螺杆压缩机振动原因分析

螺杆压缩机振动原因分析
螺杆压缩机振动原因分析

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

螺杆压缩机之振动分析

螺杆压缩机的工作原理 1.什么叫螺杆空压机: 螺杆压缩机是一种工作容积作回转运动的容积式气体压缩机械。气体的压缩依靠容积的变化来实现,而容积的变化又是借助压缩机的一对转子在机壳内作回转运动来达到。 螺杆压缩机的基本结构: 在压缩机的机体中,平行地配置着一对相互啮合的螺旋形转子,通常把节圆外具有凸齿的转子,称为阳转子或阳螺杆。把节圆内具有凹齿的转子,称为阴转子或阴转子,一般阳转子与原动机连接,由阳转子带动阴转子转动转子上的最后一对轴承实现轴向定位,并承受压缩机中的轴向力。转子两端的圆柱滚子轴承使转子实现径向定位,并承受压缩机中的径向力。在压缩机机体的两端,分别开设一定形状和大小的孔口。一个供吸气用,称为进气口;另一个供排气用,称作排气口。 2.螺杆空压机工作原理:螺杆压缩机的工作循环可分为进气,压缩和排气三个过程。随着转子旋转,每对相互啮合的齿相继完成相同的工作循环。 1)进气过程:转子转动时,阴阳转子的齿沟空间在转至进气端壁开口时,其空 间最大,此时转子齿沟空间与进气口的相通,因在排气时齿沟的气体被完全排出,排气完成时,齿沟处于真空状态,当转至进气口时,外界气体即被吸入,沿轴向进入阴阳转子的齿沟内。当气体充满了整个齿沟时,转子进气侧端面转离机壳进气口,在齿沟的气体即被封闭。 2)压缩过程:阴阳转子在吸气结束时,其阴阳转子齿尖会与机壳封闭,此时气 体在齿沟内不再外流。其啮合面逐渐向排气端移动。啮合面与排气口之间的齿沟空间渐渐件小,齿沟内的气体被压缩压力提高。 3)排气过程:当转子的啮合端面转到与机壳排气口相通时,被压缩的气体开始 排出,直至齿尖与齿沟的啮合面移至排气端面,此时阴阳转子的啮合面与机壳排气口的齿沟空间为0,即完成排气过程,在此同时转子的啮合面与机壳进气口之间的齿沟长度又达到最长,进气过程又再进行。

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

水轮发电机组振动危害性分析及预防

水轮发电机组振动危害性分析及预防 水轮发电机组在运行中产生振动现象是不可避免的,这是由多种因素引发机组振荡的综合效应。在设备运行生产管理工作中,应注意加强对机组振动现象及其危害性的分析与预防。 1 水轮发电机组振动类型 1.1 机械类振动。由于机械部分的平衡力引起的振动称为机械类振动。例如,转动部分重量不平衡、轴线偏差、摆动过大等。其主要特点是振动频率与机组转速一致,有时振幅与转速成正比。 1.2 电气类振动。由于电气方面的原因造成发电机磁场不平衡而引起的振动称为电气振动。例如,发电机在三相电流不对称情况下运行磁场不均匀,发电机短路故障等。其主要特点是振幅与励磁电流大小成正比。 1.3 水施类振动。由于某些原因引起水轮机蜗壳内受力不平衡而造成的振动称为水施类振动。例如,尾水涡带、叶片水卡门涡列、转轮圆圈边间隙不均匀、转轮气蚀等。其特点是振幅与导叶开度有关,往往开度愈大,振幅愈大。 2 水轮机组振动所带来的危害 2.1 引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至断裂损坏而报废。 2.2 使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接部分的振动,促使它们加速损坏。 2.3 加速机组转动部分相互磨损程度。如大轴剧烈摆动可使轴与轴瓦

