公差与尺寸关系

第四节

形位公差与尺寸公差的关系定义:机械零件的同一被测要素既有尺寸公差要求,又有形位公差要求,处理两者之间关系的原则,称为公差原则。

一、有关术语及定义

1. 局部实际尺寸(简称实际尺寸d a、D a)

2. 作用尺寸

(1)体外作用尺寸(d fe 、D fe ) 在被测要素的给定长度上,

与实际外表面体外相接的最小理想面或与实际内表面体外相接的最大理想面的直径或宽度。对于关联要素,该理想面的轴线或中心平面必须与

基准保持图样给定的几何关系。

d f e

d a 1

d a 2

d a 3

d f i

a) 外表面(轴)

D f e

D a 1

D a 2

D a 3

D f i

b) 内表面(孔)

图4-5实际尺寸和作用尺寸

d f

e =d a +

f D fe =D a -f

(2) 体内作用尺寸(d fi、D fi)

在被测要素的给定长度上,与实际外表面体内相接的最大理想面或与实际内表面体内相接的最小理想面的直径或宽度。对于关联要素,该理想面的轴线或中心平面必须保持图样给定的几何关系。

3. 最大实体实效状态、尺寸

?(1) 最大实体实效状态(MMVC) 在给定长度上,实际要素处于最大实体状态且其中心要素的形状或位置误差等于给出的形位公差值时的综合极限状态。

?(2) 最大实体实效尺寸(D MV 、d MV )最大实体实效状态下的体外作用尺寸。

d MV =d f

e =d a +

f =d M + t =d max + t D MV =D fe =D a -f =D M –t =D min -t

φ20

M

0.1φ20.1(d M V )

MMVC

φ20(d M )

φ0.1

4. 最小实体实效状态、尺寸

?(1) 最小实体实效状态(LMVC) 在给定长度上,实际要素处于最小实体状态且其中心要素的形状或位置误差等于给出的形位公差值时的综合极限状态。

?(2) 最小实体实效尺寸(d LV、D LV) 最小实体实效状态下的体内作用尺寸。

d LV =d L–t=d min-t

D LV=D L+ t=D max+t

?作用尺寸与实效尺寸的区别:

作用尺寸是由实际尺寸和形位误差综合形成的,一批零件中各不相同,是一个变量,但就每个实际的轴或孔而言,作用尺寸却是唯一的;实效尺寸是由实体尺寸和形位公差综合形成的,对一批零件而言是一定量。实效尺寸可以视为作用尺寸的允许极限值。

5.边界

?(1)边界由设计给定的具有理想形状的极限包容面。

?(2)最大实体边界(MMB) 尺寸为最大实体尺寸的边界。

?(3)最小实体边界(LMB) 尺寸为最小实体尺寸的边界。

?(4)最大实体实效边界(MMVB) 尺寸为最大实体实效尺寸的边界。(如下图)

?(5)最小实体实效边界(LMVB) 尺寸为最小实体实效尺寸的边界。

φ20(d M )

φ20.1(d M V )

φ0.1

φ20

M

0.1最大实体实效边界

二、独立原则

1.定义

2.标注方法3.合格条件

20 0-0.033

0.02

图4-6独立原则应用实例

三、相关要求

?定义——图样上给定的形位公差与尺寸公差相互有关的公差要求。

(一)包容要求

1.定义:包容要求是要求实际要素应遵守其最大实体边界(MMB),其局部实际尺寸不得超出最小实体尺寸的一种公差要求。2.标注方法:当采用包容要求时,应在被测要素的尺寸极限偏差或公差带代号后加注“E ”符号。

图4-7包容要求

标注

φ20(d M )

φ19.97(d L )

φ0.03

最大实体边界

0.010.02

0.03φ20(d M )

φ19.97(d L )

直线度/mm

实际尺寸/mm

直线度误差的动态变动范围

表4-16 实际尺寸及允许的误差被测要素实际尺寸允许的直线度误差φ20φ0

φ19.99φ0.01

φ19.98φ0.02

φ19.97φ0.03

3.合格条件:用公式表示为孔:轴:式中:f ——被测要素的形状误差

??

?=≤=≥=-max

min

D D D D D D f D L a M fe a ?

??=≥=≤=+min max d d d d

d d f d L a M f

e a

(二)最大实体要求(MMR)

?1.定义:最大实体要求是要求被测要素的实际轮廓

应遵守其最大实体实效边界(MMVB),当其实际尺寸偏离最大实体尺寸时,允许其形位误差值超出在最大实体状态下给出的公差值的一种公差要求。

2.标注方法:

φ20

M

0.1φ

?最大实体要求的特点如下:

?1) 被测要素遵守最大实体实效边界,即被测要素的体外作用尺寸不超过最大实体实效尺寸;

φ20.1(d M V )

φ0.1

φ20(d M )

2) 当被测要素的局部实际尺寸处处均为最大实体尺寸时,允许的形位误差为图样上给定的形位公差值;

?3) 当被测要素的实际尺寸偏离最大实体尺寸后,其偏离量可补偿给形位公差,允许的形位误差为图样上给定的形位公差值与偏离量之和;

φ20.1(d MV )

实际尺寸/mm

直线度/mm

0.30.20.10.40.30.20

0.1

φ19.7(d L )

φ20(d M )φ20.1(d M V )

φ19.7(d L )

φ0.4

?4)实际尺寸必须在最大实体尺寸和最小实体尺寸之间变化。

3.合格条件:

??

?=≤≤=-=≥=-max min min D D D D D t D D D f D L a M MV fe a 孔:??

