植物水分含量测定

植物水分含量测定
植物水分含量测定

学生姓名何茂辉学号20062501302

专业生物科学年级、班级06科三

课程名称植物生理学实验实验项目

实验类型□验证□设计□综合实验时间08 年10 月28 日实验指导老师冷佳奕、黄胜琴实验评分

植物水分含量测定

实验材料:大叶紫薇叶片、对叶榕叶片

实验操作:

实验结果:

植物器官鲜重含水量

大叶紫薇叶片72.62%

对叶榕叶片73.37%

思考题:

相对含水量=(鲜重-干重)/鲜重

绝对含水量=(鲜重-干重)/干重

测定植物组织含水量的常规方法流程:

①测定植物组织样品的鲜重

②测定植物组织样品的干重

③将数据代入所求含水量的公式

学生姓名 何茂辉 学 号 20062501302 专 业 生物科学 年级、班级 06科三 课程名称 植物生理学实验 实验项目

实验类型 □验证 □设计 □综合 实验时间 08 年 10 月 28 日

实验指导老师 冷佳奕、黄胜琴 实验评分

植物组织中可溶性糖含量的测定(蒽酮法)

实验材料:苹果果实、葡萄糖母液、蒽酮试剂 实验操作:

绘制标准曲线:

分别取0—200μg/ml 的葡萄糖,测定OD 625

葡萄糖浓度(μg/ml) 0 25

75

100 150 200 OD 625 0 0.15

0.385

0.461

0.797

0.978

实验结果:

曲线方程y = 0.005x

苹果提取液OD625=0.224

可知,苹果提取液中葡萄糖含量为44.8μg/ml

可溶性总糖(﹪)= 样品糖含量×稀释倍数×100/鲜重×106

=44.8×500×100/1×106

=2.24﹪

思考题:

为什么要用烘至恒重的葡萄糖作为标准液?

因为如果葡萄糖含有水分就会影响实验的准确性。

提取液样品与标准液分开会影响结果,因为反应是一直在进行的,随着时间的推移,颜色会发生变化,影响比色结果。

所用器皿如果不洁净,残留的物质会影响最终结果。

蒽酮与糖反应过程中生成物颜色会随着反应时间变化。

证实:放置一段时间后,再次比色,如果结果不同,则会随着反应时间变化。

华南师范大学实验报告

学生姓名何茂辉学号20062501302

专业生物科学年级、班级06科三

课程名称植物生理学实验实验项目

实验类型□验证□设计□综合实验时间08 年10 月28 日

实验指导老师冷佳奕、黄胜琴实验评分

α-淀粉酶活性测定

实验材料:玉米种子、糊精母液、NaAc缓冲液、I2-KI溶液

实验操作:

绘制标准曲线:

分别取0.5—4mg/ml的糊精0.5ml+5ml I2-KI溶液,测定OD560

糊精浓度(mg/ml) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

OD

5600.000 0.024 0.032 0.073 0.175 0.240 0.272 0.345 0.400

实验结果:

曲线方程y = 0.0927x

反应时间(min) OD560糊精浓度(mg/ml)

10 0.112 1.2

0 0.245 2.6

酶活力=(2.6-1.2)×20÷0.5/(5×10)=1.12(mg/g fw·min)

思考题:

研究植物组织α-淀粉酶活性的意义:通过研究了解酶活性,有助于生活生产上的运用。

影响α-淀粉酶活性提取和测定的因素:植物组织的充分研磨、适当溶剂的提取、适宜的温度与pH。

减少实验结果误差:测定标准曲线与样品OD值时应尽量同步而快速进行,所测数值尽量多次测量求平均值。

食品中水分测定方法

方法有如下几种: 1、有损检测 则是指在测量的过程中待测物粉碎或发生了化学变化,致使其不能保持原有的形状、结构或组分。在这两类中,无损检测的方法更经济、快捷,发展也最为迅速,是当今世界水分检测的主流。 2、直接干燥法 直接干燥法是指将待测样品置于烘箱中,根据ASAE标准,在130℃的温度下保持19h,测量前后的质量差,即为其水分含量。 3、红外线加热干燥法 红外线加热干燥法是利用红外线加热样品使其失水,从而达到测量水分含量的目的。代表仪器为SFY-20,测量精度为±0.1%,测量时间为1200s,测水范围为0~100%,主要影响因素为温度和加热时间。该法不能进行在线测量。 4、微波加热法 微波加热法是利用微波炉的磁控管所产生的2450MHz或915MHz的超高频率微波快速振荡粮食中的水分子,使分子相互碰撞和摩擦,进而去除粮食中的水分。代表仪器为MMA30,测量精度≤0.01%,测量时间为100s,测水范围为12%~100%,主要影响因素为微波炉的功率、谷物质量、密度和介电特性。该法不能进行在线测量。与传统干燥法相比,这两种方法缩短了测量周期、减少了能耗。其中,红外法不需加热介质,提高了热能利用率;微波法操作方便,并可同时测量多种样品,但它存在温层效应和棱角效应,造成微波的不均匀,从而影响测量精度。 5、电容法 电容法是根据水分的介电常数远远大于粮食中其它成分的介电常数,水分含量的变化势必引起电容量变化的原理,通过测量与样品中水分变化相对应的电容变化即可知粮食的水分含量。代表仪器为SCY-1A,其测量精度≤0.3%,测量时间为5s,测水范围为10%~20%,主要影响因素为温度、品种和紧实度。该法可进行在线测量。以上两种方法的测量原理非常简单,技术相对来说也比较成熟,但都存在不足之处:直接干燥法. 测量周期较长,人为干扰因素多,并且不能进行在线测量;电容法的影响因素较多,在精度和重复性等方面难以达到国家规定标准。随着人工智能和数据融合技术的发展,为数据综合处理提供了新的途径,目前也取得了一些可喜的结果。 6、介电损失角法 研究表明:谷物含水率不同,介电损失角也不同,并且呈单值分段线性关系。该方法经济实用、测量精度高,尤为适合测量高水分谷物。代表仪器为MSA6450,测量时间为0.1s,测水范围为1%~30%,主要影响因素为温度和品种。该法可进行在线测量。 7、复阻抗分离电容法 复阻抗分离电容法通过复阻抗分离电路的设计,有效消除电阻参量的影响,而只保留电容参量的变化。这种方法对提高电容式水分计测量精度具有重要意义。 8、高频阻抗法 高频阻抗法是依据在敏感频带(100k~250kHz)施以外加电场的情况下粮食水分与其交流阻抗呈现对数关系这一理论来测量其水分的。代表仪器为LSK-1,测量精度≤0.5%,测量时间为1.2s,主要影响因素为温度、品种、紧实度与电极间距。该法不能进行在线测量。

植物需要水分教案

1.1植物需要水分 【教学目标】 科学知识: 1、认识水分是植物生长所需的物质之一。 2、了解植物体的各部分都含有水分。 过程与方法: 1、能尝试用不同的方法对植物生长需要水分的数据进行记录,对现象作出合理的解释。 2、能选择合适的方式探究植物所含的水分,并能描述植物体内含有水分的探究过程和结果。 情感、态度、价值观: 1、对探究植物的需求保持好奇心和探究热情,乐于参与观察、实验等科学活动。 2、乐于尝试运用多种方法进行探究活动。 【教学重点】 1、植物生长离不开水分。 2、植物体内含有水分。 【教学难点】 1、植物生长离不开水分。 2、植物体内含有水分。 【教学准备】 若干葡萄、试管架、试管、酒精灯、吸水纸、剪刀、若干黄豆 【教学过程】 课前导入: 老师引导学生观看猫喝水的小动画,提出问题:猫为什么要喝水?学生回答。引出水是动物的基本需求之一。老师继续提出问题:那么我们生物界除了动物需要水以外,还有什么生物也需要水呢?学生回答:植物。引出新课:植物需要水分

课堂内容: 活动1:植物的生长离不开水分 老师设置一个情景:花园里,有一片用花盆栽种的红背桂,在花丛中有一个自动淋洒装置。离自动淋洒近的盆栽生长旺盛,离自动淋洒远的盆栽生长得比较矮小。接着,老师提出问题:比较两片长势不同的植物所在的环境,探究水分是造成这种差异的因素吗? 老师讲解实验的过程:1、把生长情况相同的同种植物幼苗分成两组。2、把两组幼苗分别种植在花盆里,放置在光线充足的地方。在实验期间,一组幼苗每天浇适量的水,保持土壤湿润;另一组幼苗不浇水。3、连续观察几天,测量两组幼苗的高度,记录它们的生长状况。 老师引导学生思考、分析,得出结论:充足的水分保证植物正常生长。或者说,当水分缺乏,植物的生长就会受到影响。 老师引导学生小组回忆以下情景:该实验如何观察和测量植物的生长状态?学生回答:测量两组幼苗的高度,记录它们的生长状况。老师接着提出问题:初次之外,还能通过测量其他项目吗?学生小组讨论,汇报答案。老师小结:在观察和测量植物的生长状态的第一步中,开始之前,我们要设定测量的项目。老师讲解第二、第三和第四步。(第三步的时候可以提出一个问题:用其他感官去去感受没有浇水的幼苗有什么感觉?学生回答:软绵绵) 活动2:植物体内含有水分 通过上面的学习,我们知道了植物的生长离不开水,那么植物体内是否含有水分呢?为了验证这个猜想,我们分别选取植物不同部分进行实验。 实验1:用吸水纸吸收一切开的葡萄的水分。 实验2:用吸水纸挤压已剪碎的葡萄。 实验3:用酒精灯烧装有黄豆的试管。 老师组织学生观看完实验后,小组讨论,分析,汇报答案。老师引导,汇总答案,得出结论:1.水分是植物的主要组成部分,植物的一切生命活动都是在水分的参与下进行的。2.水分能满足植物生长的需求,并使植物的枝条挺立,叶片展开,花朵饱满,果实丰硕。 课堂小结:

水分测定方法有许多种分析

水分测定方法有许多种,常采用的水份测定方法如下: 1、热干燥法: ①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。

例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2 发酵糖(NaHCO3+KHC4H4O6) △→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘 1.5小时→于干燥器冷却→称重→再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。

gb5009.3水分检测方法

标准介绍 GB 5009.3-2016 食品安全国家标准食品中水分的测定 本标准规定了食品中水分的测定方法。 本标准第一法(直接干燥法)适用于在101℃~105℃下,蔬菜、谷物及其制品、水产品、豆制品、乳制品、肉制品、卤菜制品、粮食(水分含量低于18%)、油料(水分含量低于13%)、淀粉及茶叶类等食品中水分的测定,不适用于水分含量小于0.5g/100g的样品。第二法(减压干燥法)适用于高温易分解的样品及水分较多的样品(如糖、味精等食品)中水分的测定,不适用于添加了其他原料的糖果(如奶糖、软糖等食品)中水分的测定,不适用于水分含量小于0.5g/100g 的样品(糖和味精除外)。第三法(蒸馏法)适用于含水较多又有较多挥发性成分的水果、香辛料及调味品、肉与肉制品等食品中水分的测定,不适用于水分含量小于1g/100g的样品。第四法(卡尔?费休法)适用于食品中含微量水分的测定,不适用于含有氧化剂、还原剂、碱性氧化物、氢氧化物、碳酸盐、硼酸等食品中水分的测定。卡尔?费休容量法适用于水分含量大于1.0×10-3g/100g的样品。 本标准于2017年3月1日代替GB 5009.3-2010《食品安全国家标准食品中水分的测定》、GB/T 12087-2008《淀粉水分测定烘箱法》、GB/T 18798.3-2008《固态速溶茶第3部分:水分测定》、GB/T 21305-2007《谷物及谷物制品水分的测定常规法》、GB/T 5497-1985《粮食、油料检验水分测定法》第一法105℃恒重法、GB/T 8304-2013《茶水分测定》、GB/T 12729.6-2008《香辛料

和调味品水分含量的测定(蒸馏法)》、GB/T 9695.15-2008《肉与肉制品水分含量测定》、GB/T 8858-1988《水果、蔬菜产品中干物质和水分含量的测定方法》、SN/T 0919-2000《进出口茶叶水分测定方法》。 相关公告:关于发布《食品安全国家标准食品添加剂磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单的公告 该标准文本已根据国家食品安全风险评估中心网站发布的标准勘误进行更正。点击查看勘误具体内容 标准变化 新版标准代替了GB5 0 0 9.3—2 0 1 0 《食品安全国家标准食品中水分的测定》、GB /T1 2 0 8 7—2 0 0 8《淀粉水分测定烘箱法》、GB /T1 8 7 9 8.3—2 0 0 8《固态速溶茶第3部分:水分测定》、GB /T2 1 3 0 5—2 0 0 7《谷物及谷物制品水分的测定常规法》、GB /T 5 4 9 7—1 9 8 5 《粮食、油料检验水分测定法》、GB /T8 3 0 4—2 0 1 3《茶水分测定》、GB /T1 2 7 2 9.6—2 0 0 8 《香辛料和调味品水分含量的测定(蒸馏法)》、GB /T9 6 9 5.1 5—2 0 0 8《肉与肉制品水分含量测定》、GB /T8 8 5 8—1 9 8 8《水果、蔬菜产品中干物质和水分含量的测定方法》、SN/T0 9 1 9—2 0 0 0《进出口茶叶水分测定方法》。

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

水分测定方法总结

水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法:①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。 例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有 H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2

发酵糖(NaHCO3+KHC4H4O6)△→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→ 再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。 *对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