的温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使电刷火花不断增大。 2.4 尾水管中形成的涡流脉动压力可使尾水管壁产生裂缝,严重时可使整体尾水设施遭到破坏。 2.5 水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂房遭到不同程度的损坏。 3 引起振动的原因及预防措施 3.1 机械方面的因素有:①由于主轴的弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组几何线中心点不准引起空载低速时的振动;②因转轮等旋转件与静止件相碰而引起的振动; ③转动部分重量不平衡引起的振动,且随转速上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换浆叶后更容易发生。 对机械原因引起的振动应采取的措施:通过动平衡、调整轴线或调整轴瓦间隙等来提高相对同心度和精密度。 3.2 水施方面的因素有:①尾水管中水流涡带所引起的压力脉动诱发的水轮机振动,严重的还引起厂房共振;②卡门涡列引起的振动,当水流流经非流线型障碍物时,在其后面尾流中分裂一系列变态旋涡,即所谓卡门涡列,这种涡列交替地作顺时针或反时针方向旋转,在其不断旋转与消失过程中,会在垂直于主流方向发生交变力导致的叶片振动,严重时会发出响声,甚至使叶片根部振裂;③转轮止漏间隙不均匀引起的振动,间隙大处其流速较小而压力较大,其振频与止漏环

(完整word版)汽轮机异常振动分析及处理

汽轮机异常振动分析及处理 一、汽轮机设备概述 国华宝电汽轮机为上海汽轮机有限公司制造的超临界、一次中间再热、两缸两排汽、单轴、直接空冷凝汽式汽轮机,型号为NZK600-24.2/566/566。具有较高的效率和变负荷适应性,采用数字式电液调节(DEH)系统,可以采用定压和定—滑—定任何一种运行方式。定—滑—定运行时,滑压运行范围40~90%BMCR。本机设有7段非调整式抽汽向三台高压加热器、除氧器、三台低压加热器组成的回热系统及辅助蒸汽系统供汽。 高中压转子、低压转子为无中心孔合金钢整锻转子,高中压转子和低压转子之间装有刚性法兰联轴器,低压转子和发电机转子通过联轴器刚性联接。整个轴系轴向位置是靠高压转子前端的推力盘来定位的,由此构成了机组动静之间的相对死点。整个轴系由 7个支持轴承支撑,高中压缸、低压缸和碳刷共五个支持轴承为四瓦块可倾瓦,发电机两个轴承为可倾瓦端盖式轴承,推力轴承安装在前轴承箱内。推力轴承采用LEG轴承,工作瓦块和定位瓦块各八块。盘车装置安装在发电机与低压缸之间,为链条、蜗轮蜗杆、齿轮复合减速摆动啮合低速盘车装置,盘车转速为2.38r/min。 运行中为提高机组真空严密性,将机组轴封密封蒸汽压力由设计28kp提高至 40kp—60kp(以轴封漏汽量而定)。虽然提高了运行经济性但也增大了轴封漏汽量,可能会使润滑油带水并影响到机组胀差和振动,现为试验中,无法得出准确结论。#1机组大修后启机发生过因转子质量不平衡引起多瓦振动,经调整平衡块后得以改善。正常停机时出现过因胀差控制不当造成多瓦振动,也可能和滑销系统卡涩有一定关系。#2机组正常运行中(无负荷变化)偶尔会出现单各瓦振动上升现象,不做运行调整,振动达到高点之后迅速回落,一段时间后又会恢复正常,至今未查明原因。机组采用顺序阀运行时,在高低负荷变换时会发生#1瓦振动短时增大现象,暂定为高压调阀开关时汽流激振引起的振动。机组异常振动是经常发生又十分复杂的故障,要迅速做出判断处理,才能将危害降到最低。 二、机组异常振动原因 1、机组运行中心不正引起振动 (1)汽轮机启动时,如暖机时间不够,升速或加负荷过快,将引起汽缸受热膨胀不均匀,或滑销系统有卡涩,使汽缸不能自由膨胀,均会造成汽缸对转子发生相对偏斜,机组出现不正常的位移,产生振动。 (2)机组运行中,若真空下降,将使低压缸排汽温度升高,后轴承座受热上抬,因而破坏机组的中心,引起振动。

