变压器计算

变压器计算
变压器计算

1、三相变压器铭牌数据如下:S N =750kV A , U 1N /U 2N =10000/400V , Y/Δ接线,在高压侧做短路实验数据为:U s =380V ,I s =30A ,p s =4.6kW ,求变压器的短路参数(不必折算温度)。

4、解:变压器的变比为 k=4

.03/103/21=N

N U U =14.43

由短路实验可求出短路参数:Z s =30

3/3803/=s s I U =7.313Ω

r k =

2

230

3

/46003/=k k I p =1.704Ω x s =2222704.1313.7-=-k k r Z =7.112Ω 故: r 1≈r 2'=

2

1

r K75℃=1.704/2=0.85Ω x 1≈x 2'=x k /2=7.112/2=3.56Ω

即, r m =202Ω, x m =2200Ω, r 1=r 2'=0.85Ω, x 1=x 2'=3.56Ω

1. 三相变压器额定容量为20kVA ,额定电压为10/0.4kV ,Y,y0联结,高压绕组匝数为3300匝,试求:(1)变压器高压侧和低压侧的额定电流;(2)高压和低压侧的额定相电压,(3)低压绕组的匝数。

1.解:(1)高压侧额定电流I 1N =

N

N U S 13=10320

?=1.15A

低压侧的额定电流I 2N =N

N U S 23=4.0320

?=28.9A

(2)高压额定相电压U 1NP =31N U =310103

?=5773.5V ,

低压侧额定相电压U 2NP =3

4

.0=230V

(3)变比k =N N U U

21=4

.010=25,低压绕组的匝数N 2=N 1/k=132

2、一台三相变压器,S N =5600kVA ,U 1N / U 2N =35/6kV ,Y,d 接线,从短路试验(高压侧)得:U 1s =2610V 、I s =92.3A 、P s =53kW ,计算短路参数(不必折算温度)。

2、解:Z S =

S

S I U 3/1=3.923

/2610=16.3Ω

R S =23S S

I P =2

33.9231053??=2.07Ω

X S =2

2

S S R Z -=2207.23.16-=16.17Ω

∴短路参数为Z S =16.3Ω,R S =2.07Ω,X S =16.17Ω

3、一台三相电力变压器的额定数据如下:s N =100kV A ,U 1N /U 2N =6.0/0.4kV ,Y ,y 联接,f =50Hz

求折算到高压边的参数(假定S R R R 2

2

1='=,S X X X 22

1='=),并绘出相应的T 型电路图。

3、解:额定相电压分别为:

36000311==

N N U U =3464V ,3

400322==N N U U =230.9V

额定相电流分别为:

60003101003311??=

=N N N U S I =9.62A

400

3101003322??=

N N N U S I =144.3A

变比为:9

.230346421==N

N U U k =15

(1) 由空载实验得折算到低压侧的励磁参数为: Z ’m =37

.93400300

?=I U =24.6Ω, R ’m =220037.936163?=I p =2.34Ω,)

X ’m =

222

234.264.24-=-m m R Z =24.53Ω

折算到高压侧的值为: Z m =k 2 Z ’m =152×24.6=5544Ω R m =k 2 R ’m =152×2.346=526.5Ω

X m =k 2 X ’m =152

×24.53=5519Ω

(2)短路参数计算:Z s =62

.938.2573?=s

s I U =15.47Ω

R s =23S S I p =2

62.932010?=7.24Ω X s =

22S S R Z -=2224.747.15-=13.67Ω

故:s

R R R

212

1='==21×7.24=3.62Ω, s X X X 212

1='==2

1

×13.67=6.835Ω 4、三相变压器的额定电压为U 1N /U 2N =6.3/0.4kV ,Y ,D 联结,今因工作需要,电源电压由6.3kV 变为10kV ,若保持低压绕组的匝数为40匝不变,需要将高压绕组的匝数改为多少?

