一、压电陶瓷简介 压电材料是微机电系统(MEMS)常用的一种功能材料。压电材料的主要属性是,其弹性效应和电极化效应在机械应力或电场(电压)作用下将发生相互耦合,也就是应力-应变-电压之间存在内在联系。压电效应有正负之分,正压电效应在机械应力作用下,将机械能转换为电能;负压电效应则在电压作用下,将电能转换为机械能。利用正压电效应感知外界的机械能,可以制作微传感器;利用逆压电效应作为驱动力,可以制作压电微执行器。 陶瓷材料是以化学合成物质为原材料,经过精密的成型烧结而成。烧结前,严格控制合成物质的组份比,便可以研制成适合多种用途的功能陶瓷,如压电陶瓷(电致伸缩材料)、半导体陶瓷、导体陶瓷、磁性陶瓷及多孔陶瓷等。压电陶瓷是陶瓷经过电极化之后形成的,电极化之后的压电陶瓷为各向异性的多晶体。常用的压电陶瓷有钛酸钡(BT)、锆钛酸铅(BZT)、改性锆钛酸铅、偏铌酸铅(PN)、铌酸铅钡锂(PBLN)、改性钛酸铅等。 下面主要针对压电陶瓷常用的材料钛酸钡(BT)的机理及应用问题做简单分析 二、钛酸钡陶瓷特点及应用 自20世纪40年代年发现钛酸钡陶瓷的压电性以来,压电陶瓷的发展已有60余年。压电陶瓷作为一类重要的、国际竞争极为激烈的功能材料,其应用已遍及人类生产及生活的各个角落。然而,传统的压电陶瓷大多是含铅陶瓷,其中氧化铅(或四氧化三铅)约占原料总质量的70%左右,在制备、使用及废弃处理过程中,都会给环境和人类带来危害。从生态环境保护和社会可持续发展战略的实施来看,压电陶瓷的无铅化是其发展的必然趋势。ABO3型钙钛矿结构的BaTiO3(BT)是最早发现的无铅压电陶瓷,也是最先获得应用的压电陶瓷材料。 钛酸钡晶体有一般压电材料的共有特性:当它受压力而改变形状的时候,会产生电流,一通电又会改变形状。于是,人们把钛酸钡放在超声波中,它受压便产生电流,由它所产生的电流的大小可以测知超声波的强弱。相反,用高频电流通过它,则可以产生超声波。现在,几乎所有的超声波仪器中,都要用到钛酸钡。除此之外,钛酸钡还有许多用途。例如:铁路

凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体

?电子陶瓷、陶瓷一金属封接与真空开关管用陶瓷管壳应用专辑? 凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体 焦春荣,陈大明,仝建峰 (北京航空材料研究院,北京100095) Preparationof Sub-MicroBao.6Sro.4Ti03Ceramic PowdersbyGel-SolidMethod JIAOChun—rong,CHENDa—ming,TONGJian—feng (BeijingInstituteofAeronauticalMaterial,Beijing100095,China) Abstract:Sub—microBao6Sro4Ti03ceramicpowderswerepreparedbythegel—solidreactionmethodu—singTi02,BaC03andSrC03powdersasrawmaterials.DSCthermodynamicswasusedtoanalyzetheheatflowandaccuratetemperatureofeachreactionduringthepreparationprocess.Microstructure,phasestructureandgranularityofthepowderswereinvestigated.TheresultsshowthatreactiontemperatureofBao.6Sro.4Ti03ceramicpowderswasabout857℃.UniformlydispersedBao.6Sro.4Ti03powdersof0.5pmdiametercanbepreparedunderthetemperaturerangeof900。C~1000℃.Theparticlesizeofthesynthe—sizedpowdersisdeterminedbytheparticlesizeoftherawmaterials.Theparticlesizeincreasesduringtheheattreatmentbecauseofthecompositiondiffusion.Therefore,smallsizeparticlesoftherawmaterialsshouldbechosentoprepareforthesynthesizedpowdersofsmallsize. Keywords:Gel—solidmethod;Bao.6Sro4Ti03;Ceramic;Powders 摘要:以Ti0:和BaC0。,SrCO,粉体为原料,采用凝胶同相反应法合成了亚微米级Ba—Sr。TiO。陶瓷粉体。对凝胶固相反应过程进行了DSC热分析,并观察和测定了合成粉体的微观形貌、相结构和粒度分布。结果表明:Ba0。Sro。TiO。粉体合成温度对应于857℃,在9001000℃温度范围煅烧均可获得颗粒尺寸约0.5肛m、粒径分布均匀的Ba0。Sro。TiO。粉体。试验结果表明,凝胶固相合成Bao。Sr。。TiO。的粉体粒径取决于原料粉体尺寸,经高温煅烧后因各组元元素的互扩散导致粉体粒径有所长大,要获得更细的合成粉体应采用更细的粉体原料。 关键词:凝胶固相反应法;钛酸锶钡;陶瓷;粉体 中图分类号:TQl74文献标识码:A文章编号:1002—8935(2009)04—0054—05 钛酸锶钡陶瓷材料是一种优良的热敏材料、电容器材料和铁电压电材料[1_3],应用领域非常广泛。它的诸多优异的介电性能使得该材料系统在无铅电容器、微波传输、信号处理和测量等领域中的应用具有很大优势和潜力[4-s],而高性能的钛酸锶钡粉体是制备钛酸锶钡陶瓷的重要条件。凝胶固相反应法是传统的固相反应制粉工艺与陶瓷注凝成型工艺(Gelcasting)相结合而产生的一种新型粉体制备技术【7-10|。该工艺保证了原料成分在颗粒尺度的均匀混合,并解决了传统固相反应法各组元原料需靠压块达到紧密接触的目的;与化学共沉淀等液相法相比,则具有操作简单、效率高、成本低、原料来源广团至Q盟二些泛、普适性强、环境污染小等诸多优点。本文采用凝胶固相反应法制备出颗粒细小、分散均匀、结晶完好的亚微米级BaⅢSr。.。TiO。陶瓷粉体,并对粉体合成过程和相关问题进行了分析研究。 1试验方法 1.1粉体的合成工艺 凝胶固相反应法制备Ba。Sr…Ti0。粉体的工艺流程如图l所示。详细过程如下:使用BaC0。,SrC03,Ti02为原料,按BaO:SrO:Ti02为0.6:0.4:1.0的摩尔比,加入去离子水和少量聚丙烯酸铵分散剂,混合配制成固含量约50%(体积比)的水

纳米钛酸钡的研究

纳米钛酸钡的研究 摘要:钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。本文介绍了钛酸钡结构、性能、用途及制备方法。制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。 关键词:钛酸钡,结构,性能,制备方法,粉体 1. 引言 钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。 2. 钛酸钡晶体的结构 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

钛酸钡功能陶瓷制备及应用

纳米钛酸钡制备工艺的研究进展 摘要:综述了目前国内外制备纳米陶瓷材料BaTiO 粉体的主要方法,包括固相烧结法、化学沉淀法和水热合成法等多种工艺,分析了各种合成方法制备工艺的特点与不足,并提出了其发展方向。 关键词:纳米钛酸钡;电子陶瓷;制备工艺;研究进展 Abstract:Barium titanate(BaTiO3)is an important functional dielectric materials.A number of recent advancementpreparation technology of BaTiO3 were reviewed in this paper.The most important method such as the sol—gel,hydrothermal and chemical precipitation are introduced.The merit and drawback of these techniques were discussed.The developments of the preparation technology of nm-sized barium titanate is presented. Key words:nano-barium titanate;electronic ceramic;preparation technology ;advance 1前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻( ptc)、多层陶瓷电容器(MLccs)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点之一。钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶一凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24 h,反应式为:BaCO3+TiO→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3,晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2 化学沉淀法 2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物翻。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解