?=≥≥=+=≤=+min max

max d d d d d t d d d f d L a M MV fe a 轴:

工序尺寸及其公差的确定与加工余量大小

工序尺寸及其公差的确定与加工余量大小

工序尺寸及其公差的确定与加工余量大小,工序尺寸标注方法及定位基准的选择和变换有密切的关系。下面阐述几种常见情况的工序尺寸及其公差的确定方法。 (一)从同一基准对同一表面多次加工时工序尺寸及公差的确定 属于这种情况的有内外圆柱面和某些平面加工,计算时只需考虑各工序的余量和该种加工方法所能达到的经济精度,其计算顺序是从最后一道工序开始向前推算,计算步骤为: 1 .确定各工序余量和毛坯总余量。 2 .确定各工序尺寸公差及表面粗糙度。 最终工序尺寸公差等于设计公差,表面粗糙度为设计表面粗糙度。其它工序公差和表面粗糙度按此工序加工方法的经济精度和经济粗糙度确定。 3 .求工序基本尺寸。

从零件图的设计尺寸开始,一直往前推算到毛坯尺寸,某工序基本尺寸等于后道工序基本尺寸加上或减去后道工序余量。 4 .标注工序尺寸公差。 最后一道工序按设计尺寸公差标注,其余工序尺寸按“单向入体”原则标注。 例如,某法兰盘零件上有一个孔,孔径为 ,表面粗糙度值为R a0.8 μ m (图3-83 ),毛坯为铸钢件,需淬火处理。其工艺路线如表3-19 所示。 解题步骤如下:

( 1 )根据各工序的加工性质,查表得它们的工序余量(见表3-19 中的第 2 列)。 ( 2 )确定各工序的尺寸公差及表面粗糙度。由各工序的加工性质查有关经济加工精度和经济粗糙度(见表3-19 中的第 3 列)。 ( 3 )根据查得的余量计算各工序尺寸(见表3-19 中的第四列)。 ( 4 )确定各工序尺寸的上下偏差。按“单向入体”原则,对于孔,基本尺寸值为公差带的下偏差,上偏差取正值;对于毛坯尺寸偏差应取双向对称偏差(见表3-19 中的第 5 列)。

标准尺寸公差

根据国际标准,以下为基本尺寸0-500mm, 4-18级精度标准公差表。 基本尺寸 公差值 IT4 IT5 IT6 IT7 IT8 IT9 IT10 IT11 IT12 IT13 IT14 IT15 IT16 IT17 IT18 大于到μm mm - 3 3 4 6 10 14 25 40 60 3 6 4 5 8 12 18 30 48 75 6 10 4 6 9 15 22 36 58 90 10 18 5 8 11 18 27 43 70 110 18 30 6 9 13 21 33 52 84 130 30 50 7 11 16 25 39 62 100 160 50 80 8 13 19 30 46 74 120 190 80 120 10 15 22 35 54 87 140 220 120 180 12 18 25 40 63 100 160 250 180 250 14 20 29 46 72 115 185 290 250 315 16 23 32 52 81 130 210 320 315 400 18 25 36 57 89 140 230 360 400 500 20 27 40 63 97 155 250 400 注:基本尺寸小于1mm时,无IT14至IT18。 根据国际标准,以下为线性尺寸未注公差的公差表。 这个未注公差适用于金属切削加工的尺寸,也适用于一般的冲压加工尺寸。这些极限偏差适用于:线性尺寸:例如外尺寸、内尺寸、阶梯尺寸、直径、半径、距离、倒圆半径和倒角高度; 角度尺寸:包括通常不标出角度值的角度尺寸,例如直角(90°); 机加工组装件的线性和角度尺寸。 这些极限偏差不适用于: 已有其他一般公差标准规定的线性和角度尺寸; 括号内的参考尺寸; 矩形框格内的理论正确尺寸。 表1 线性尺寸的极限偏差数值 公差等级 尺寸分段 ~3 >3~6 >6~30 >30~120 >120~400 >400~1000 >1000~2000 >2000~4000 f(精密级) ± ± ± ± ± ± ± -m(中等级) ± ± ± ± ± ± ± ±2 c(粗糙级) ± ± ± ± ± ±2 ±3 ±4 v(最粗级) - ± ±1 ± ± ±4 ±6 ±8 表2 倒圆半径与倒角高度尺寸的极限偏差数值 公差等级 尺寸分段 ~3 >3~6 >6~30 >30 f(精密级) ± ± ±1 ±2 m(中等级) c(粗糙级) ± ±1 ±2 ±4 v(最粗级) 表3 角度尺寸的极限偏差数值 公差等级 长度分段 ≤10 >10~50 >50~120 >120~400 >400 f(精密级) ±1° ±30' ±20' ±10' ±5' m(中等级) c(粗糙级) ±1°30' ±1° ±30' ±15' ±10' v(最粗级) ±3° ±2° ±1° ±30' ±20'角度尺寸的长度按角度的短边长度确定,对于圆锥角按圆锥素线长度确定。

尺寸公差表

Page:1 of 3工号: Job No. 14-10 图号/版次: DWG. No./Rev. A001-0/0 产品名称:Item Name 空气储罐 Air Storage Tank 0 原版 Original 版次Rev. 说明 Description 设计工程师编制/日期 Prepared By Design Engineer/Date 技术部部长批准/日期 Approved By Technical Manager/Date

Page:2 of 3 1 总则 General 本文件依据ASME规范第Ⅷ卷第1册、HG/T 20584-2011和GB/T1804-2000制定。 除ASME规范第Ⅷ卷第1册和设计图样另有规定外,产品及其零部件的尺寸公差应符合本文件的规定。 This document is drawn up on the basis of ASME Code Section ⅧDivision 1, HG/T 20584-2011 and GB/T 1804-2000. Unless otherwise specified in the ASME Code Section ⅧDivision 1 and design drawings, the dimension tolerances of item and parts shall be in accordance with this document rules. 2 公差 Tolerance 2.1 装配尺寸允差按表1。 The assembly dimension tolerances according to Table 1. 表1 装配尺寸公差表 Table 1 Assembly Dimension Tolerances Table 序号No. 项目 Item s 尺寸 Dimension 允差 Tolerance 备注 Remarks 1 筒体 Shell 长度 Length (mm) 1800 ±6 2 直径 I.D. (mm) 1000 不测定 Not measured 3 外圆周长 Outward Perimeter (mm) 3192 ±8 4 圆度 Roundness (mm) 0 10 5 直线度 Straightness (mm) 不适用 N/A 6 封头 Head 直径 I.D. (mm) 1000 不测定 Not measured 7 直边外圆周长 Skirt Outward Perimeter (mm) 3192 ±8 8 总深度 Total Depth (mm) 275 ±6 9 直边长度 Skirt Length (mm) 25 ±5 10 直边圆度 Skirt Roundness (mm) 0 10 11 形状偏差 Shape Deviation (mm) 外凸 Outward 0 12.5 内凹 Inward 0 6.25