食品中水分含量测定

食品中水分含量的测定 一、实验原理 水分的测定方法包括加热干燥法、蒸馏法、卡尔费休法、电测法、近红外分光光度法、气相色谱法、核磁共振法、干燥剂法等,其中加热干燥法是使用最普遍的方法。加热干燥法是适合大多数食品测定的常用方法。按加热方式和设备的不同,可分为常压加热干燥法、减压加热干燥法、微波加热干燥法等。常压加热干燥法根据操作温度的不同,又可分为105℃烘箱法和130℃烘箱法。 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去的物质的总量。105℃烘箱法适用于测定在95-105℃下,不含或含其他挥发性物质甚微的食品,如谷物及其制品、淀粉及其制品、调味品、水产品、都制品、乳制品、肉制品;130℃烘箱法适用于谷类作物种子水分的测定。 二、试剂与器材海砂。 恒温干燥箱,电子天平。三、实验步骤 1、干燥条件 温度:100-135℃,多用100℃±5℃。 时间:以干燥至恒重为准。105℃烘箱法,一般干燥时间为4-5h;130℃烘箱法,干燥时间为1h。 样品质量:样品干燥后的残留物一般控制在2-4g。 称样大致范围:固体、半固体样品,2-10g;液体样品,10-20。 2、样品制备 固体样品先磨碎、过筛。谷类样品过18目筛,其他食品过30-40目筛。 糖浆等浓稠样品为防止物理栅的发生,一般要加水稀释,或加入干燥助剂(如石英砂、海砂等)。糖浆稀释液的固形物质量分数应控制在20-30%,海砂量为样品质量的1-2倍。液态样品先在水浴上浓缩,然后用烘箱干燥。 面包等水分含量大于16%的谷类食品一般采用两步干燥法,即样品称量后,切成2-3mm薄片,风干15-20h后再次称重,然后磨碎、过筛,再用烘箱干燥至恒重。果蔬类样品可切成薄片或长条,按上述方法进行两步干燥,或先用50-60℃低温烘3-4h,再升温至95-105℃,继续干燥至恒重。 3、样品测定 (1)105℃烘箱法

植物需要水分教案

植物需要水分教案 Last revision date: 13 December 2020.

1.1植物需要水分 【教学目标】 科学知识: 1、认识水分是植物生长所需的物质之一。 2、了解植物体的各部分都含有水分。 过程与方法: 1、能尝试用不同的方法对植物生长需要水分的数据进行记录,对现象作出合理的解释。 2、能选择合适的方式探究植物所含的水分,并能描述植物体内含有水分的探究过程和结果。 情感、态度、价值观: 1、对探究植物的需求保持好奇心和探究热情,乐于参与观察、实验等科学活动。 2、乐于尝试运用多种方法进行探究活动。 【教学重点】 1、植物生长离不开水分。 2、植物体内含有水分。 【教学难点】 1、植物生长离不开水分。 2、植物体内含有水分。 【教学准备】 若干葡萄、试管架、试管、酒精灯、吸水纸、剪刀、若干黄豆 【教学过程】 课前导入: 老师引导学生观看猫喝水的小动画,提出问题:猫为什么要喝水学生回答。引出水是动物的基本需求之一。老师继续提出问题:那么我们生物界除了动物需要水以外,还有什么生物也需要水呢学生回答:植物。引出新课:植物需要水分

课堂内容: 活动1:植物的生长离不开水分 老师设置一个情景:花园里,有一片用花盆栽种的红背桂,在花丛中有一个自动淋洒装置。离自动淋洒近的盆栽生长旺盛,离自动淋洒远的盆栽生长得比较矮小。接着,老师提出问题:比较两片长势不同的植物所在的环境,探究水分是造成这种差异的因素吗? 老师讲解实验的过程:1、把生长情况相同的同种植物幼苗分成两组。2、把两组幼苗分别种植在花盆里,放置在光线充足的地方。在实验期间,一组幼苗每天浇适量的水,保持土壤湿润;另一组幼苗不浇水。3、连续观察几天,测量两组幼苗的高度,记录它们的生长状况。 老师引导学生思考、分析,得出结论:充足的水分保证植物正常生长。或者说,当水分缺乏,植物的生长就会受到影响。 老师引导学生小组回忆以下情景:该实验如何观察和测量植物的生长状态学生回答:测量两组幼苗的高度,记录它们的生长状况。老师接着提出问题:初次之外,还能通过测量其他项目吗学生小组讨论,汇报答案。老师小结:在观察和测量植物的生长状态的第一步中,开始之前,我们要设定测量的项目。老师讲解第二、第三和第四步。(第三步的时候可以提出一个问题:用其他感官去去感受没有浇水的幼苗有什么感觉学生回答:软绵绵) 活动2:植物体内含有水分 通过上面的学习,我们知道了植物的生长离不开水,那么植物体内是否含有水分呢?为了验证这个猜想,我们分别选取植物不同部分进行实验。 实验1:用吸水纸吸收一切开的葡萄的水分。 实验2:用吸水纸挤压已剪碎的葡萄。 实验3:用酒精灯烧装有黄豆的试管。 老师组织学生观看完实验后,小组讨论,分析,汇报答案。老师引导,汇总答案,得出结论:1.水分是植物的主要组成部分,植物的一切生命活动都是在水分的参与下进行的。2.水分能满足植物生长的需求,并使植物的枝条挺立,叶片展开,花朵饱满,果实丰硕。