钛酸锶钡(BST)材料及其应用知识讲解

钛酸锶钡(B S T)材料 及其应用

钛酸锶钡(BST)材料及其应用 摘要 钛酸锶钡(BST)是一种电子功能陶瓷材料,广泛应用于电子、机械和陶瓷工业。本文对钛酸锶钡材料的组成、结构、性能、制备与应用等方面进行了一个比较全面的总结,重点展示了钛酸锶钡的铁电性、结构性能与掺杂改性,并详细介绍了钛酸锶钡薄膜和块体分别在微波移相器和高储能介电陶瓷中的应用。 1 BST的组成与结构 钛酸锶钡与钛酸锶、钛酸钡在结构方面具有非常高的相似性,这预示着它们之间的性能必然有着很紧密的联系。 1.1 钛酸钡简介 钛酸钡(BaTiO3)是一种强介电材料,是电子陶瓷中使用最广泛的材料之一, ε约2000)、被誉为“电子陶瓷工业的支柱”。钛酸钡的电容率大(常温下介电常数 r 非线性强(可调性高),但严重依赖于温度和频率。 钛酸钡是一致性熔融化合物(即熔化时所产生的液相与化合物组成相同),其熔点为1618℃,在整个温区范围内,钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低[1]。在1460-1618℃结晶出来的钛酸钡属于非铁电的稳定六方晶系6/mmm点群;在1460-130℃之间钛酸钡转变为立方钙钛矿型结构,此时的钛酸钡晶体结构对称性极高,呈现顺电性(无偶极矩产生,无铁电性,也无压电性);当温度下降到130℃时,钛酸钡发生一级顺电-铁电相变(即居里点T c=130℃),在130-5℃的温区内,钛酸钡为四方晶系4mm 点群,具有显著的铁电性,其自发极化强度沿c轴[001]方向,晶胞沿着此方向变长;当温度从5℃下降到-90℃温区时,钛酸钡晶体转变成正交晶系mm2点群(通常采用单斜晶系的参数来描述此正交晶系的单胞,有利于从单胞中看出自发极化的情况),此时晶体仍具有铁电性,其自发极化强度沿着原立方晶胞的面对角线[011]方向;当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。 1.2 钛酸锶简介 钛酸锶(SrTiO3)具有典型的钙钛矿型结构,熔点2060℃,是一种顺电体,具有低温介电常数高、介电损耗低、热稳定性好等优点,也是一种电子功能陶瓷材料。高质量的钛酸锶粉体用来制造高压电容器、晶界层电容器、压敏电阻、热敏电阻及其它电子元件,具有高性能、高可靠性、体积小等优点[2]。纯的钛酸锶在低温 ε约300),不易发生铁电相变(居里下仍保持较高的介电常数(常温下介电常数 r 点T c=-250℃),但加入Ca、Bi等改性后出现低温弛豫现象。

微波水热合成钛酸钡纳米粉体_陈杰

第42卷第11期人工晶体学报 Vol.42No.112013年11月 JOURNAL OF SYNTHETIC CRYSTALS November ,2013 微波水热合成钛酸钡纳米粉体 陈 杰,闫 峰,罗昆鹏 (西安科技大学材料科学与工程学院,西安710054) 摘要:采用微波水热法低温合成了立方相钛酸钡纳米粉体。通过正交实验法及线性回归,研究了反应温度、反应时间及分散剂用量等因素对颗粒比表面积的影响规律及回归函数, 并通过XRD 、TEM 、XRF 等对粉体进行了表征。研究结果表明,在反应温度70?、反应时间10min 、分散剂与钛的物质的量比为1?20的条件下制得粒径约50 100nm 、呈球状的分散性良好的立方相钛酸钡纳米粉体。反应温度、反应时间及分散剂用量对粒度均有不同程度的影响, 其中反应温度影响最为显著。关键词:微波水热法;钛酸钡纳米粉体;正交实验法;线性回归中图分类号:TM282 文献标识码:A 文章编号:1000- 985X (2013)11-2359-05Synthesis of BaTiO 3Nano-powder by Microwave Hydrothermal Method CHEN Jie ,YAN Feng ,LUO Kun-peng (School of Materials Science and Engineering ,Xi'a n University of Science and Technology ,Xi'a n 710054,China ) (Received 12May 2013,accepted 13September 2013) Abstract :Cubic phase barium titanate nano-powders were synthesized under low temperature by microwave-hydrothermal method.The influence law of factors such as reaction temperature ,reaction time ,and the dispersant dosage on the specific surface area of particles and regression function were studied by the orthogonal experiment method and linear regression.The crystallized products were characterized by powder X-ray diffraction (XRD ),transmission electron microscopy (TEM ),X-ray fluorescence (XRF ).The experimental results showed that the spherical and well-dispersed cubic phase barium titanate nano-powders which particle size is about 50-100nm could be prepared under the conditions that the reaction temperature is 70?,and the reaction time is 10min ,and mole ratio of dispersant and titanium is 1?20.Reaction temperature ,reaction time ,and the dosage of dispersant have different effect on the specific surface area of particles.Among these factors ,the significant factors is reaction temperature. Key words :microwave hydrothermal method ;BaTiO 3nano-powder ;orthogonal experiment method ;linear regression 收稿日期:2013-05-12;修订日期:2013-09-13基金项目:国家自然科学基金(51072162)作者简介:陈 杰(1967-),女,陕西省人,教授,博士。E- mail :chenjie363@163.com 1引言 钛酸钡(BaTiO 3)是一种强介电材料、压电材料和铁电材料,广泛应用于电容器、PTC 组件、压电换能器等电子元器件的制造,是一种用途广泛的重要电子陶瓷材料。近年来,随着电子元器件的微型化、小型化、薄