公差与配合试卷及答案

.保证互换性生产的基础是 A.通用化 B. 系列化 C. 标准化 D. 优化 2.决定尺寸公差带大小的是, A、公差等级 B、基本尺寸 C、实际偏差 D、基本偏差 3.?60+0.046 的孔与?60±0.015的轴的结合是配合; A. 间隙 B. 过渡 C. 过盈 D. 无法确定. 4.对于尺寸公差带,代号为P-ZC的基本偏差为 A、上偏差, 正值 B、上偏差,负值 C、下偏差, 正值 D、下偏差, 负值 5.考虑到孔、轴的工艺等价性,下列孔、轴配合中选用不合理的是__。 A.H8/u8 B.H6/g5 C.H8/js8 D.H9/a9 6.当需要对某一被测要素同时给出定向公差和形状公差时,其形状公差值不得()定向公差的一半。 A.大于 B. 等于 C.小于 D.小于等于 7.当被测要素是圆柱面时,其形位公差带的形状是之间的区域。 A D 8.孔的体外作用尺寸其实际尺寸, A、不大于 B、不小于 C、大于 D、等于 9.在表面粗糙度评定参数中,能充分反映表面微观几何形状高度方面特性的是。 A. Ra、 B. Rz C. R Y D. R S m 二、填空题 1. 尺寸公差带二要素是指公差带的. 2. GB/T1800.2将线性尺寸的标准公差分为20级,其中最高级为 3. 表面粗糙度的两个高度特征参数中,比较全面客观地反映表面微观几何形状特征的 是。 4.配合精度要求高的零件,其表面粗糙度数值应 5. 配合公差的数值愈小,则相互配合的孔、轴的公差等级愈 6. 尺寸φ80JS8,已知IT8=46μm,则其最大极限尺寸是mm, 1

最小极限尺寸是 mm 。 三、填表 1.根据已知项,填写未知项。 +0.03Ф60 E

工序尺寸及其公差的确定

安徽工程科技学院教师备课教案 本章节讲稿共5 页教案第1 页备课时间:05年6月15 日教师签名:

第七章工艺规程设计 四、加工余量、工序尺寸及其公差的确定 1.加工余量的确定 对于柱面为双边余量;对于平面为单边余量。 加工总余量(毛坯余量):毛坯尺寸与零件图上的设计尺寸之差。 工序余量:相邻两工序尺寸之差。分为: ①工序基本余量Z=±(上工序基本尺寸L a-本工序基本尺寸 L b) 外表面取+;内表面取- 外表面:内表面: ②最小工序余量Z min=L amin-L bmax Z min=L bmin-L amax ③最大工序余量Z max=L amax-L bmin Z max=L bmax-L amin ④工序余量公差T z=Z max-Z min =上工序尺寸公差Ta+本工序尺寸公差Tb 工序尺寸公差的标注,按入体原则:即实体最小化,图7-9 毛坯尺寸公差,双向标注,图7-10 1)确定工序余量的原则和应考虑的因素 ①在确保加工质量的前提下,工序余量尽可能小。 ②上工序的R a及缺陷层D a图7-11和表7-2 ③T a和形位误差ρa ④本工序定位、夹紧误差误差εb 2)确定加工余量的方法 ①公式计算法,比较准确,但数据难得,用于大批量生产; 式7-5、7-6 p173 ②经验估计法,余量一般偏大,用于单件小批生产; ③查表修正法,将生产实践和试验积累的大量数据列成表格, 使用时直接查找,应根据实际情况修正。 2.工序尺寸及其公差的确定 工件某表面需多道工序加工时, 工序尺寸:各工序应保证的加工尺寸。 工序尺寸公差:工序尺寸允许的变动范围。 1)工艺基准与设计基准重合时 首先确定各工序余量,再从最后一道工序开始向前推算各工序基本尺寸,直到毛坯基本尺寸。例见表7-3 各工序尺寸公差按经济精度确定。 2)工艺基准与设计基准不重合时 需按工艺尺寸链原理分析计算。

我国尺寸公差与配合标准的发展历史

我国尺寸公差与配合标准的发展历史 1944年:国民党政府制定了“尺寸公差与配合”的国家标准,但实际使用的是日本、德国、美国标准. 1955年:参照苏联标准,第一机械工业部颁布“公差与配合”的部颁标准,此标准只是将苏联标准(OCT标准)付与了中文名词. 1959年:颁布了“公差与配合”的国家标准GB159~174 (简称“旧国标”)(精度等级偏低、配合种类偏少). 1979年:参照国际标准制定了“公差与配合”的国家标准GB1800~1804 —1979(简称“新国标”)取代GB159~174—1959. 1992~1996年上述新国标进行了部分修订,将《公差与配合》改为《极限与配合》, 用《极限与配合基础第一部分:词汇》(GB/T1800.1—1996)替代GB1800-1979中的《公差与配合的术语及定义》;用《一般公差线性尺寸的未注公差》(GB/T1804—1992)替代《未注公差尺寸的极限偏差》(GB1804—1979) 国家标准《极限与配合》中,公差与配合部分的标准主要包括: GB/T1800.1—1997《极限与配合基础第1部分:词汇》 GB/T1800.2—1998《极限与配合基础第2部分:公差、 偏差和配合的基本规定》 GB/T1800.3—1998《极限与配合基础第3部分:标准公 差和基本偏差数值表》 GB/T1800.4—1999《极限与配合标准公差等级和孔、 轴的极限偏差表》 GB/T1801—1999《极限与配合公差带和配合的选择》 GB/T1804—2000《一般公差未注公差的线性和角度尺 寸的公差》 2009年11月1日实施: GB/T1800.1—2009《极限与配合第1部分:公差、偏差 和配合的基础》 GB/T1800.2—2009《极限与配合第2部分:标准公差等 级和孔、轴极限偏差表》 GB/T1801—2009 《极限与配合公差带和配合的选择》 GB/T4249-2009 《公差原则》 GB/T16671-2009 《几何公差最大实体要求、最小实体 要求和可逆要求》 GB/T1182-2008 《几何公差形状、方向、位置和跳动 公差标准》 GB/T 1031-2009 《表面结构轮廓法表面粗糙度参 数及其数值》 GB/T 3177-2009 《光滑工件尺寸的检验》 GB/T 3505-2009 《表面结构轮廓法术语、定义 及表面结构参数》