灰分及全水分的测定方法

灰分及全水分的测定方法 灰分的测定GB/T212-2008 慢灰测试 1.1方法提要 称取一定量的一般分析实验煤样,放入马弗炉中,以一定的速度加热到(815±10)℃,灰化并灼烧到质量很定。以残留物的质量占煤样质量分数作为煤样的灰分。 1.2仪器设备 马弗炉、灰皿、干燥器、分析天平、耐热瓷板或石棉板。 1.3实验步骤 1.3.1 在预先灼烧至质量很定的灰皿中,称取粒度小于0.2mm的一般分析试验煤样(1±0.1)g,称准至0.0002g,均匀地摊平在灰皿中,使每平方厘米的质量不超过0.15g。 1.3.2 将灰皿送入炉温不超过100℃的马弗炉恒温区中,关上炉门留有15mm左右的缝隙。在不少于30min的时间内将炉内温度缓慢升至500℃,并在此温度下保持30分钟。继续升温至(815±10)℃,并在此温度下灼烧1h。 1.3.3 从炉中取出灰皿,放在耐热瓷板或者石棉板上,在空中冷却5分钟左右,移入干燥中冷却至室温(越20min)后称重。 1.3.4 进行检查性灼烧,温度为(815±10)℃,每次20min,直接到连续两次灼烧后的质量变化不超过0.0010g为止。以最后一次灼烧后的质量为计算依据。灰分小于15.00%时,不必进行检查性灼烧。 快速灰化法 将装有煤样的灰皿由炉外逐渐送入预先加热至(815±10)℃的马弗炉中灰化并灼烧至质量恒定。以残留物的质量占煤样质量分数作为煤样的灰分。 2.1 仪器:马弗炉、灰皿、干燥器、分析天平、耐热瓷板或石棉板。 2.2 实验步骤 2.2.1 在预先灼烧至恒定的灰皿中,称取粒度小于0.2mm的一般分析试验煤样(1±0.1)g,称准至0.0002g,均匀地摊平在灰皿中,使每平方厘米的质量不超过0.15g,将盛有煤样的灰皿预先分排放在耐热瓷板或者石棉板上。 2.2.2 将马弗炉加热到850℃,打开炉门,将方有灰皿的耐热瓷板或者石棉板缓慢地推入马弗炉中,先使第一排灰皿中的煤样灰化。待(5~10)min后煤样不再冒烟时,以每分钟不大于2cm的速度把其余各排灰皿顺序推入炉炽热部分(若煤样着火发生爆炸,试验应作废)。 2.2.3 关上炉门,并使炉门留有15mm左右的缝隙,在(815±10)℃温度下灼烧40min。 2.2.4 从炉中取出灰皿,放在空气中冷却5min左右,移入干燥器中冷却至室温(约20min)后,称重。 2.2.5 进行检查性灼烧,温度为(815±10)℃,每次20min,知道连续两次灼烧后的质量变化不超过0.0010g为止。以最后一次灼烧后的质量为计算依据。如遇检查性灼烧时结果不稳定,应改用缓慢灰化重新测定。灰分小于15%时,不必进行检查性灼烧。 2.3 结果的计算 按下式计算煤样的空气干燥机基灰分: 式中:Aad—空气干燥基灰分的质量百分数%; m—称取的一般分析试验煤样的重量,单位为克(g); m1—灼烧后残留物的质量,单位为克(g)。

水分含量的几种测定方法

水分含量的几种测定方法 水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法: ①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。

例:还原糖氨基化合物△→变色(美拉德反应) H2O↑ 还有H2C4H4O6(酒石酸) 2NaHCO3→NaC4H4O6(酒石酸钠) 2H2O 2CO2 发酵糖(NaHCO3 KHC4H4O6)△→H2O CO2 NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘 1.5小时→于干燥器冷却→称重→再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。 *对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。 *对于液体与半固体样品,要在称量皿中加入海砂,使样品疏松,扩大蒸发的接触面,并且用一个玻璃棒作

植物需要水分教案修订版

植物需要水分教案集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

1.1植物需要水分 【教学目标】 科学知识: 1、认识水分是植物生长所需的物质之一。 2、了解植物体的各部分都含有水分。 过程与方法: 1、能尝试用不同的方法对植物生长需要水分的数据进行记录,对现象作出合理的解释。 2、能选择合适的方式探究植物所含的水分,并能描述植物体内含有水分的探究过程和结果。 情感、态度、价值观: 1、对探究植物的需求保持好奇心和探究热情,乐于参与观察、实验等科学活动。 2、乐于尝试运用多种方法进行探究活动。 【教学重点】 1、植物生长离不开水分。 2、植物体内含有水分。 【教学难点】 1、植物生长离不开水分。 2、植物体内含有水分。 【教学准备】 若干葡萄、试管架、试管、酒精灯、吸水纸、剪刀、若干黄豆 【教学过程】 课前导入: 老师引导学生观看猫喝水的小动画,提出问题:猫为什么要喝水学生回答。引出水是动物的基本需求之一。老师继续提出问题:那么我们生物界除了动物需要水以外,还有什么生物也需要水呢学生回答:植物。引出新课:植物需要水分