用水热法制备纳米陶瓷粉体技术

Hefei University 题目:水热法制备纳米陶瓷粉体技术 专业:11级粉体材料科学与工程(1)班姓名:施学富 学号:1103011002 二O一三年六月

摘要:文章较为系统地概述了水热法制备纳米陶瓷粉体的技术方法、特点和研究进展。认为水热法是一种极有应用前景的纳米陶瓷粉体的制备方法 关键词:水热法,纳米,陶瓷粉体 1 引言 现代陶瓷材料的性能在一定程度上,是由其显微结构决定的,而显微结构的优劣却取决于制备工艺过程。陶瓷的制备工艺过程主要由粉体制备、成型和烧结等三个主要环节组成。其中,粉体制备是基础,若基础的粉体质量不高,不但烧结条件难以控制,也绝不可能制得显微结构均匀、致密度高、内部无缺陷、外部平整的瓷坯。显微结构,尤其是陶瓷材料在烧结过程中形成的显微结构,在很大程度上由原料粉体的特性决定。因此粉体性能的优劣,直接影响到成型和烧结的质量。粉体的尺寸大小决定了作用于粉体上的单位体积的表面积,进而又决定了粉体的最终行为。粉体达到纳米级时,可以生产出优于普通材料的纳米特异功能。 目前,制备纳米粉体的方法可分为三大类:物理方法、化学方法和物理化学综合法。化学方法主要包括水解法、水热法、溶融法和溶胶一凝胶法等。其中,用水热法制备纳米粉体技术越来越引起人们的

关注?。本文拟对近年来水热法制备纳米陶瓷粉体作一概要介绍。 2 水热法制备纳米陶瓷粉体的原理及特点 2.1水热法概述 水热法(hydrothermal preparation)是指密闭体系如高压釜中,以水为溶剂,在一定的温度和水的自生压力下,原始混合物进行反应的的一种合成方法。由于在高温,高压水热条件下,能提供一个在常压条件下无法得到的特殊的物理化学环境,使前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉体或纳米晶。 根据化学反应类型的不同,水热法制备粉体有如下几种方法:(1)水热氧化(Hydrothermal Oxidation)利用高温高压,水、水溶液等溶剂与金属或合金可直接反应生成新的化合物。 (2)水热沉淀(Hydrothermal Precipitation 某些化合物在通常条件下无法或很难生成沉淀,而在水热条件下易反应生成新的化合物沉淀。 (3)水热晶化(Hydrothermal Crystallization):.以非晶态氢氧化物、氧化物或水凝胶为前驱物,在水热条件下结晶成新的氧化物晶粒。(4)水热合成(Hydrothermal Synthesis~.允许在很宽范围内改变参数,使两种或两种以上的化合物起反应,合成新的化合物。 (5)水热分解(Hydrothermal Decomposition):.某些化合物在水热条件下分解成新的化合物,进行分离而得单一化合物微粉。 (6)水热还原(Hydrothermal Reduction):.金属盐类氧化物、氢氧化