4、解:==14.4

N 1=KN 2=14.4×40=576(匝)

5.、有一台三相变压器的额定容量为16000kVA ,额定电压为110kV/11kV ,YN ,d 联结,

试求:(1)高、低压边的额定电流;(2)高、低压边的额定相电流;(3)高、低压边

的额定相电压。

计算题:

5.解:解:(1)

(2)

(3)

,U 1'=

N

f f 1'U N =5041.34×380=261.5V

6、三相变压器额定容量为20kVA ,额定电压为10/0.4 kV ,额定频率为50HZ ,Y ,y0联结,高压绕组匝数为3300。试求:(1)变压器高压侧和低压侧的额定电流;(2)高压和低压绕组的额定电压;(3)低压绕组的匝数;

6、解:(1)高压侧额定电流:A U S I lN N lN 16.110

320

3=?==

低压侧额定电流:A U S I N N N 87.284

.0320

322=?==

(2)高压侧额定相电压: U 1NP =3

10

=5.77kV

低压侧额定相电压:U 1NP =3

4

.0=0.231kV

(3)低压绕组的匝数:13210

4

.033001212=?==N N U U N N 匝

7. SJ-100/6型三相变压器,高低压侧均为星形连接,额定容量100kV A ,6000/400V 。在高压侧做短路试验时,短路电压为317V 时,高压绕组中电流I 1=9.4A ,室温25o C ,频率f =50Hz ,测得短路损耗为1920W 。试计算:(1)高压侧的短路参数;(2)电流为额定时短路损耗。

7、解:K =6000/400=15

短路参数为 R s =2

24

.9319203?=s s I P =7.243Ω

Z s =4

.933173?=N s I U =19.16Ω

X s =22s s r Z -=2

27.24316.19-=17.74Ω

额定电流I N =6000

31010033

??=N N U P =9.623A

电流为额定时短路损耗P sN =3I N 2R s =3×9.6232×7.243=2012.15A

8. 、三相变压器铭牌数据如下:S N =750kV A , U 1N /U 2N =10000/400V , Y/Δ接线,在低压

侧做空载实验数据为:U 0=400V ,I 0=65A ,p 0=4.1kW ;求变压器的励磁参数。

8解:变压器的变比为 K =4

.03/103/21=N

N U U =14.43

空载实验在低压边进行的,低压边为Δ接法,求得的励磁参数必须折算到高压边 Z m = 3

/6540043.143

/2002?

=I U k =2219.4Ω

R m =2

2

2

002

)3/65(3/410043.143/?=I p k =202.1Ω X m =222

2

1.2024.2219-=

-m m r Z =2210.2Ω

9、三相变压器的额定电压为U 1N /U 2N =6.3/0.4kV ,Y ,d 联结。今因工作需要,电源电压由

6.3kV 变为10kV ,若保持低压绕组的匝数为40匝不变,需要将高压绕组的匝数改为多少?

9.解:电源电压变为10kV 时:

(匝)

10、一台Y ,d11的三相变压器,已知S N =31500kVA ,额定电压为110/35KV ,试求该变压

器一、二次侧额定线电流、相电流。

11、三相变压器的额定电压为U 1N /U 2N =6.3/0.4kV ,Y ,d 联结。今因工作需要,电源电压

由6.3kV 变为10kV ,若保持低压绕组的匝数为50匝不变,需要将高压绕组的匝数改为多

少?

11、解:电源电压变为10kV 时:

7214

.077

.550212

1=?

==Np

Np U U N N (匝)

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

变压器计算表

由变换器预定技术指标可知变压器初级侧电压 Vin(min)=200V,Vin(max)=380V, 预设效率85%η=,工作频率65kHz 电源输出功率P(out)=24V*1A=24W 变压器的输入功率P(in)=P(out)/0.8=30W. 根据面积乘积法来确定磁芯型号,为了留有一定裕量,选用锰锌铁氧体磁芯EFD30,有效截面积269e A mm = 因为所选的MOS 管的最大耐压值max 600mos V V =。在100 V 裕量条件下所允许的最大反射电压 V f =V mosmax -V dcmac -100=600-380-100=120V 最大占空比 D max =V f /(V dcmin +V f )=120/(200+120)=0.375 初级电流 Ip=2*Pin/D (max)*V dcmin =2*30/(0.375*200)=0.8A 初级最大电感量 Lp=(D (max)*V dcmin )/f*Ip=0.375*200/65*0.8=1.4mH 初次级匝数比 N 1=V f /V o =120/24=5 初级匝数

5832 .191120106928.018.04.11033==????=?=e w P P P A B k I L N 其中,磁感应强度B =0.28 T ;由于此变换器设计在断续工作模式k=1(连续模式k=0.5) 磁芯气隙 ()270.4100.015p e g p N A l cm L π-= ?≈ 5V--次级匝数 6.11==n N N P S 辅助绕组匝数 6.8158.512s a a o N V N V ?==≈=8.2

