数学物理方程与特殊函数-模拟试题及参考答案(1)

数学物理方程与特殊函数-模拟试题及参考答案(1)
数学物理方程与特殊函数-模拟试题及参考答案(1)

《数学物理方程》模拟试题

一、填空题(3分?10=30分)

1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).

2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n

u

S

=+??)(σ是第( )类边界条件,其中S 为边

界.

5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程2

2

222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有

=)(0x J dx

d

( ) . 7.根据勒让德多项式的表达式有)(3

1)(3202x P x P += ( ). 8.计算积分

=?

-dx x P 2

1

1

2)]([( ) .

9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) .

二、试用分离变量法求以下定解问题(30分):

1.???

?

?

????<<=??===><

2

222,0x t u x x t x x u t u t t x u u u

2.????

?

??

??===><

t u u u u t x x 2,0,00,40,04022 3. ????

?

????<<=??===><<+??=??====20,0,8,00,20,162002022

222x t u t x x u

t u t t x x u u u

三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)

??

???=??=>+∞<<-∞+??=??==0,2sin 0,,cos 0

022

2

22t t t u x u t x x x u a t u

四、用积分变换法求解下列定解问题(10分):

???

?

???=+=>>=???==,

1,

10,0,1002y x u y u y x y x u

五、利用贝赛尔函数的递推公式证明下式(10分):

)(1)()('

0'

'02x J x

x J x J -=

六、在半径为1的球内求调和函数u ,使它在球面上满足

θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

.

0,12cos 3,0,10,0)(sin sin 1)(112

22πθθπθθθθθ≤≤+=≤≤<<=????+????=r u r u

r r u r r r

(本题的u 只与θ,r 有关,与?无关)

《数学物理方程》模拟试题参考答案

一、 填空题:

1.初始条件,边值条件,定解条件.

2. )(222222

2z

u y u x u a t u ??+??+??=?? 3.01)(12

22=??+????θρρρρρu u . 4. 三.

5.U a dt

U d 2

22

2ω-=. 6.)(1x J -. 7.2x .

8.5

2.

9.)1(212-x dx

d .

10.2

02

0)

()(1

ln

y y x x u -+-=.

二、试用分离变量法求以下定解问题

1.解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:

0)()(2''=+t T a t T λ,0)()(''=+x X x X λ,由边界条件得到0)3()0(==X X ,

对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到

2222

3πβλn ==为特征值,特征函数3sin )(π

n B x X n n =,再解)(t T ,得到

32sin

32cos )(;

;t n D t n C t T n n n ππ+=,于是,3sin )32sin 32cos (),(1

x

n t n D t n C t x u n n n πππ+=∑∞

=再由初始条件得到

0,)1(183sin 332130=-==+?n n n D n xdx n x C ππ,所以原定解问题的解为

,

3sin )32cos )1(18(),(11

x

n t n n t x u n n πππ+∞

=-=∑

2. 解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:

0)()('=+t T t T λ,0)()(''=+x X x X λ,由边界条件得到0)4()0(==X X ,对

λ的情况讨论,

只有当0>λ时才有非零解,令2

βλ=,得到22

22

4

πβλn ==为特征值,特征函数4

sin )(πn B x X n n =,再解)(t T ,得到16

;

22)(t n n n e C t T π-

=,

于是,4

sin

(),(16

122x

n e

C t x u t n n n ππ-∞

=∑=再由初始条件得到

1

40)1(164sin 242+-==

?n n n xdx n x C π

π,所以原定解问题的解为,4sin

)1(16

),(16

11

22x

n e n t x u t n n n ππ

π-+∞=-=∑

3.解 由于边界条件和自由项均与t 无关,令)(),(),(x w t x v t x u +=,代入原方程中,将方程与边界条件同时齐次化。因此

212

''''22222)(16)(416)]([4c x c x x w x w x w x

v t v ++-=?=?++??=??,再由边界条件有8)2(,0)0(==w w ,于是0,821==c c ,x x x w 82)(2+-=.再求定解问题

???