尺寸公差与配合标准表

公差与配合1.基本偏差系列及配合种类 .2.标准公差值及孔和轴的极限偏差值 标准公差值(基本尺寸大于6至500mm) 基本尺寸mm 公差等级 IT5IT6IT7IT8IT9IT10IT11IT12 >6~10 >10~18 >18~30 >30~50 >50~80 >80~120 >120~180 >180~250 >250~315 >315~400 >400~5006 8 9 11 13 15 18 20 23 25 27 9 11 13 16 19 22 25 29 32 36 40 15 18 21 25 30 35 40 46 52 57 63 22 27 33 39 46 54 63 72 81 89 97 36 43 52 62 74 87 100 115 130 140 155 58 70 84 100 120 140 160 185 210 230 250 90 110 130 160 190 220 250 290 320 360 400 150 180 210 250 300 350 400 460 520 570 630

孔的极限差值(基本尺寸由大于10至315mm)μm

轴的极限偏差(基本尺寸由于大于10至315mm)

注:标注▼者为优先公差等级,应优先选用。

形状和位置公差(摘自GB1182~1184-80)形位公差符号 分类形状公差位置公差 项目 直线 度 平面 度 圆度 圆柱 度 平行 度 垂直 度 倾斜 度 同轴 度 对称 度 位置 度 圆跳 动 全跳动符号 圆度和圆柱度公差μm 主参数d(D)图例 公 差 等 级 主参数d(D) mm 应用举例>6 ~ 10 >10 ~18 >18~ 30 >30 ~50 >50~ 80 >80~ 120 >120 ~180 >180 ~250 >250 ~315 >315 ~400 >400 ~500 5234578910 安装E、C级滚 动轴承的配合 面,通用减速器 的轴颈,一般机 床的主轴。634456********* 745678101214161820 千斤顶或压力 油缸的活塞,水 泵及减速器的 轴颈,液压传动 系统的分配机 构86891113151820232527 9911131619222529323640起重机、卷扬机 用滑动轴承等101518212530354046525763 直线度和平面度公差μm

标准尺寸公差

0-500mm, 4-18级精度标准公差表。 基本尺寸 公差值 IT4 IT5 IT6 IT7 IT8 IT9 IT10 IT11 IT12 IT13 IT14 IT15 IT16 IT17 IT18 大于到μm mm - 3 3 4 6 10 14 25 40 60 0.10 0.14 0.25 0.40 0.60 1.0 1.4 3 6 4 5 8 12 18 30 48 75 0.12 0.18 0.30 0.48 0.75 1.2 1.8 6 10 4 6 9 15 22 36 58 90 0.15 0.22 0.36 0.58 0.90 1.5 2.2 10 18 5 8 11 18 27 43 70 110 0.18 0.27 0.43 0.70 1.10 1.8 2.7 18 30 6 9 13 21 33 52 84 130 0.21 0.33 0.52 0.84 1.30 2.1 3.3 30 50 7 11 16 25 39 62 100 160 0.25 0.39 0.62 1.00 1.60 2.5 3.9 50 80 8 13 19 30 46 74 120 190 0.30 0.46 0.74 1.20 1.90 3.0 4.6 80 120 10 15 22 35 54 87 140 220 0.35 0.54 0.87 1.40 2.20 3.5 5.4 120 180 12 18 25 40 63 100 160 250 0.40 0.63 1.00 1.60 2.50 4.0 6.3 180 250 14 20 29 46 72 115 185 290 0.46 0.72 1.15 1.85 2.90 4.6 7.2 250 315 16 23 32 52 81 130 210 320 0.52 0.81 1.30 2.10 3.20 5.2 8.1 315 400 18 25 36 57 89 140 230 360 0.57 0.89 1.40 2.30 3.60 5.7 8.9 400 500 20 27 40 63 97 155 250 400 0.63 0.97 1.55 2.50 4.00 6.3 9.7 注:基本尺寸小于1mm时,无IT14至IT18。 根据国际标准,以下为线性尺寸未注公差的公差表。 这个未注公差适用于金属切削加工的尺寸,也适用于一般的冲压加工尺寸。这些极限偏差适用于:?线性尺寸:例如外尺寸、内尺寸、阶梯尺寸、直径、半径、距离、倒圆半径和倒角高度; ?角度尺寸:包括通常不标出角度值的角度尺寸,例如直角(90°); ?机加工组装件的线性和角度尺寸。 这些极限偏差不适用于: ?已有其他一般公差标准规定的线性和角度尺寸; ?括号内的参考尺寸; ?矩形框格内的理论正确尺寸。 表1 线性尺寸的极限偏差数值 公差等级 尺寸分段 0.5~3 >3~6 >6~30 >30~120 >120~400 >400~1000 >1000~2000 >2000~4000 f(精密级) ±0.05 ±0.05 ±0.1 ±0.15 ±0.2 ±0.3 ±0.5 - m(中等级) ±0.1 ±0.1 ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 c(粗糙级) ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 ±3 ±4 v(最粗级) - ±0.5 ±1 ±1.5 ±2.5 ±4 ±6 ±8 表2 倒圆半径与倒角高度尺寸的极限偏差数值 公差等级 尺寸分段 0.5~3 >3~6 >6~30 >30 f(精密级) ±0.2 ±0.5 ±1 ±2 m(中等级) c(粗糙级) ±0.4 ±1 ±2 ±4 v(最粗级) 表3 角度尺寸的极限偏差数值 公差等级 长度分段 ≤10 >10~50 >50~120 >120~400 >400 f(精密级) ±1°±30' ±20' ±10' ±5' m(中等级) c(粗糙级) ±1°30' ±1°±30' ±15' ±10' v(最粗级) ±3°±2°±1°±30' ±20' 角度尺寸的长度按角度的短边长度确定,对于圆锥角按圆锥素线长度确定。