EI 铁芯电源变压器计算步骤

铁芯电源变压器计算步骤 编写者:黄永吾 已知变压器有以下主要参数: 初级电压U1=220V, 频率f=50Hz 次级电压U2=20V, 电流I2=1A 其他一些要求如安规、温升、电压调整率、环境、(防潮、防震、防灰尘等)、工作状态、寿命等。

型变压器设计软件计算步骤如下: 1.计算变压器功率容量: 2.选择铁芯型号: 3.计算铁芯磁路等效长度: 4.计算铁芯有效截面积: 5.计算变压器等效散热面积: 6.计算铁芯重量: 7.计算胶芯容纳导线面积: 8.初定电压调整率: 9.选择负载磁通密度: 10.计算匝数: 11.计算空载电流: 12.计算次级折算至初级电流: 13.计算铁芯铁损: 14.计算铁损电流: 15.计算初级电流:

16.计算各绕组最大导线直径: 17.校核能否绕下: 18.计算各绕组平均长度: 19.计算各绕组导线电阻: 20.计算各绕组导线质量: 21.计算各绕组铜损: 22.计算各绕组次级空载电压: 23.核算各绕组次级负载电压: 24.核算初级电流: 25.核算电压调整率: 重复8~25项计算三次: 26.修正次级匝数: 重复8~25项计算三次: 27核算变压器温升:

型变压器设计软件计算步骤如下: 1. 计算变压器功率容量:以下为结构计算: 2. 选择铁芯型号:16.计算各绕组最大导线直径: 3. 计算铁芯磁路等效长度:17.校核能否绕下: 4. 计算铁芯有效截面积:18.计算各绕组平均长度: 5. 计算变压器等效散热面积:19.计算各绕组导线电阻: 6. 计算铁芯重量: 20.计算各绕组导线质量: 7. 计算胶芯容纳导线面积:21.计算各绕组铜损: 8. 初定电压调整率:22.计算各绕组次级空载电压: 9. 选择负载磁通密度: 23.核算各绕组次级负载电压: 10.计算匝数:24.核算初级电流: 11.计算空载电流: 25.核算电压调整率: 12.计算次级折算至初级电流:重复8~24项计算三次: 13.计算铁芯铁损:26.修正次级匝数: 14.计算铁损电流:重复8~24项计算三次: 15.计算初级电流: 27.核算变压器温升:

如何选择变压器:容量计算方法

电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 如何选择变压器? 选用配电变压器时,如果把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。 如果变压器容量选择过小,将会使变压器长期处与过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。 配电变压器的负载率在0.5~0.6之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。 对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的1.2倍选用变压器的容量。 一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30%左右。 应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。 对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的1.25倍选用变压器的容量。 根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。 对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。 针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。 变压器的容量是个功率单位(视在功率),用AV(伏安)或KVA(千伏安)表示。 它是交流电压和交流电流有效值的乘积,计算公式S=UI。变压器额定容量的大小会在其的铭牌上标明。

高频变压器参数计算方法

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)

推挽式开关电源的变压器参数计算

推挽式开关电源的变压器参数计算 用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。 1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算 由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。 推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。 推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。 关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。 根据(1-95)式:

(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。 1-8-1-4-2.推挽式开关电源变压器初、次级线圈匝数比的计算 A)交流输出推挽式开关电源变压器初、次级线圈匝数比的计算 推挽式开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流输出,或把交流整流成直流后再逆变成交流输出,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。 用于逆变的推挽式开关电源一般输出电压都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得推挽式开关电源变压器初、次级线圈匝数比。 根据前面分析,推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。因此,根据(1-128)、(1-129)、(1-131)其中一式就可以出推挽式变压器开关电源的输出电压的半波平均值。由此求得逆变式推挽开关电源变压器初、次级线圈匝数比: n=N3/N1 =Uo/Ui =Upa/Ui ——变压比,D为0.5时(1-152) (1-152)式就是计算逆变式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为开关变压器初级线圈两个绕组其中一个的匝数,N3为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。 (1-152)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-152)式的右边乘以一个略大于1的系数。 B)直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比的计算 直流输出电压非调整式推挽开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。这种直流输出电压非调整式推挽开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比可直接利用(1-152)式来计算。即: n=N3/N1 =Uo/Ui =Upa/Ui ——次/初级变压比,D为0.5时(1-152) 不过,在低电压、大电流输出时,一定要考虑整流二极管的电压降。 C)直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的计算