转机振动原因分析

转机振动原因分析文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

GB振动标准: 1、额定转速750r/min以下的转机,轴承振动值不超过0.12mm 2、额定转速1000r/min的转机,轴承振动值不超过0.10mm 3、额定转速1500r/min的转机,轴承振动值不超过0.085mm 4、额定转速3000r/min的转机,轴承振动值不超过0.05mm。 转机振动原因分析: 转机振动原因通常有四种:不平衡、共振、不对中和机械故障。 1.转子不平衡 它是最常见的振动原因,如转子制造不良、转子叶片上异物的堆积、电机转子平衡不良等。不平衡造成较大振动的另一原因是设备底座刚度较差或发生共振。键和键槽也是导致不平衡振动的另一原因。 转轴热弯曲是引起转子不平衡的另一种现象。一般热弯曲引起的不平衡振动随负荷变化而略有变化。但如果设备基础与其转动发生共振,则极有可能发生剧烈振动。因此,预防的关键,一是转轴的材质必须满足要求;二是转机机座必须坚实可靠。 2.共振 系统中的共振频率取决于其自由度数量;共振频率则由质量、刚度和衰减系数决定。转机支承共振频率应远离任何激振频率。对于新装置,可向制造厂咨询所需地基刚度以达到此目的。对于共振频率与转速相同的现有装置有两种选择—最大限度地减少激振力或改变共振频率。后者可通过增加系统刚度和质量来实现。处理共振问题时,最好改变共振频率。 共振也可能是由于转子与定子系统组件不对中或机械和电气故障而引起。

转速下谐波的共振频率也易造成故障。它们也可能由于不对中或机械和电气故障而诱发。然而与相同频率下的问题相比,这些共振造成的问题并不常见。 3.不对中 它可能在转速和两倍转速下造成径向和轴向的激振力。但是绝不能因为没有上述现象中的一种或两种而断定不存在对中问题。同时应考虑机组的热膨胀,一副联轴节之间要留有1.5-3mm间隙。 4.机械故障 质量低劣的联轴器、轴承和润滑不良以及支座不坚固,都是产生不同频率和幅值激振力的原因。 (1)质量低劣的联轴器主要表现在铸造质量差、连接螺孔偏斜、毛刺,橡皮垫圈很快损坏,使联轴器由软连接变为硬连接,产生振动、磨损。 (2)径向轴承的更换,一般是简单更换。为了避振换新轴承时,应对轴承外环作接触涂色检查,必要时处理轴承座。 (3)轴向波动是造成转机,包括联轴器、轴承在内的另一振动问题的起因。一般转机的轴向推力靠止推轴承约束。但是,如果轴向对中不良,且转子轴向发生磨蹭,则可能会产生剧烈的轴向振动。 (4)支座软弱即四个支脚不在同一平面上。转机用螺栓紧固在这四点时,如果各轴承不对中,必然造成剧烈振动。因此转机安装时,应该先用适当力矩对称拧紧几个紧固点。然后每次松开一个紧固点,并用千分表测量该点垂直变形量。如果垂直变形量大 于.05mm,应在此支脚下加垫片,其厚度等于变形量。重复以上过程,直至松开时每个点垂直变形量小于0.05mm为止。

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

关于汽轮机振动分析及处理

关于汽轮机振动分析及处理 火力发电是我们公司主要安装的机组为了保证机组运行稳定,我们安装必须按照图纸施工。汽轮机作为发电系统的重要组成部分,其故障率的减少对于整个系统都有着重要的意义。汽轮机异常振动是发电厂常见故障中比较难确定故障原因的一种故障,针对这样的情况,加强汽轮机异常振动分析,为安装部门提供基础分析就显得极为必要。 一、汽轮机异常振动原因分析。 由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除。 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 (一)汽流激振现象与故障排除(安装不需考虑)。 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50/h 的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除。 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。 与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 (三)摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩

水轮发电机振动原因分析及处理

水轮发电机振动原因分析及处理 响洪甸水电站装有4台HL-211-LJ-200水轮发电机,每台机的容量为10 MW,于1958—1961年分批投入生产。 3号水轮发电机组于1960年7月投产,1987年底进行定、转子绝缘的更新改造,更换了定子铁芯,并对定位筋位置进行了修正。 1 振动概况 1991-05-16,运行人员发现3号机下导机架靠4号机方向的一条腿松动。检查后,用现场加焊补强的方法作了暂时处理。在经历了前所未有的高水头运行后,运行及检修人员发现该机振动加剧,再次检查发现,下机架的4条腿与基础之间均存在相互蠕动现象。 1991-10-25,用不同手段在不同工况下对3号机振动情况进行了测量。测量结果表明,3号机的水平振动和垂直振动在大部分工况下都已达到甚至超过规程规定的允许范围(水平0.07 mm,垂直0.03 mm),特别是转轮压水调相工况时,水平振动达到0.085 mm,垂直振动达0.065 mm。 1991-11-05,对电机气隙进行了测量。通过对28个磁极气隙测量,发现靠下游侧至2号机侧的半圆气隙普遍偏大,一般在12 mm左右,而另半圆的气隙则在8 mm左右,这个趋势和励磁机的气隙变化基本一致,说明3号发电机的某一部分由于某种原因发生了位移,位移幅度可能在2 mm左右。 2 振动原因分析 1992年9月下旬,对3号机组进行了较全面的振动和摆度测试,并做了频谱分析,得到了幅值和频率等实测数据。通过研究分析,得出机组振动的原因如下。 (1) 从上机架的垂直振动测量分析出机组在各种测试工况下都存在着明显的8倍转频的振动。这表明镜板与推力头之间的环氧玻璃垫板有气蚀磨损、镜板与推力头结合面有不平缺陷。由于镜板与推力头的连接螺栓是8个,故使镜板在运转中呈现8个波浪式变形。由于推力瓦块数是8块,因此镜板旋转时会受到8倍转频的轴向振动力,并且镜板联接螺栓与推力瓦块数相等,使得每块瓦对镜板产生的轴向振动力是同步的,从而加剧了振动力。久而久之,造成垫板严重气蚀磨损,并使联接螺栓产生疲劳,严重时发生断裂。 镜板与推力头结合面的不平缺陷,加剧了垫板的气蚀磨损,垫板的磨损使机组的振动变大,这是3号机振动增大的主要原因(在机组大修时检查证明了垫板确实严重气蚀)。 (2) 水导摆度在各种工况下都较大,达到0.45~0.51 mm,超出了允许值,表明橡胶水导瓦间隙变大,需更换或调整。 (3) 上导摆度在2.5 MW负荷工况下达到0.48 mm,超出了允许值;在7.5 MW 大负荷工况下仅为0.14 mm。 (4) 变速试验中,上机架径向振动的转频幅值几乎相同,小于0.04 mm,表明转子机械平衡性能良好,无需再做平衡试验。

汽轮机异常振动分析与排除 贾峰

汽轮机异常振动分析与排除贾峰 发表时间:2018-11-18T20:20:10.497Z 来源:《防护工程》2018年第20期作者:贾峰王舰[导读] 在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。 抚顺石化工程建设有限公司第七分公司辽宁抚顺 113008 摘要:在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。为确保供电合理,电厂的维修机构都会在规定的时间中对设备开展详细的分析和维护。然而汽轮机作为发电体系中非常关键的一个构成要素,它的问题率的降低对于综合体系的发展来讲,意义非常多关键。它的不正常振动是目前来讲,非常难以应对的一个问题。对于这种状态,强化对 其不正常振动的探索,为维修机构提供必需的分析就变得非常的关键。 关键词:汽轮机;异常振动成因;排除措施 1汽轮机异常振动的原因 1.1汽流激振现象造成的异常振动 当大型汽轮机在运行过程中出现异常振动问题时,首先应当分析是否是由汽流激振造成的故障问题。由于大型汽轮机的末级较长,当汽轮机在运行时极易出现叶片膨胀造成汽流流道紊乱的情况,从而造成汽流激振现象。汽流激振现象具有两个较为明显的特征:第一,当汽轮机出现汽流激振现象会出现较大值的低频分量;第二,运行参数会突然增大影响汽轮机的振动情况。在判断汽轮机是否出现汽流激振现象时,需要通过大量汽轮机振动记录信息进行判断,通过对汽轮机长时间的振动数据进行分析,可以有效判断汽轮机的汽流激振现象。 1.2转子热变形造成的异常振动 汽轮机在运行过程中会出现转子热变形造成的异常振动情况,需要工作人员对转子热变形的成因进行分析,尽可能避免汽轮机的异常振动情况。造成汽轮机转子热变形的原因有很多,主要原因包括:汽轮机运行引发转子热度过热、汽轮机气缸出现进水情况、气缸中进入冷空气与气缸造成摩擦、汽轮机中心孔进油、汽轮机发电机转子冷却温度出现差异,以上原因均能造成汽轮机转子热变形情况的发生。当转子由于温度过热出现变形问题时,会直接造成汽轮机的异常振动,由于转子热变形情况可能是临时危害,也可能是永久危害,需要工作人员对转子热变形的危害情况进行判断,避免转子热变形对汽轮机的正常运行造成过于严重的影响。 1.3摩擦造成的异常振动 汽轮机由于长时间运行,对各个零部件均会造成不同程度的摩擦损伤,当零部件的摩擦损害过于严重时,则会造成汽轮机的异常振动问题。汽轮机摩擦出现异常振动的特征如下:第一,转子热变形会对汽轮机造成不平衡力,使汽轮机的振动信号受到影响,会出现少量分频、倍频以及高频分量等现象;第二,当汽轮机发生摩擦时,汽轮机的振动会出现波动,波动的持续时间较长。而汽轮机摩擦过于严重时,汽轮机的振动幅度会大幅增加;第三,汽轮机在延缓运行过程中,下降速度超过临界点时,汽轮机的振动幅度会增大。当汽轮机停止转动后,汽轮机的测量轴会出现明显晃动。简而言之,汽轮机由于摩擦出现异常振动是由于摩擦致使汽轮机温度升高,局部温度过热造成转子热变形,产生不平衡力造成的异常振动。 2汽轮机组常见异常振动排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 2.3摩擦振动的特征原因与排除 一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。