【CN109734434A】一种基于3D打印技术的极小曲面结构磷酸三钙钛酸锶钡复合生物陶瓷的制备方法

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910155907.8 (22)申请日 2019.03.01 (71)申请人 北京工业大学 地址 100124 北京市朝阳区平乐园100号 (72)发明人 曾勇 杨天浩  (74)专利代理机构 北京思海天达知识产权代理 有限公司 11203 代理人 刘萍 (51)Int.Cl. C04B 35/447(2006.01) C04B 35/622(2006.01) B28B 1/00(2006.01) B33Y 10/00(2015.01) B33Y 70/00(2015.01) A61L 27/42(2006.01) A61L 27/50(2006.01)A61L 27/56(2006.01) (54)发明名称一种基于3D打印技术的极小曲面结构磷酸三钙/钛酸锶钡复合生物陶瓷的制备方法(57)摘要一种3D打印具有极小曲面结构的磷酸三钙/钛酸锶钡复合陶瓷的制备方法,属于3D打印技术及生物陶瓷领域。DLP(数字光固化)3D打印技术具有成型速度快,打印模型精度高,成本低廉等优势。本发明组合物主要为:35-70vol%的磷酸三钙/钛酸锶钡复合陶瓷粉体,30-65vol%的光敏树脂预混液。本发明使用Rhino软件设计并优化极小曲面模型,将模型导入Q3DP软件进行切片并导出扫描数据,按照一定的比例配制浆料并进行球磨,将浆料导入到BESK打印机树脂槽中开始打印,打印完成后的坯体再放入中号炉中进行脱脂和烧结,最终得到结构稳定、力学性能优异,具有压电性能、生物相容性的磷酸三钙/钛酸锶钡 复合陶瓷。权利要求书1页 说明书3页 附图1页CN 109734434 A 2019.05.10 C N 109734434 A

水热法制备PZT压电陶瓷粉体

无机材料学报990427 无机材料学报 JOURNAL OF INORGANIC MATERIALS 1999年 第14卷 第4期 Vol.14 No.4 1999 水热法制备PZT压电陶瓷粉体 古映莹 戴恩斌 黄可龙 摘 要 本文报道了水热法制备PZT压电陶瓷粉体的研究结果,给出了PZT粉体的结晶性与反应温度、反应时间和氢氧化钾添加量之间的关系,用XRD、SEM等测试手段分析了实验结果,表明所得到的PZT粉体为四方晶相钙钛矿结构,粒子粒径为0.6~2.1μm,呈立方体状. 关 键 词 水热合成;PZT粉体;压电陶瓷 分 类 号 TN 304 Hydrothermal Synthesis of PZT Powders GU Ying-Ying DAI En-Bin HUANG Ke-Long (Department of Chemistry, Central South University of Technology Changsha 410083  China) Abstract The results of hydrothermal synthesis of PZT powders were reported. The effect of synthesis temperature, time and catalytic promoter on the crystalline powder was investigated by means of XRD and SEM. The result showed that the PZT powder obtained has a tetragonal perovskite structure, the dimension of the crystalline powder particle is from 0.6μm to 2.1μm, and the particle is cubic.  Key words hydrothermal synthesis, PZT powders, piezoelectric ceramics 1 引言 锆钛酸铅(Pb(Zr x Ti1-x)O3,简称PZT)是一种典型的压电陶瓷,它具有居里温度高、压电性强、易掺杂改性和稳定性好等特点,在压电陶瓷领域中一直占主要地位[1~3]. 过去制备PZT压电陶瓷材料,通常采用传统的固相反应法,这种方法的缺点是:(1)原料中各组份难以混合均匀;(2)高温下氧化铅易挥发,因而烧结体化学组成波动范围较大;(3)整个工艺过程易混杂,难以得到高纯度的粉体;(4)粉体颗粒大小不均匀,表面活性差,易形成团聚体,因而最终影响材料的性能.  近年来,各种湿化学方法用于制备陶瓷粉体的研究获得了广泛的重视,它们在制备高纯、均一、超细的多组份粉体方面显示了令人振奋的应用前景,其中水热法制备陶瓷粉体, 又由于其具有工艺相对较为简单,不需要高温灼烧处理,可直接得到结晶完好、团聚少、粒度分布窄、烧结活性高的粉体等特点,正获得越来越广泛的重视. file:///E|/qk/wjclxb/wjcl99/wjcl9904/990427.htm(第 1/5 页)2010-3-23 9:58:24

相关文档
最新文档