课堂内容: 活动1:植物的生长离不开水分 老师设置一个情景:花园里,有一片用花盆栽种的红背桂,在花丛中有一个自动淋洒装置。离自动淋洒近的盆栽生长旺盛,离自动淋洒远的盆栽生长得比较矮小。接着,老师提出问题:比较两片长势不同的植物所在的环境,探究水分是造成这种差异的因素吗? 老师讲解实验的过程:1、把生长情况相同的同种植物幼苗分成两组。2、把两组幼苗分别种植在花盆里,放置在光线充足的地方。在实验期间,一组幼苗每天浇适量的水,保持土壤湿润;另一组幼苗不浇水。3、连续观察几天,测量两组幼苗的高度,记录它们的生长状况。 老师引导学生思考、分析,得出结论:充足的水分保证植物正常生长。或者说,当水分缺乏,植物的生长就会受到影响。 老师引导学生小组回忆以下情景:该实验如何观察和测量植物的生长状态学生回答:测量两组幼苗的高度,记录它们的生长状况。老师接着提出问题:初次之外,还能通过测量其他项目吗学生小组讨论,汇报答案。老师小结:在观察和测量植物的生长状态的第一步中,开始之前,我们要设定测量的项目。老师讲解第二、第三和第四步。(第三步的时候可以提出一个问题:用其他感官去去感受没有浇水的幼苗有什么感觉学生回答:软绵绵) 活动2:植物体内含有水分 通过上面的学习,我们知道了植物的生长离不开水,那么植物体内是否含有水分呢?为了验证这个猜想,我们分别选取植物不同部分进行实验。 实验1:用吸水纸吸收一切开的葡萄的水分。 实验2:用吸水纸挤压已剪碎的葡萄。 实验3:用酒精灯烧装有黄豆的试管。 老师组织学生观看完实验后,小组讨论,分析,汇报答案。老师引导,汇总答案,得出结论:1.水分是植物的主要组成部分,植物的一切生命活动都是在水分的参与下进行的。2.水分能满足植物生长的需求,并使植物的枝条挺立,叶片展开,花朵饱满,果实丰硕。

(完整版)土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的:一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛:孔径1mm;③铝盒:小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平:感量为0.001g和0.01g;⑤小型电热恒温烘箱;⑥干燥器:内盛变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3.4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3.4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3.5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至0.001g。用角勺将风干土样拌匀,舀取约5g,

水份检测方法

水分检测方法 1.目的 使检验人员能够正确对样品规格中需要水分检测的样品进行水分检测。 2.范围 适用于样品规格中需要水分检验的样品。 3.参考文件 3.1 《中国药典2010年版2部》 3.2 GB_50093-2010食品中水分的测定 4.定义 4.1 恒重:取洁净铝制或玻璃制的扁形称量瓶,置于101℃~105℃干燥箱中,瓶盖斜 支于瓶边,加热1h,取出盖好,置干燥器内冷却0.5h称量,并重复干燥至前后 两次质量差不超过2mg,即为恒重。 5.职责 QC负责按照本方法执行对样品的检测 6.程序 6.1 费休氏法 卡尔·费休水分测定法又分为库仑法和容量法。库仑法测定的碘是通过化学反应 产生的,只要电解液中存在水,所产生的碘就会和水以1:1的关系按照化学反应 式进行反应。当所有的水都参与了化学反应,过量的碘就会在电极的阳极区域形 成,反应终止。容量法测定的碘是作为滴定剂加入的,滴定剂中碘的浓度是已知 的,根据消耗滴定剂的体积,计算消耗碘的量,从而计量出被测物质水的含量。 6.1.1 试剂与材料 试剂:碘、无水吡啶、无水甲醇或者市售卡尔-费休氏试液。 6.1.2 仪器和设备 卡尔-费休水分仪、分析天平:感量为0.1mg 6.1.3 容量法 1)费休氏试液的制备与标定 a)制备:称取碘(置硫酸干燥器内48小时以上)110g,置干燥的具塞 锥形瓶中,加无水吡啶160ml,注意摇允至碘全部溶解后,加无水甲 醇300ml。称定重量,将锥形瓶至冰浴中冷却,在避免空气进入的情 况下,通入干燥的二氧化硫至重量增加72g,再加甲醇使成1000ml, 密塞,摇允,在暗处放置24小时。(也可以使用稳定的市售卡尔- 费休氏试液。市售的试液可以是不含吡啶的其他碱化剂,不含甲醇的 其他醇类等;也可以是单一的溶液或者由两种溶液混合而成。)试液 应遮光,密封,置阴凉干燥处保存。临用前应标定浓度。 b)标定:精密称取10~30mg费休氏试液用卡费休仪器直接标定。或取 干燥的具塞玻瓶,精密称入蒸馏水约30mg,除另有规定外加无水甲 醇2~5ml,在避免空气侵入的条件下,用本液滴定至溶液由浅黄色变 为红棕色,或用永停滴定法指示终点;另作空白试验,标定应取3 份