??

????<<=??-===><

32

2

222,0x t v x w x t x x v t v t t x v v v 用分离变量法求以上定解问题的解为

,2sin cos ])1)1[(32)1(16(

),(331

x n t n n n t x v n n n ππππ--+-=∑∞

=故

,2sin cos ])1)1[(32)1(16(28),(3312

x n t n n n x x t x u n n n πππ

π--+-+-=∑

=

三.解:

令)(),(),(x w t x v t x u +=,代入原方程中,将方程齐次化,因此

x a

x w x x w a x x w x v a t v cos 1)(0cos )(cos )]([2'

'2''22

222=?=+?++??=??,再求定解问题????

???=??-=>??=??==,0),(cos 12sin 0,0202

2

222t t t v

x xw a x t x v a t v v 由达朗贝尔公式得

到以上问题的解为

at

x a at x at x a

at x at a a at x t x v cos cos 1

cos sin 0

)]cos(1

)(2sin )cos(1)(2[sin 21),(222-=+---++-+=故

.cos 1

cos cos 1cos sin ),(22x a

at x a at x t x u +-=

四.解 :

对y 取拉普拉斯变换),()],([p x U y x u L =,对方程和边界条件同时对y 取拉普拉斯变换得到p p

U p

dx dU p

x 1

1,1

2

+=

==,解这个微分方程得到p

p x p p x U 1

11),(22++=

,再取拉普拉斯逆变换有1),(++=y yx y x u 所以原问题的解为1),(++=y yx y x u .

五.证明:

由公式

)())((1x J x x J x dx

d n n n n

+---=有)()()(1'x J x x nJ x xJ n n n +-=-,令1=n 有)()()(211'x xJ x J x xJ -=-,所以)(1

)()(11'2x J x

x J x J +-=,又

)()(),()(1'0''10'x J x J x J x J -=-=,所以)(1

)()(0'0''2x J x

x J x J -=.

六.解:

由分离变量法,令)()(),(θθΦ=r R r u ,得到

∑∞

==0)(cos ),(n n n

n P r C r u θθ,由边界条件有∑∞

===+=0

1)(cos 12cos 3n n n r P C u θθ,令x =θcos ,

)

()()(261)12(322110022x P c x P c x P c x x ++=-=+-∴,

)13(212622102-++=-x c x c c x , 4,0,0210===∴c c c ,故22222

2cos 6)1cos 3(2

1

4),(r r r r u -=-=θθθ

数学物理方程模拟试卷

数学物理方程模拟试卷 一、写出定解问题(10分) 设枢轴长为l ,建立枢轴纵振动在下列情形下的运动方程: (a ) 在x=0固定,在x=l 作用力F ,在t=0时刻作用力突然停止 (b ) 在x=l 一端是平衡位置,而从t=0时刻作用力 F(t) 解:(a )() ()()() ???? ?????≥='=≤≤==><<

,13c x y dx dy +-=→= 令???-=+=y x y x 3ηξ ???===-=======∴0,1,30,1,1yy xy xx y x yy xy xx y x ηηηηηξξξξξ (2) ??? ????++++=+++++=++++=+=+=yy yy y y y y yy xy xy y x x y y x y x xy xx xx x x x xx y y y x x x u u u u u u u u u u u u u u u u u u u u u u u u ηξηηξξηξηηηξηξξξηξηηξξηξηξηξηηξηξξηξηηξηξξηξηηξηξξηξηξ22222)(2, (3) 将(2)代入(3),可得 ?????????+-=-+=++=-=+=ηη ξηξξηηξηξξηηξηξξηξηξu u u u u u u u u u u u u u u u u u yy xy xx y 2329632 (4) 把(4)代入(1),可得 0666236364296=-+++-+--++++ηξηξηηξηξξηηξηξξηηξηξξu u u u u u u u u u u u u 0816=+∴ξξηu u 即 02 1=+ξξηu u 这就是我们所求的标准的双曲型方程。 三、(每小题10分,共20分) ①证明:)52()52(),(t x G t x F t x y -++=为方程2222254x y t y ??=??的通解。 ②求满足条件:0),(),0(==t y t y π,x x y 2sin )0,(=,0)0,(=x y t 的特解。 解:①设v t x u t x =-=+52,52,得 )()(v G u F y +=, )5()('5)('-?+?=????+????=??v G u F t v v G t u u F t y )('5)('5v G u F -=, (1)