谈零件工序尺寸公差的零值和负值

《装备制造技术》2012年第11期 在生产中,编制零件工艺规程,一般都要涉及工艺尺寸链的计算,特别是遇到零件的工序基准和定位基准(或测量基准)不重合时,计算工序尺寸的公差就会经常出现零值或负值问题。近几年,经过工科教学课程体系改革,相关课程内容合并、压缩和简化,涉及这一部分的知识,在教材中已经不再阐述或仅简单提示一下。当前,由于大学生接触生产实际时间有限,对工序尺寸公差的零值或负值的后果不够清晰以及对解决方法的不了解。为此,笔者根据多年的教学经验,从培养工科大学生应用型的人才出发,认为《机械制造技术》课程的课堂教学可以适当安排一定课时来讲解工序尺寸公差的零值或负值问题。 1尺寸公差零值或负值的概念 零件尺寸公差是指允许尺寸的变动量。公差等于最大极限尺寸与最小极限之代数差的绝对值,也等于上偏差与下偏差的代数差的绝对值。在计算尺寸链时,工序尺寸的公差值,首先必须是正的,其次公差要有一定范围,公差数值的大小取决产品的性能和使用要求。 在工序尺寸的计算中,当工序基准和定位基准重合时,零件的工序尺寸一般无需计算,也不会出现尺寸公差零值或负值。当工序基准和定位基准不重合时,工序尺寸的计算有可能会出现公差零值或负值。由于尺寸公差的零值和负值会造成零件无法加工,生产中碰到此类问题的一般三种解决方法。 (1)等公差值法 按等公差值方法重新分配封闭环的公差,即: 各组成环公差=封闭环公差/(n-1) 这种方法在计算上比较方便,但从加工工艺上看不够合理,只宜有选择地使用。 (2)等公差级法 按等公差级方法分配封闭环的公差,即各组成环的公差根据其基本尺寸的大小按比例分配,或是按照公差表中的尺寸分段及某一公差等级来规定组成环的公差,使各组成环的公差满足以下条件:封闭环公差=各组成环公差之和 最后进行适当调整。这种方法从工艺上讲比较合理。 (3)经验法 各组成环的公差可以凭工程技术人员的经验,按照具体情况来分配。 前二种方法都有优点和不足,而经验法对大学生还谈不上。为此,在教学中可以结合生产实际介绍一种既方便又比较合理的方法,即先用等公差值分配公差,再根据尺寸大小适当调整来求解工序尺寸和公差。 2计算实例 对工序尺寸公差零值和负值的问题,在教学中,还可以通过实例提高学生的认识。 2.1应用实例 采用调整法铣削,图1所示为阶梯轴的槽面。试标注以大端端面轴向定位时的铣槽工序尺寸及其公差。 谈零件工序尺寸公差的零值和负值 樊琳 (苏州大学机电工程学院,江苏苏州215021) 摘要:生产中解决零件加工工序尺寸公差零值或负值问题的计算方法有三种。针对这三种工序尺寸计算方法在实际应用中暴露出的一些不足,介绍一种简便的工序尺寸计算方法,并通过实例验证其计算结果准确可行。 关健词:工序尺寸;公差;零值;负值 中图分类号:G642.3文献标识码:B文章编号:1672-545X(2012)11-0143-02 收稿日期:2012-08-03 作者简介:樊琳(1954—),男,副教授,硕士生导师,主要研究方向机械制造技术。 143

工序尺寸及公差计算

确定加工余量,工序尺寸及公差 根据上述加工工艺,查各种表面加工余量表分别确定各种加工表面的加工余量,工序尺寸及公差,如下表所示。 表1:外圆柱面Φ85加工余量计算 工序名称 工序间余量/mm 工序 工序基本尺寸/mm 标注工序尺寸公差 /mm 经济精度 表面粗糙度Ra/μm 磨削 0.5 IT6 0.8 φ85 0.012 0.03485--? 半精车 1.6 IT9 3.2 φ85.5 0.0120.09985.5--? 粗车 4.1 IT11 12.5 Φ87.1 0.0120.23287.1--? 毛坯 φ91 0.91.891+-? 表2:外圆柱面Φ36加工余量计算 工序名称 工序间余量/mm 工序 工序基本尺寸/mm 标注工序尺寸公差 /mm 经济精度 表面粗糙度Ra/μm 精磨 0.15 IT6 0.4 φ36 0.009 0.02536--? 粗磨 0.25 IT7 0.8 φ36.15 0.0090.03436.15--? 半精车 1.4 IT8 3.2 φ36.4 0.0090.04836.4--? 粗车 2.2 IT11 12.5 φ37.8 0.0090.16937.8--? 毛坯 φ42 0.41.242+-? 表3:圆柱面Φ28加工余量计算 工序名称 工序间余量/mm 工序 工序基本尺寸/mm 标注工序尺寸公差 /mm 经济精度 表面粗糙度Ra/μm 磨削 0.4 IT6 0.8 φ28 00.01328-? 半精车 1.5 IT8 3.2 φ28.4 00.03328.4-? 粗车 12.1 IT11 12.5 φ29.9 00.1329.9-?

公差带公差等级概念分析

?公差带确定公差的位置(不同基本尺寸的相同公差带的公差位置是不同的)(公差带不是误差,是一个设计值/选定值) ?对于基本尺寸相同的轴来说,相同的公差带确定了相同的上偏差位置;(基本尺寸相同的轴,相同公差带,轴的最大值是相同的,最小值随着精度的 提高而变大) ?对于基本尺寸相同的孔来说,相同的公差带确定了相同的下偏差位置;(基本尺寸相同的孔,相同公差带,孔的最小值是相同的,最大值随着精度的 提高而变小) ?公差等级(精度等级)确定公差值的大小,同时,相同公差等级的公差值随着基本尺寸的变化而变化; ?基孔制和基轴制是两组特定的装配组合: 基孔制中孔的公差带在H,H*/a*~H*/z*(*表示公差等级) 基轴制中轴的公差带在h,A*/h*~Z*/h*(*表示公差等级)

轴的公差一般比孔的高一级。 优先选用基孔制。 如果一根轴和多个孔配合且配合性质不同时,选择基轴制。 在下列情况下应选用基轴制 1在同一基本尺寸的轴上有不同配合要求。例如,发动机的活塞轴与连杆铜套孔和活塞孔之间的配合。根据工作需要及装配性,活塞销与活塞采用过渡配合,而与连杆铜套孔采用间隙配合。所示,销轴将做成阶梯状。 2直接使用有一定精度(IT8~IT11)而不再进行机械加工的冷拔钢材(这种钢材是按基准轴的公差带制造)做轴。在这种情况下,当需要各种不同的配合时,可选择不同的孔公差带位置来实现。这种情况应用在农业机械和纺织机械中。 3允许采用非基准制配合。非基准制配合是指相配合的孔和轴,孔不是基准孔H,轴也不是基准轴h的配合。最为典型的是轴承盖与轴承座孔的配合。在箱体孔中装配有滚动轴承和轴承盖,有滚动轴承是标准件,它与箱体孔的配合是基轴制配合,箱体孔的公差带已由此而确定为J7,这时如果轴承盖与箱体孔的配合坚持 用基轴制,则配合为J/h,属于过渡配合。但轴承盖需要经常拆卸,显然应该采 用间隙配合,同时考虑到轴承盖的性能要求和加工的经济性,轴承盖配合尺寸采用9级精度,最后选择轴承盖与箱体孔的配合为J7/f9 公差等级的选用一般采用类比法,也就是参考从生产实践中总结出来的经验资料,进行比较选用。选择时应考虑以下几个方面: 1孔和轴的工艺等价性 孔和轴的工艺等价性是指孔和轴加工难易程度应相同。在常用尺寸段内,对间隙配合和过渡配合,孔的公差等级高于或等于IT8级时,轴比孔应高一级,如H8/g7,H7/n6。当孔的精度低于IT8级时,孔和轴的公差等级应取同一级,如H9/d9。 对过盈配合,孔的公差等级高于或等于IT7级时,轴应比孔高一级,如H7/p6,而孔的公差等级低于IT7级时,孔和轴的公差等级应取同一级,如H8/s8。这样可以保证孔和轴的工艺等价性。实践中也允许任何等级的孔、轴组成配合。 2相关件和配合件的精度 例如,齿轮孔与轴的配合,它们的公差等级取决于相关件齿轮的精度等级。与滚动轴承配合的轴径和外壳孔的精度等级取决与滚动轴承的精度等级。