(完整版)食品中水分含量的测定

实验1 食品中水分含量的测定 一、实验原理 水分的测定方法包括加热干燥法、蒸馏法、卡尔费休法、电测法、近红外分光光度法、气相色谱法、核磁共振法、干燥剂法等,其中加热干燥法是使用最普遍的方法。加热干燥法是适合大多数食品测定的常用方法。按加热方式和设备的不同,可分为常压加热干燥法、减压加热干燥法、微波加热干燥法等。常压加热干燥法根据操作温度的不同,又可分为105℃烘箱法和130℃烘箱法。 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去的物质的总量。105℃烘箱法适用于测定在95-105℃下,不含或含其他挥发性物质甚微的食品,如谷物及其制品、淀粉及其制品、调味品、水产品、都制品、乳制品、肉制品;130℃烘箱法适用于谷类作物种子水分的测定。 二、试剂与器材 海砂。 恒温干燥箱,电子天平。 三、实验步骤 1、干燥条件 温度:100-135℃,多用100℃±5℃。 时间:以干燥至恒重为准。105℃烘箱法,一般干燥时间为4-5h;130℃烘箱法,干燥时间为1h。 样品质量:样品干燥后的残留物一般控制在2-4g。 称样大致范围:固体、半固体样品,2-10g;液体样品,10-20。 2、样品制备 固体样品先磨碎、过筛。谷类样品过18目筛,其他食品过30-40目筛。 糖浆等浓稠样品为防止物理栅的发生,一般要加水稀释,或加入干燥助剂(如石英砂、海砂等)。糖浆稀释液的固形物质量分数应控制在20-30%,海砂量为样品质量的1-2倍。液态样品先在水浴上浓缩,然后用烘箱干燥。 面包等水分含量大于16%的谷类食品一般采用两步干燥法,即样品称量后,切成2-3mm薄片,风干15-20h后再次称重,然后磨碎、过筛,再用烘箱干燥至恒重。 果蔬类样品可切成薄片或长条,按上述方法进行两步干燥,或先用50-60℃低温烘3-4h,再升温至95-105℃,继续干燥至恒重。 3、样品测定 (1)105℃烘箱法 1)固体样品将处理好的样品放入预先干燥至恒重的玻璃称量皿中,置于95-105℃干燥箱中,盖斜支于瓶边,干燥2-4h后,盖好取出,置于干燥器中冷却0.5h后称重,再放入同温度的烘箱再干燥1h左右,然后冷却、称量,并重复干燥至恒重。 2)半固体或液体样品将10g洁净干燥的海砂及一根小玻璃棒放入蒸发皿中,在95-105℃下干燥至恒重。然后准确称取适量样品,置于蒸发皿中,用小玻璃棒搅匀后放在沸水浴中蒸干(注意中间要不时搅拌),擦干皿底后置于95-105℃干燥箱中干燥4h,按上述操作反复干燥至恒重。 (2)130℃烘箱法将烘箱预热至130℃,将试样放入烘箱内,关好箱门,使温度在10min 内升至130℃,在(130±2)℃下干燥1h。 4、结果计算 X=100*(m1-m2)/(m1-m0)

水分测定法第一法烘干法

水分测定法第一法烘干 法 The manuscript was revised on the evening of 2021

水分测定法 目的: 制定水分测定标准规程,使检验人员的操作规范,确保检验结果的准确、可靠。 范围: 适用于进行水分测定的原辅料、中间体(半成品)、成品等。 内容: 测定用的供试品: ①一般先破碎成直径不超过3mm的颗粒或碎片。 ②直径和长度在3mm以下的花类、种子和果实类药材,可不破碎。 ③减压干燥法需先经二号筛。 烘干法适用范围:不含或少含挥发性成分的药品。 仪器与试剂:扁形称量瓶、干燥器(普通)、电子天平(0.0001g)、 烘箱(100~105℃,控温精度±0.1℃)、 干燥剂(硅胶、五氧化二磷,硫酸) 烘箱干燥法的测定要点 ⑴取样(称样) ⑵干燥条件的选择: 三个因素:①温度;②压力(常压、真空)干燥;③时间(一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃)操作方法 1操作步骤 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘小时→于干燥器冷却→称重→再烘小时→称至恒重(两次重量差不超过0.003g即为恒重)