最新数学物理方程期末试卷

最新数学物理方程期末试卷 出卷人:欧峥 1、长度为 l 数学物理方程期末试卷sin A t ω的力的作用,右端系在弹性系数为 k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题.(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进 入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2x l x -,试 写出其定解问题.(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 222200, y 0, () , .y u u x y u f x x =???+=

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

数学物理方程试卷(B)

2011-2012 一、选择题(本题共5小题,每小题3分,共15分) 在下列每小题的4个备选项中,只有一项是最符合题意的,请将代码 (A 、B 、C 、D )填在题后相应的括号内。 1、偏微分方程与( )结合在一起,统称为定解问题. (A)定解条件; (B)初始条件; (C)边界条件; (D)以上均不正确. 2、下列偏微分方程中,属于二阶、线性、齐次的是( ). (A) 2260u u u u t x ??++-=??; (B) 2222cos 40?+-?-=?u t t u x x ; (C) 2 90???+-= ???? u xu t t ; (D) 22 60??+?-?=??t u u e xt u x t . 3、以下说法中错误的是( ). (A) Bessel 方程222'''()0x y xy x n y ++-=通解为()(),n n y AJ x BJ x -=+其中A, B 为任意常数; (B) n 阶Bessel 函数()x J n 的实零点关于原点是对称分布的; (C) 半奇数阶的第一类Bessel 函数都是初等函数; (D) 当0x =时,n 阶Bessel 函数()x J n 为有限值,而()x Y n 为无穷大. 4、定解问题的适定性是指解的( ). (A) 存在性、唯一性、收敛性; (B) 存在性、稳定性、收敛性; (C) 存在性、唯一性、稳定性; (D)唯一性、稳定性、收敛性. 5、设3 R Ω?为有界区域,边界Γ为光滑的封闭曲面,则下面说法错误的是( ). (A) 若2 ()()u C C ∈ΩΩ,则狄氏问题20,|u u f Γ??=Ω?=?在内 的解是唯一确定的; (B) 若2 1() ()u C C ∈ΩΩ,则2u u dV dS n Ω Γ??=?????? ; (C) 牛曼内问题20,|1u u n Γ??=Ω? ??=???在内有解且不唯一;

数理方程与特殊函数教学大纲

数理方程与特殊函数 课程简介:本课程为电子与通信工程类专业的基础课。学分2,周学时2。本课程由“数学物理方程”与“特殊函数”两大部分组成。“数学物理方程”讲授物理学的一个分支——数学与物理所涉及的偏微分方程。主要介绍物理学中常见的三类偏微分方程及其有关的定解问题和这些问题的几种常用解法。“特殊函数”讲授贝塞尔函数与勒让德多项式,以及如何利用这两种特殊函数来解决数学物理方程的一些定解问题的过程。 教学目的与基本要求:通过数理方程与特殊函数课程的学习,使学生系统的掌握工程数学中数学物理方法的知识和技能,培养学生分析问题解决问题的能力,为后续课程的学习及研究奠定重要的数学基础。本课程的先修课程为:高等数学,复变函数,积分变换 主要教学方法:课堂讲授与课外习题。 第零章预备知识(4学时) 复习先修课程中相关的一些内容,主要包括:二阶线性常微分方程解的结构以及常系数情形解的求法;积分学中的一些重要公式和技巧;傅里叶(Fourier)分析;解析函数的极点及其留数;拉普拉斯(Laplace)变换。 第一章典型方程和定解条件的推导(4学时) 在讨论数学物理方程的求解之前,应建立描述某种物理过程的微分方程,再把一个特定物理现象所具有的具体条件用数学形式表达出来。本章学习的重点和难点是了解数学物