风机振动原因分析

1 轴承座振动 1.1 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 1.2 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;

螺杆压缩机工作原理及结构比较

螺杆压缩机工作原理及结构比较 螺杆式制冷压缩机作为回转式制冷压缩机的一种,同时具有活塞式和动力式(速度式)两者的特点。 1、与往复活塞式制冷压缩机相比,螺杆式制冷压缩机具有转速高,重量轻,体积小,占地面积小以及排气脉动低等一系列优点。 2、螺杆式制冷压缩机没有往复质量惯性力,动力平衡性能好,运转平稳,机座振动小,基础可作得较小。 3、螺杆式制冷压缩机结构简单,机件数量少,没有像气阀、活塞环等易损件,它的主要摩擦件如转子、轴承等,强度和耐磨程度都比较高,而且润滑条件良好,因而机加工量少,材料消耗低,运行周期长,使用比较可靠,维修简单,有利于实现操纵自动化。 4、与速度式压缩机相比,螺杆式压缩机具有强制输气的特点,即排气量几乎不受排气压力的影响,在小排气量时不发生喘振现象,在宽广的工况范围内,仍可保持较高的效率。 5、采用了滑阀调节,可实现能量无级调节。 6、螺杆压缩机对进液不敏感,可以采用喷油冷却,故在相同的压力比下,排温比活塞式低得多,因此单级压力比高。 7、没有余隙容积,因而容积效率高。 螺杆压缩机的工作原理和结构: 1、吸气过程: 螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式空压机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结

束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。螺杆式空压机维修提醒当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。 2、封闭及输送过程: 主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。 3、压缩及喷油过程: 在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。 4、排气过程: 当螺杆空压机维修中转子的啮合端面转到与机壳排气相通时,(此时压缩气体之压力最高)被压缩之气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口这齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到最长,其吸气过程又在进行。 螺杆压缩机分为:开启式、半封闭式、全封闭式 一、全封闭式螺杆压缩机: 机体采用高质量、低孔隙率的铸铁结构,热变形小;机体采用双层壁结构,内含排气通道,强度高,降噪效果好;机体内外受力基本平衡,无开启式、半封闭承受高压的风险;外壳为钢质结构,强度高,外形美观,重量较轻。采用立式结构,压缩机占地面积小,有利于冷水机组多机头布置;下轴承浸入油槽中,轴承润滑良好;转子轴向力较半封闭、开启式减少50%(排气侧电机轴的

螺杆压缩机振动原因分析

螺杆压缩机振动原因分析 1前言 螺杆压缩机是一种容积型、回转式压缩机,它具有许多活塞压缩机无法比拟的优点。近年来,随着转子齿型和其它结构的不断改进,各方面性能在逐步提高,机型种类也在不断增多,容量范围和使用范围也越来越大,特别是在中型制冷装置上,是取代活塞压缩机具有发展前景的一种机型。但是,由于螺杆压缩机作为一种新型的压缩机,在检修维护保养方面,还缺乏成熟的经验与资料。笔者结合这几年来在螺杆机的维护保养方面的工作经验和实践,就螺杆制冷压缩机在使用过程发生的振动问题,进行分析,找出解决振动的方法,从一个侧面为搞好螺杆压缩机的维护保养进行了探讨。 2问题的提出 该螺杆压缩机组用于江苏金浦集团钟山化工有限公司冷冻装置,为双螺杆式,机组型号为LG20A200Z,由武汉冷冻机厂生产制造,主要技术指标见表1。 螺杆机自投入运行以来一直运行平稳,但前一段时间,压缩机出现振动情况,而且随着时间推移,机组振动的幅度也越来越大,不但严重影响到机组的正常运行,而且还多次由于振动造成有关管路脱焊,从而造成跑氨事故的发生,已直接危及到整套装置的正常运行和操作人员的人身安全,螺杆压缩机的振动问题已到了非解决不可的地步。 3原因分析 3.1分析有可能产生振动的原因 为了使分析更有针对性,我们对机组的振动情况进行了检测,测点(主要分布在轴承处)分布如图1所示。检测结果显示,机组③④两测点处的振动较大,且振幅从大到小的排列次序为③④②①,这充分说明机组的振动是由螺杆机头引起的。