变压器的主要计算公式

初中生就会的变压器的主要计算公式: 第一步:变压器的功率= 输出电压* 输出电流(如果有多组就每组功率相加) 得到的结果要除以变压器的效率,否则输出功率不 足。100W以下除0.75,100W-300W除0.9,300W 以上除0.95.事实上变压器的骨架不一定很合适计 算结果,所以这只是要设计变压器的功率,比如一 个变压器它的输入220V,输出是12V 8A,那么它的 需要的功率是12*8/0.75=128W,后面的例子以此参 数为例(市售的产品一般不会取理论上的值,因为 它们考虑的更多是成本,所以它们选的功率不会大 这么多) 第二步:决定需要的铁芯面积;需要的铁芯面积=1.25变压器的功率.单位为平方厘米。上例的铁芯面 积是1.25*128=14.142=14.2平方厘米 第三步:选择骨架,铁芯面积就是铁芯的长除以3(得到的数就是舌宽,就是中间那片的宽度),再乘以铁芯要 叠的厚度,如上例它应该选择86*50或86*53的骨 架,从成本考虑选86*50,它的面积是 8.6/3*5=14.333,由于五金件的误差,真实的面积大 约是14.0。这个才是真实的铁芯面积 第四步:计算每V电压需要的匝数,公式:

100000000÷4.44*电源频率*铁芯面积*铁芯最大磁感应强度 当电源电压为50Hz时(中国大陆),代入以上公式,得到以下公式; 450000÷铁芯面积*铁芯最大磁感应强度 铁芯最大磁感应强度一般取10000—14000(高斯)之 间,质量好的取14000-12000,一般的取 10000-12000,个人一般取中间12000,这个取值直 接影响到匝数,取值大了变压器损耗也大,小了线 又要多,就要在成本和损耗中折中选择 以上例: 450000÷14.0*12000=2.678=2.7 初极220V即220*2.7=594匝,次级12V即 12*2.7=32.4匝。由于次级需有损耗,所以需要增 加损耗1.05—1.03(线小补多些,线大补少些)。 即32.4*1.04=33.7=34匝。这样空载电压会稍高, 但是负载会降到正常电压。 第五步;选择线径,线径很多电工书里都会有一个表注明是 4.5A或2.5A的电流密度时电线可以通过的电流,

变压器计算公式

变压器计算公式 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV 电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。(5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。

电源变压器计算

电源变压器计算 “乙猪”同学提出电源变压器计算问题,他的要求是做6P3PX2单端: 高压输出:330V,140ma ; 灯丝1:5V,3A; 灯丝2:6.3v,3A, 初、次级间应加有屏蔽层。 计算如下: (1)计算变压器功率容量(输入视在功率): P =(1.4×高压交流电压×电流+3组(灯丝电压×电流))/ 效率 =(1.4×330×0.140+5×3+6.3×3/ 0.9 =(64.7+15+18.9)/ 0.9 =110VA (2)计算原边电流 I1=1.05×P / 220=0.525A (3)按照选定的电流密度(由计划的连续时间决定),选取漆包线直径。 按照2.5A/mm2计算,则D=0.70×√I 并规整为产品规格里有的线径(可查资料): 按照线材规格表选定: 原边直径D1=0.51mm 高压绕组直径D2=0.23mm 灯丝绕组1直径D3=1.2mm 灯丝绕组2直径D4=1.2mm 验算实际单位面积载流密度: 原边(0.51mm,截面积0.2043 mm2,通过电流0.525A)载流密度:2.57A/mm2 高压绕组(0.23mm,截面积0.04155mm2,通过电流0.7×0.140A)载流密度:2.36A/mm2 灯丝绕组1(1.2mm,截面积1.131mm2,通过电流3A)载流密度:2.65A/mm2 灯丝绕组2(1.2mm,截面积1.131mm2,通过电流3A)载流密度:2.65A/mm2 (4) 铁心需要截面面积 S0=1.25√P =1.25×√110=13.1CM2 (5)手头现有铁心: 手头现有铁芯型号舌宽=34MM=3.4CM 手头现有铁芯叠厚5.2CM 铁心截面面积17.68CM2 (6)手头现有铁心有效截面积: S1=舌宽×叠厚/ 1.1 =16.07 CM2 可用。 (7)计算每伏匝数 计算式:每伏匝数n=(45000)/(B×S1) 其中B=10000-12000(中等质量硅钢片) 或15000(Z11等高质量硅硅片) 或8000(电动机用硅钢片)。 S1:铁心有效截面积,等于(舌宽×叠厚)/1.1 手头现有铁芯是中等质量铁心,取B=11000 则: n=450000 / B×S1 =450000 /(11000×16.07) =2.545 ( T / V ) (8)计算每组匝数 原边圈数:N1=220n=220×2.545×0.95=532(T) 副边高压:N3=330×1.05×n=880(T)--这是一半,还要再×2=1760T。 灯丝1(5V):N4=5×1.05×n=13(T),