理方程的推导及定解问题的确定过程,学会推导一些简单物理过程的微分方程并能确定某些具体物理现象的定解条件。 第一节基本方程的建立 通过几个不同的物理模型,推导出数学物理方程中的三种典型偏微分方程:波动方程、电磁场方程和热传导方程。 第二节初始条件与边界条件 方程决定了物理规律的数学形式,但具体的物理问题所具有的特定条件也应用数学形式表达出来。用以说明某一具体物理现象的初始状态的条件称为初始条件,用以说明其边界上约束情况的条件称为边界条件。 第三节定解问题的提法 由于每一个物理过程都处在特定的条件之下,所以我们要求出偏微分方程适合某些特定条件的解。初始条件和边界条件都称为定解条件。把某个偏微分方程和相应的定解条件结合在一起,就构成了一个定解问题。 本章习题:3-5题 第二章分离变量法(8学时) 本章主要介绍在求解偏微分方程的定解问题时,如何设法把它们转化为常微分方程来求解。本章学习的重点和难点是掌握分离变量法这一“化繁为简”的典型方法的实质,学会求解常见的定解问题。

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方程有感

书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0 )(2 )(''=+t T a t T λ ,3,2,1 2)(==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞ =+=

最新数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1+=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

数学物理方程与特殊函数-模拟试题及参考答案(1)

《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程2 2 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???????==??=??=+=-).()(002 22 2 2x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

数学物理方程-第五章格林函数法

第五章 格林函数法 在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问 题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用. §5?1 格林公式 在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广. 设Ω为3R 中的区域,?Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在 Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实 函数全体. 如()10()()()()u C C C C ∈Ω?ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去. 如将(,,)P x y z 简记为P ,(,,)P x y z x ??简记为P x ??或x P 等等. 设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式 ( )P Q R dV Pdydz Qdydx Rdxdy x y z Ω ?Ω ???++=++???????? (1.1) 或者 ( )(cos cos cos )P Q R dV P Q R ds x y z αβγΩ ?Ω ???++=++???????? (1.2) 如果引入哈米尔顿(Hamilton )算子: ( ,,)x y z ??? ?=???,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式 ???????=??Ω Ω ds n F dv F (1.3) 其中(cos ,cos ,cos )n αβγ= 为?Ω的单位外法向量. 注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R = 时,其运算定义为 (,,)(,,) , F P Q R x y z P Q R x y z ??? ??=???????=++???

数理方程与特殊函数试卷 3套

2010年6月 一、填空题(20分) 1、微分方程的固有值为 ____________,固有函数为____________。 2、勒让德多项式的母函数为________________________。 3、一长为的均匀直金属杆,x=0端固定,x=l端自由,则纵向震动过程中的边界条件为 ________________________。 4、二阶线性偏微分方程属于____________型方程。 5、微分方程,在条件下的拉氏变换表 达式为____________________________________。 6、埃尔米特多项式的微分表达式为____________________________________。 7、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 8、定解问题的解为________________________。 9、在第一类奇次边界条件下=____________。 10、=____________,=____________。 二、证明题(10分) 三、建立数学物理方程(10分) 一长为l、截面积为s、密度为、比热容为的均匀细杆,一端保持零度,另一端有恒定的热量q流入,初始温度为试建立热传导方程,写出定界条件(要有必要的步骤)。四、写出下列定解问题的解(35分) 1、