第五节 工序尺寸及其公差的确定

第五节 工序尺寸及其公差的确定 工序尺寸是加工过程中各个工序应保证的加工尺寸,其公差即工序尺寸公差。正确地确定工序尺寸及其公差,是制订工艺规程的重要工作之一。 零件的加工过程,是毛坯通过切削加工逐步向成品过渡的过程。在这个过程中,各工序的工序尺寸及工序余量在不断地变化,其中一些工序尺寸在零件图纸上往往不标出或不存在,需要在制定工艺过程时予以确定。而这些不断变化的工序尺寸之间又存在着一定的联系,需要用工艺尺寸链原理去分析它们的内在联系,掌握它们的变化规律。运用尺寸链理论去揭示这些尺寸之间的联系,是合理确定工序尺寸及其公差的基础。 一、工艺尺寸链的基本概念 (一)尺寸链的定义 下面先就图5—17所示零件在加工和测量中有关尺寸的关系,来建立工艺尺寸链的定义。 图 图 图5—17 a )所示为一定位套,0A 与1A 为图样已标注的尺寸。当按零件图进行加工时,尺寸0A 不便直接测量。如欲通过易于测量的尺寸2A 进行加工,以间接保证尺寸0A 的要求,则首先需要分析尺寸1A 、2A 和0A 之间的内在关系,然后据此计算出尺寸2A 的数值。又如图5—18 a )所示零件,当加工表面C 时,为使夹具结构简单和工件定位稳定可靠,若选择表面A 为定位基准,并按调整法根据对刀尺寸2A 加工表面C ,以间接保证尺寸0A 的精度要求,则同样需要首先分析尺寸1A 、2A 和0A 之间的内在关系,然后据此计算出对刀尺寸2A 的数值。 我们将互相关联的尺寸(1A 、2A 和0A )以一定顺序首尾相接排列成一封闭的尺寸组,称为零件的工艺尺寸链。图5—17 b )和图5-18 b )所示,即为反映尺寸1A 、2A 、0A 三者关系的工艺尺寸链简图。由上述两例可以看出,在零件的加工过程中,为了加工和测量的方便,有时需要进行一些工艺尺寸的计算。利用工艺尺寸链就可以方便地对工艺尺寸进行分析计算。 (二)尺寸链的组成 1. 环 是指列入尺寸链中的每一个尺寸。例如,图5-17(b )中的1A 、2A 和0A 都称为尺寸链

工序尺寸及公差

工序尺寸及公差 1、尺寸链的定义 尺寸链在零件加工或机器装配过程中,相互联系并按一定顺序排列的封闭尺寸组合。 工艺尺寸链在机械加工过程中,由同一个零件有关工序尺寸组成 的尺寸链。 装配尺寸链在机器设计及装配过程中,由有关零件设计尺寸所组 成的尺寸链。 图示工件如先以A面定位加工C面,得尺寸A1然后再以A面定位用调整法加工台阶面B,得尺寸A2,要求保证B面与C面间尺寸A0;A1、A2和A0这三个尺寸构成了一个封闭尺寸组,就成了一个尺寸链。 2、工艺尺寸链的组成 尺寸链的环可分为封闭环和组成环。 尺寸链的环:组成尺寸链的每一个尺寸。

(1)封闭环:在加工过程中间接获得的尺寸,称为封闭环。在图b所示尺寸链中,A0是间接得到的尺寸,它就是图b所示尺寸链的封闭环。 (2)组成环:在加工过程中直接获得的尺寸,称为组成环。尺寸链中A1与A2都是通过加工直接得到的尺寸,A1、A2都是尺寸链的组成环。 增环:在尺寸链中,其余各环不变,当该环增大,使封闭环也相应增大的组成环减环:在尺寸链中,其余各环不变,当该环增大,使封闭环相应地减小的组成环,建立尺寸链时,首先应确定哪一个尺寸是间接获得的尺寸,并把它定为封闭环。再从封闭环一端起,依次画出有关直接得到的尺寸作为组成环,直到尺寸的终端回到封闭环的另一端,形成一个封闭的尺寸链图。 在分析、计算尺寸链时,正确地判断封闭环以及增环、减环是十分重要的。通常先给封闭环任定一个方向画上箭头,然后沿此方向环绕尺寸链依次给每一组成环画出箭头,凡是组成环尺寸箭头方向与封闭环箭头方向相反的,均为增环;相同的则为减环。 3、尺寸链的分类 (1)按尺寸链在空间分布的位置关系,可分为线性尺寸链、平面尺寸链和空间尺寸链。 1)线性尺寸链:尺寸链中各环位于同一平面内且彼此平行。 2)平面尺寸链:尺寸链中各环位于同一平面或彼此平行的平面内,各环之间可以不平行。 3)空间尺寸链:尺寸链中各环不在同一平面或彼此平行的平面内。 (2)按尺寸链的应用范围,可分为工艺尺寸链和装配尺寸链。 1)工艺尺寸链:在加工过程中,工件上各相关的工艺尺寸所组成的尺寸链。