变压器温度计算

1 引言 工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。 若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下:

式中,温升ΔT(℃) 变压器质量Gt(g) 变压器铜损PW(w) 变压器铁损PC(w) T—加热时间常数(s) At—变压器散热面积(cm2) Ct——变压器比热(w·s/℃·g) CC——铁心比热(w·s/℃·g) GC——铁心质量(g) cw——导线比热(w·s/℃·g) Gw——导线质量(g) cis——绝缘材料比热(w·s/℃·g) Gis——绝缘材料质量(g) Gt——变压器质量(g) 4 散热面积法 散热面积法基于热量全部由变压器表面积散发出去,这种算法有三种类型:

开关电源变压器的计算

1:线径的计算: 一般铜线截面积每平方mm取值5安培电流。(高频取4.95,低频取3.5.) 公式1:。公式2: 。r=半径。 例题: 假设铜线半径是1mm. 3.141×1=3.141×5A=15.705A电流。15.7A. =2.0mm铜线直径。 2: 峰值功率计算。 Pout = (Vout+Vf) Iout 1.2 3:初级峰值电流计算: IPmax = IPmin = KIP1 K为脉动电流,取值:0.4. 4:输入电流公式: ÷PF=Pin÷Vin=Iin。 3:肖特基的取值计算。 肖特基一般取输出电流的2-3倍。 匝比一般是10比1 输出峰值电压的计算: 〈(Vin(max)×)+80V〉÷n + Vout=峰值电压。 〈〔最大输入电压×〕+80V〉÷匝比+输出电压。 例题: 以输出5V为例: 〈〔最大输入电压264V×1.414〕+80V〉÷匝比10+输出电压5V。 峰值电压等于==50.32V. /*****************************************************************/ 开关变压器计算步骤: P-初级,S-次级,D-占空比,n匝比,L-电感量,f频率,η-效率, K-脉动电流。T-时间,ON-开,NP-初级匝数,IP 峰值电流。 AE-磁芯截面积,查磁芯表。Bm-磁通密度。单位-高斯。 /******************************************************************* 要求:输入电压《85-265V》。

最大占空比0.45左右。根据IC资料选择。 η-效率。0.75 Vout-输出电压。5V Iout-输出电流。2A f –开关频率。100K IC方案,选择7535. 10W /******************************************************************** 1:估算初级输入电流:I in ÷PF=Pin÷Vin=Iin。 /0.6=22.22/85=0.2614 A 根据输入电流计算输入线径: = 0.13mm1.2=0.156 输出线径; = 1.01579mm /*******************************************************************/ 1: Ton计算导通时间。 T:时间。T= = = 10us Ton = 100.45 =4.5us. 导通时间。 Toff = 10 0.55 = 5.5us. 截至时间。 /********************************************/ 2:算出初次级匝比. N = N = = = 14.131661 /********************************************/ 3:IP 峰值功率。 Pout = (Vout+Vf) Iout 1.2 = (5+1) 2 1.2 = 14.4W /********************************************/

反激式开关电源变压器初级线圈电感量的计算

反激式开关电源变压器初级线圈电感量的计算 反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。根据(1-98)式和(1-102)式,当控制开关接通时,流过变压器初级线圈的最大励磁电流为: (1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。式中,L1为变压器初级线圈的电感,P为变压器的输入功率,Ton为控制开关的接通时间;I1m为流过变压器初级线圈的最大励磁电流,I1m= 2I1,I1为流过变压器初级线圈的励磁电流(平均值,可用有效值代之)。 由此可知,在计算反激式开关电源变压器的参数时,不但要根据(1-120)式计算变压器初级线圈的最少匝数,还要计算变压器初级线圈的电感量。当变压器初级线圈的最少匝数确定以后,变压器初级线圈的电感量就只能再由选择变压器铁心气隙的大小来决定,或由选择变压器铁心的导磁率来决定。 1-7-3-2-3.变压器初、次级线圈匝数比的计算 图1-19,反激式开关电源在控制开关接通期间是不输出功率的,仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。反激式开关电源变压器次级线圈输出端一般都接有一个整流二极管,和一个储能滤波电容。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,被限幅后的剩余电压幅值正好等