2、 3、 五、将函数展开为广义傅里叶级数(25分) 1、设是的正零点,试将函数展开成的傅里叶贝塞尔级数。 2将函数按埃尔米特多项式展开成级数。 2009年6月 一、填空题(20分) 11、微分方程的固有值为 ____________,固有函数为____________。 12、勒让德多项式的母函数为________________________。 13、一长为的均匀直金属杆,x=0端温度为零,x=l端有恒定的热流流出,则热传导过 程中的边界条件为________________________。 14、二阶线性偏微分方程属于____________型方程。 15、微分方程,在条件下,其拉氏 变换表达式为____________________________________。 16、埃尔米特多项式的微分表达式为____________________________________。 17、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 18、定解问题的解为 ________________________。 19、在第一类奇次边界条件下=____________。 20、=____________,=____________。 二、证明题(10分)

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入, 设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出 其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分): ???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?=

6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数理方程试卷A

一. (10分)填空题 1.初始位移为)(x ?,初始速度为)(x ψ的无界弦的自由振动可表述为定解问题: ?????==>+∞<<∞-===).(),(0,,00 2 x u x u t x u a u t t t xx tt ψ? 2.为使定解问题 ???? ???=======0 ,000 02t l x x x xx t u u u u u a u (0u 为常数) 中的边界条件齐次化,而设)(),(),(x w t x v t x u +=,则可选=)(x w x u 0 3.方程0=xy u 的通解为)()(),(y G x F y x u += 4.只有初始条件而无边界条件的定解问题,称为柯西问题. 5.方程y x u xy 2=满足条件1cos ),0(,)0,(2-==y y u x x u 的特解为 1cos 6 1),(22 3-++= y x y x y x u 二. (10分)判断方程 02=+yy xx u y u 的类型,并化成标准形式. 解:因为)0(02≠<-=?y y ,所以除x 轴外方程处处是椭圆型的。 ……2分 它的特征方程是 022 =+??? ??y dx dy …… 5分

即iy dx dy ±= 特征线为 21ln ,ln c ix y c ix y =+=- 作变换:???==x y ηξln …… 7分 求偏导数 ????? ???? ??-====)(1 1 2ξξξξ ηηηu u y u u y u u u u u yy y xx x 将二阶偏导数代入原方程,便可得到标准形式 ξηηξξu u u =+ …… 10分 三. (10分)求解初值问题 ?????==>+∞<<∞-===x u x u t x u u t t t xx tt cos ,0,,4020 解:x x x x a cos )(,)(,22===ψ? 利用达朗贝尔公式 ?+-+-++=at x at x d a at x at x t x u ξξψ??)(21)]()([21),( … …5分 得

数学物理方程与特殊函数期末考试试题卷子2011

XXXXX 大学研究生试卷 (考试时间: 至 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2011年 12 月 28 日 成绩 1.化方程2220xx xy yy x y x u xyu y u xu yu ++++=为标准形. (10分) 2. 把定解问题:(10分) 212(0)(0,)(),(,)() (,0)(),(,0)(),(0) tt xx x x t u a u x l u t h t u l t h t u x x u x x x l ?ψ?=<

3.有一带状的均匀薄板(0x a ≤≤,0y ≤<+∞), 边界0y =上的温度为0u ,其余边界上的温度保持零度,并且当y →+∞时,温度极限为零. 求解板的稳定温度分布. (用分离 变量法求解).(20分) 4.求下面的定解问题:(10分) 090,(,0) 0,sin tt xx t t t u u x R t u u x ==-=∈>??? ==??. 第2页

5.求()2 1,1 (),()0,1 x x F f x f x x ?-≤?=?>??,其中()F ?表示Fourior 变换.(10分) 6.求()2(),()sin(),03 L f t f t t t π =-≥,其中()L ?为Laplace 变换.(10分) 第3页 学 号 姓 名 学 院 教师 座位号 ……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………

相关文档
最新文档