在详细查阅了有关资料及产品说明书,掌握了机组的工作原理及其结构的基础上,对机组的振动原因进行了全面的分析和探讨,认为引起螺杆机组振动的原因有以下几种可能: (1)机组操作不当,吸入过量的润滑油和制冷剂液体; (2)压缩机与电机轴线错位偏心; (3)压缩机地脚螺栓松动或螺帽松动; (4)机组与管道的固有频率相同而产生振动; (5)压缩机与电机联轴节由于敲击变形,传动芯子磨损等因素,联轴器组合件产生偏重,静平衡被破坏; (6)机组内部的阴阳转子在运转中受到了不平衡力的作用。 3.2运用排除法,找出振动的真正原因 (1)对机组进行全面检查后,按照正常开车程序,重新起动机组,调整各运行参数(油压、油温、进气压力、排气压力、电流等)至正常范围; (2)重新校正压缩机与电机同轴度到规定的范围(端面跳动0.08mm,径向跳动0.08mm) ; (3)检查地脚螺栓、螺母有无松动,并紧固好; (4)改变机组有关工艺管线支承点位置,把关键部位的硬管连接改为波纹管连接和不锈钢软管连接,消除共振点。 综上所述,每采取一项相应对策和措施后,都开机试运转,检查机组振动情况,发现机组振动情况暂时虽有所好转,但振动还没有从根本上消除,这说明以上4个方面的原因不是机组振动的主要原因。 (5)检查联轴器,发现有敲击痕,并变形很大;拆卸联轴器,联轴器橡胶传动芯子磨损严重。由此我们推断,联轴器可能产生偏重,静平衡被破坏。再经过多次盘动机组,转动后停止的位置基本维持不变,又从另外一个侧面证明以上的推断。

汽轮机振动大的原因分析及其解决办法

汽轮机振动大的原因分析及其解决办法 发表时间:2017-09-06T10:38:48.377Z 来源:《电力设备》2017年第14期作者:唐昊 [导读] 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。 (阜新金山煤矸石热电有限公司辽宁省阜新市 123000) 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 前言 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 1.机组异常振动原因 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长。关键部位长期磨损 等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 2.汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振转子热变形、摩擦振动等。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个凹谷,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动[1]。 2.3摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在削顶+现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。 3.如何查找汽轮机的异常震动 生产中经常遇到瓦盖振、轴振的异常变化,引起振动异常的原因很多。根据振动产生的集中原因,在查找振动主要来源时要注意下面几个要素:振动的频率是 1X,2X等。振动的相位是否有变化及相邻轴承相位的关系。振动的稳定性如何(指随转速、负荷、温度、励磁电流、时间、等的变化是否变化)。例如汽轮机转子质量不平衡会有下列现象:升速时振动与转速的二次方成正比,转速高振动大。特别过临界时振动比以往大得多。振动的频率主要是1X。振动的相位一般不变化及相邻轴承相位出现同或反相,振动的稳定性好(在振动没有引起磨擦的情况下),且重复性好,根据振动特征与日常检测维修记录多方面分析,找出故障原因最终排除。另外对于一些原本设计上有通病的机组,要做好心理准备并牢记其故障点,一旦出现情况首先要检查设计缺陷部件。 4.在振动监测方面应做好的工作 目前200M W 及以上的机组大都装设了轴系监控装置,对振动实施在线监控,给振动监测工作创造了良好的条件。其他中小型机组有的虽装有振动监测表,但准确度较差,要靠携带型振动表定期测试核对,有的机组仅靠推带振动表定期测试记录。对中小型机组的振动监

相关文档
最新文档