工序尺寸及公差的确定

工序尺寸是指某一工序加工应达到的尺寸,其公差即为工序尺寸公差,各工序的加工余量确定后,即可确定工序尺寸及公差。 零件从毛坯逐步加工至成品的过程中,无论在一个工序内,还是在各个工序间,也不论是加工表面本身,还是各表面之间,他们的尺寸都在变化,并存在相应的内在联系。运用尺寸链的知识去分析这些关系,是合理确定工序尺寸及其公差的基础。 一、工艺尺寸链的概念及计算公式 (一)工艺尺寸链的概念 1 .尺寸链的定义 在机器装配或零件加工过程中,由相互连接的尺寸形成的封闭尺寸组,称为尺寸链。如图 3-78 所示,用零件的表面 1 定位加工表面 2 得尺寸 A1 ,再加工表面 3 ,得尺寸 A2 ,自然形成 A0 ,于是 A1 — A2 — A0 连接成了一个封闭的尺寸组(图 3-78b ),形成尺寸链。 在机械加工过程中,同一工件的各有关尺寸组成的尺寸链称为工艺尺寸链。 2 .工艺尺寸链的特征 ( 1 )尺寸链有一个自然形成的尺寸与若干个直接得到的尺寸所组成。 图 3-78 中,尺寸

A1 、 A2 是直接得到的 尺寸,而 A0 是自然形成 的。其中自然形成的尺寸 大小和精度受直接得到 的尺寸大小和精度的影 响。并且自然形成的尺寸 精度必然低于任何一个 直接得到的尺寸的精度。 ( 2 )尺寸链一定 是封闭的且各尺寸按一 定的顺序首尾相接。 3 .尺寸链的组成 组成尺寸链的各个尺寸称为尺寸链的环。图 3-78 中 A 1 、 A 2 、A 0 都是尺寸链的环,它们可以分为: ( 1 )封闭环在加工(或测量)过程中最后自然形成的环称为封闭环,如图 3-78 中的 A 0 。每个尺寸链必须有且仅能有一个封闭环,用 A 0 来表示。 ( 2 )组成环在加工(或测量)过程中直接得到的环称为组成环。尺寸链中除了封闭环外,都是组成环。按其对封闭环的影响,组成环可分为增环和减环。

加工余量及工序尺寸和公差的确定

加工余量及工序尺寸和公差的确定 一、加工余量的确定 (一)加工余量的概念 加工总余量:毛坯经机械加工而达到零件图的设计尺寸,毛坯尺寸与零件图的设计尺寸之差,即从被加工表面上切除的金属层总厚度。 工序余量:相邻两工序的尺寸差,即在某一工序所切除的金属层厚度。 某个表面的加工余量。与加工该表面各工序余量之间有下列的关系: (8-1) 式中——加工该表面的工序数; ——加工总余量; ——各工序余量。 工序余量又可以分为单边余量和双边余量。 单边余量:若相邻两工序的工序尺寸之差等于被加工表面任一位置上在该工序切除的金属层厚度。 双边余量:若加工回转表面时,在一个方向的金属层被切除时,对称方向上的金属层也等量地同时被切除掉,使相邻两工序的工序尺寸之差等于被加工表面任一位置上在该工序内切除的金属层厚度的两倍。 如图8-11所示。 图8-4-1 单边余量和双边余量 基本余量、最大加工余量和最小加工余量

a) b) 图8-4-2 基本余量、最大余量和最小余量 加工余量变化的公差等于上道工序的工序尺寸公差与本工序的工序尺寸公差之和。即 (8-2) 各个加工余量与相应加工尺寸的关系如图8-4-3所示。 图8-4-3 加工余量与相应加工尺寸 (二)影响加工余量的因素 1.上道工序加工表面(或毛坯表面)的表面质量包括表面粗糙度高度和表面缺陷层深度; 2.上道工序的尺寸公差 3.上道工序的位置误差 4.本工序的安装误差 (三)确定加工余量的方法 1. 计算法此法是根据一定的资料,对影响加工余量的各项因素进行分析计算,然后综合考虑计算出来的,

多用于大批大量生产,计算公式如下: 对双边余量: (8-3) 对单边余量: (8-4) 一般取 2. 查表法以工厂的实际生产经验及工艺实践积累的有关加工余量的资料数据为基础,结合具体加工方法进行适当修正而得到加工余量的方法。 3. 经验法根据工艺人员的经验来确定加工余量的方法。 二、工序尺寸和公差的确定 一般情况下,加工某表面的最终工序的尺寸及公差可直接按零件图的要求来确定。中间各工序的工序尺寸则可根据零件图的尺寸,加上或减去工序的加工余量而得到。采用由后向前推的方法,由零件图的尺寸,一直推算到毛坯尺寸。 例:加工轴时的各工序尺寸之间的关系。 图8-4-4 工序尺寸的计算 其中为零件的基本尺寸,为毛坯基本尺寸。由图8-4-4可见,对于外表面,本工序的尺寸加上本工序的余量即为前工序的尺寸。 由上可得出,各工序尺寸可由最终尺寸及余量推出。在计算时应注意区分内、外表面,同时注意单边、双边余量的问题。 中间工序尺寸的公差可根据加工方法的加工经济精度来选取,正确地选定工序公差有着 重要的意义。 工序尺寸及公差确定好以后,在工序单上标注时,按“入体原则”进行标注。 即对于外表面尺寸,注成负偏差,对于内表面尺寸,往成正偏差。

尺寸链解算与工序尺寸确定

尺寸链解算与工序尺寸确定

————————————————————————————————作者:————————————————————————————————日期: ?

尺寸链解算与工序尺寸确定 [目录] [上一层] [零件制造的工艺过程] [工艺规程的作用及设计步骤] [零件工艺性分析与毛坯的选择] [定位基准的选择][工艺路线的拟定] [加工余量的确定][尺寸链解算与工序尺寸确定][时间定额与经济分析][ 计算机辅助机械加工工艺规程设计] 零件图上所标注的尺寸公差是零件加工最终所要求达到的尺寸要求,工艺过程中许多中间工序的尺寸公差,必须在设计工艺过程中予以确定。工序尺寸及其公差一般都是通过解算工艺尺寸链确定的,为掌握工艺尺寸链计算规律,这里先介绍尺寸链的概念及尺寸链计算方法,然后再就工序尺寸及其公差的确定方法进行论述。 一、尺寸链及尺寸链计算公式 1、尺寸链的定义 在工件加工和机器装配过程中,由相互联系的尺寸,按一定顺序排列成的封闭尺寸组,称为尺寸链。 图示工件如先以A面定位加工C面,得尺 寸A1然后再以A面定位用调整法加工台阶面B,得 尺寸A2,要求保证B面与C面间尺寸A0;A1、A2和A0这三个尺寸构成了一个封闭尺寸组,就成了一个尺寸链。 ?尺寸链示例