(1)称量瓶恒重 清洗称量瓶→烘至恒重(烘箱、105℃、烘2小时以上,取出--干燥器中放置室温(约30分钟)---精称—于烘箱中,烘1小时,干燥器中放置室温(约30分钟)精称G1--如此重复,至连续两次干燥后称重△m≤0.003g) (2)称取试样 ①精密称定供试品2~5g(±0.5g)(或该品种下规定的重量W) ②平铺于干燥至恒重的扁形称瓶中,厚度不超过5mm,疏松供试品不超过10mm, (3)烘样 ①在100~105℃干燥5小时(打开瓶盖,半斜于称量瓶上),将瓶盖盖好,移置干燥器中,冷却30分钟,精密称定重量, ②再在上述温度干燥1小时,冷却,称重G2,至连续两次称量的差异不超过5mg (0.005g)为止。 ③计算:根据减失的重量,计算供试品中含水量(%) 计算 恒重后称量皿和样品重量(g)--恒重后称量皿重量(g) 水分=---------------------------------------------------------------------------- 样品重量(g) (即水分= G2 - G1 / W) 固形物(%)=100 -水分% G1 ——恒重后称量皿重量(g) G2 ——恒重后称量皿和样品重量(g) W ——样品重量(g)

土壤自然含水量的测定

土壤自然含水量的测定(烘干法) 一、仪器设备。 1、铝盒:大型的、小型的、玻璃的。 2、天平:感量为0.01g(百分之一)。 3、电热恒温鼓风干燥箱。 4、干燥器:内有变色硅胶或无水氯化钙。 二、土壤样品:通过2㎜筛(10目)的土壤样。 三、操作步骤。 1、小型铝盒的烘干及称量。①编号,将铝盒标记好实验号。②取小型铝盒在恒温干燥箱中于105℃±2℃烘约2小时。③用钳子将空铝盒移入干燥内冷却至室温(约20分钟)称重,精确至0.0001g,作好记录。 2、称土样,称取土样约5g,精确至0.0001g,作好记录。 3、土样装盒及烘干。将称好的土壤样,均匀地平铺装在铝盒内,铝盒盖倾斜放在铝盒上,置于已预热至105℃±2℃的恒温干燥箱中烘约6小时。 4、土样盒称重。将烘干的土样盒取出,盖好,移入干燥器内冷至室温(约20分钟),立即称重,精确到0.0001g,作好记录。 5、结果计算:结果保留小数点后一位。 6、注意事项: ①保持干燥内的干燥剂整洁。 ②试样必须烘6小时。 ③严格控制恒温温度在105℃±2℃范围内。

土壤有机质的测定 (油溶加热重铬酸钾—容量法) 一、仪器设备。 1、油溶锅。用20—26㎝的不锈钢锅代替,内装固体石蜡(工业用)。 2、硬质试管。18—25㎜×200㎜。 3、铁丝笼。大小和形状与油溶锅配套。 4、滴试管。10.00ml、25.00ml。 5、温度计。300℃。 6、电炉。1000W,配套有消毒柜。 二、试剂。 1、重铬酸钾消煮用液[1/6K2Cr2O7=0.8mol.L-1]; 称取40.0g重铬酸钾溶于600—800mL水中,过滤到1L量筒内,用水洗涤滤纸,并加水至1L。 2、浓硫酸消煮用液。取密度为1.84的浓硫酸加水定容至1L,保存待用。 3、重铬酸钾标准溶液(0.2000mol.L-1)。 称取经130℃烘2-3小时的重铬酸钾(优级纯)9.807克,先用少量水溶解,然后无损地移入1000ml容量瓶中,加水定容。 4、硫酸亚铁铵标准溶液(0.2mol.L-1) 称取硫酸亚铁铵78.4g,溶解于600—800ml水中,加浓硫酸20ml,搅拌均匀,定容至1000ml,贮于棕色瓶中保存。 每次使用时标定其浓度。吸取0.2000 mol.L-1重铬酸钾标准液25.00ml于150ml三角瓶中,加入浓硫酸3-5ml和邻菲罗啉指示剂2-3滴,用硫酸亚铁铵标准溶液滴定,由橙黄-蓝绿-棕红即可,根据硫酸亚铁铵溶液消耗量计算其浓度,取中间值 C=G·V1/V2=0.2×25÷V2 V2=滴定时消耗硫酸亚铁铵标准液的体积(ml)。 5、邻菲罗啉指示剂。

相关文档
最新文档