2、工艺尺寸链的组成 环:工艺尺寸链中的每一个尺寸称为尺寸链的环。工艺尺寸链由一系列的环组成。环又分为: (1)封闭环(终结环):在加工过程中间接获得的尺寸,称为封闭环。在图b所示尺寸链中,A0是间接得到的尺寸,它就是图b所示尺寸链的封闭环。 (2)组成环: 在加工过程中直接获得的尺寸,称为组成环。尺寸链中A1与A2都是通过加工直接得到的尺寸,A1、A2都是尺寸链的组成环。1)增环:在尺寸链中,自身增大或减小,会使封闭环随之增大或减小的组成环,称为增环。表示增环字母上面用-->表示。 2)减环:在尺寸链中,自身增大或减小,会使封闭环反而随之减小或增大的组成环,称为减环。表示减环字母上面用<--表示。 3)怎样确定增减环:用箭头方法确定,即凡是箭头方向与封闭环箭头方向相反的组成环为增环,相同的组成环为减环。在图b所示尺寸链中,A1是增环,A2是减环。 4)传递系数ξi: 表示组成环对封闭环影响大小的系数。即组成环在封闭环上引起的变动量对组成环本身变动量之比。对直线尺寸链而言,增环的ξi=1,减环的ξi=-1。

尺寸公差的概念

1、尺寸公差的概念 尺寸公差是尺寸允许的变动量(变化范围);形状公差是零件的形状允许的变动量(如轴的圆度,如果不圆,则应该有一个允许的范围),位置公差是指零件上的结构要素(如面、线等)相对与基准面、线的位置允许的变动量,如某面与基准面的平行度,如果不平行,也应有一个许可的变化范围,这个范围就是位置公差。 2、尺寸公差的形成因素 零件的制造过程中,由于受多种因素的影响,如机床的震动、传动误差、机床的精度、测量工具的误差、以及人为的因素(如疲劳、精神状态等),零件的尺寸和形状、要素的位置不可能和理想的尺寸和形状相一致,必然存在一定的误差。在机械设备中,只要零件的尺寸和形状、位置误差在允许的范围以内,不影响设备的正常工作,就认为是合格的零件。国家标准规定中尺寸和形状与位置公差,这样就便于大规模进行生产。比如标准件螺钉,只要型号、规格一样,那么不管是哪一家工厂生产的合格产品,都可以采购、装配在我们的设备中使用。 3、学习目的 工程制图中学习公差的目的是:掌握公差的基本概念及其标注方法。 尺寸的几个概念 1、基本尺寸: 零件设计时标注的名义尺寸。 2、实际尺寸: 通过测量获得的尺寸,由于存在测量误差,因此实际尺寸不一定是尺寸的真实值。 3、极限尺寸: 允许尺寸变化的两个极限值,较大的一个称为最大极限尺寸、较小的一个称为最小极限尺寸。 尺寸偏差 1、尺寸偏差: 某一尺寸减去基本尺寸的代数差称为尺寸偏差, 2、上偏差 最大极限尺寸减去基本尺寸所得的代数值称为上偏差; 3、下偏差 最小极限尺寸减去基本尺寸所得的代数值称为下偏差。 上、下偏差数值可能为正值,也可能为负值。 4、实际偏差 实际尺寸减去基本尺寸所得的代数差称为实际偏差,实际偏差为正值,表明零件的实际尺寸大于基本尺寸;实际偏差为负值,表明零件的实际尺寸小于基本尺寸。 实际偏差必须在上偏差和下偏差之间。 尺寸公差 尺寸公差: 上偏差减去下偏差所得的代数值称为尺寸公差,用IT表示。 尺寸公差一定是正值。的尺寸公差为:IT=0.025-0.010=0.015。

机械加工余量和锻件尺寸公差的确定

机械加工余量和锻件尺寸公差的确定 (一)主要参数及影响因素 1.锻件重量(G1) 根据锻件图的尺寸计算锻件的重量。对于杆部不参与变形(不锻棒料部分)的平锻件重量只计算镦锻部分(见图2a)。若不锻棒料部分的长度与其直径之比小于2时,可看作一个完整的锻件来计算其重量(见图2b)。若平锻件的两端分两次镦锻时,前一道镦锻成形部分连同不锻棒料杆部部分,视为第二道镦锻部分的不锻棒料部分(见图2c)。 2.锻件形状复杂系数(S) 锻件形状复杂系数为锻件重量(G1)与相应的锻件外廓包容体重量(G2)的比值。即: S= 图2 镦锻件重量计算特点 a)一头一长杆;b)一头一短杆;c)二头一杆; A 镦锻部分; B 不锻棒料部分; C 第一道成形 圆形锻件的外廓包容体重量(见图3): 式中:ρ—密度(7.85/cm3) 图3 圆形锻件的外廓包容体 非圆形锻件外廓包容体重量(见图4):

图4 非圆形锻件外廓包容体 锻件形状复杂系数分为四级: 简单:S1>0.63~1 一般:S2>0.32~0.63 较复杂:S3>0.16~0.32 复杂:S4≤0.16 特例:当锻件为薄形圆盘或法兰件(见图5a),其圆盘厚度和直径之比L/d≤0.2时,取形状复杂系数S4。 当L1/d1≤0.2或L2/d2>4时(见图5b),采用形状复杂系数S4。 当冲孔深度大于直径的1.5倍时,形状复杂系数提高一级。 图5 锻件形状复杂特例 3.锻件的材质系数 锻件的材质系数分为二级: M1:钢的含碳量小于0.65%的碳钢,或合金元素总含量小于3.0%的合金钢。 M2:钢的含碳量大于或等于0.65%的碳钢,或合金元素总含量大于或等于3.0%的合金钢。 4.零件的机械加工精度 零件表面粗糙度低于R a1.6,机械加工余量从余量表查得;粗糙度高于R a1.6,加工余量要适当加大;对扁薄截面或在锻件相邻部位截面变化较大的零件(如图6),在长度L范围内应适当加大局部的余量。 图6 应局部增大余量的零件 5.加热条件

相关文档
最新文档