逆变电源变压器计算公式详谈

逆变电源系统变压器设计相关参数 一、 逆变电源系统输入、输出以及相关变压器参数 (1) 蓄电池直流输入电压要求 蓄电池的正常电压输入为:V U nDC i 24= 蓄电池的最低电压输入为:V U inDC 21min = 蓄电池的最高电压输入为:V U inDC 27max = (2) 逆变电源系统变压器副边绕组输出电压要求 逆变电源系统变压器副边绕组输出电压:V U oDC 380= (3) 逆变电源系统变压器其他参数 全桥逆变电路开关管工作频率:kHz f k 50= 变压器输出功率:VA P o 500= 效率:%90=e 二、 逆变电源系统变压器设计方法 输出直流电压: V U N N U oAC p s inDC 3112=?≥,p N 为DC/DC 全桥升压变压器原边绕组匝数,s N 为DC/DC 全桥升压变压器副边绕组匝数, AC o U 为正弦输出电压有效值220V 。设定V N N U p s DC in 380=,考虑全桥电路每个桥臂上的开关管导通压降为1V ,输出的 肖特基整流管的导通压降为0.5V ,则有公式T T N N U U on p s inDC oDC 2]5.0)2[(-? -=。 当 inDC U 最小,on T 最大时,变压器副边绕组的输出电压oDC U 必须保持恒定。设定本逆变电源系统功率的传递效率为9.0=e ,所以9.02=T T on ,从而计算出22≈p s N N 。 根据公式K f B e C P A A k o b e ?????=max 8 410,kHz f k 50=,9.0=e ,3.0=K , Amp cm C /1007.523-?=,因为全桥电路的功率管开关频率kHz f k 50=,所以

变压器试验计算公式汇总

可编辑版 变压器试验计算版第一部分直流电阻的计算 第二部分绝缘特性的计算 第三部分工频外施耐压试验的计算 第四部分空载试验的计算 第五部分负载试验与短路阻抗的计算 第六部分零序阻抗的计算 第七部分温升试验的计算 第八部分声级测定的计算 第九部分计算案例

一、直流电阻的计算 1.电阻(Ω)=电阻率(Ω/m)×长度(m)/截面积(mm2) 2.电阻温度的换算 铜 R T=R t×(235+T)/(235+t) 铝 R T=R t×(225+T)/(225+t) R T:需要被换算到T℃的电阻值(Ω) R t:t℃下的测量电阻值(Ω) T :温度,指绕组温度(℃) t :温度,指测量时绕组的温度(℃) 3.绕组相电阻与线电阻的换算 R a=1/2(R ab+R ac-R bc) R b=1/2(R ab+R bc-R ac) R c=1/ 2(R bc+R ac-R ab) D接,且a-y、b-z、c-x R a=(R ac-R p)-(R ab R bc)/(R ac-R p) R b=(R ab-R p)-(R ac R bc)/(R ab-R p) R c=(R bc-R p)-(R ab R ac)/(R bc-R p) R p=(R ab+ R bc + R ac)/2 R ab=R a(R b+R c)/(R a+R b+R c)

R L=2R p/3 R AB、R BC、R AC、R ab、R bc、R ac、:绕组线电阻值(Ω) R a、R b、R c、 R AN、R BN、R CN:绕组相电阻值(Ω) R p:三相电阻平均值(Ω) 4.三相绕组不平衡率计算 β=(R MAX-R min)/R(三相平均值) β:三相绕组电阻值的不平率(%) R MAX:测量电阻的最大值(Ω) R min:测量电阻的最小值(Ω) 5.测量直阻时所需的直流电流计算 I Y =1.41×K×i o I D =1.22×K×i o K :系数,取3-10 i o :空载电流,A 6.试品电感的计算 L=ф/I=K×I×n×S/(l×I)=K×n×S×μ/l L:试品电感(H) K:k=0.4π×10-6 (H/m) S:铁心截面(cm2) l:铁心回路长度(m) μ:导磁系数 n :匝数

变压器容量计算公式

变压器容量计算公式(总1页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

变压器容量计算公式 打桩机2台 150KW\台 300KW 龙门吊3 80KW\台 240KW 搅拌机4台 20KW\台 80KW 施工用电,计算一下需要多少KVA的变压器 用什么公示啊急用在线等 满意回答 620KW 1000KVA的变压器额定电流为1000000÷400÷1.732=1443A 如果功率因数控制在0.9以上,可以满足你目前的设备需求。 具体用那个公示呀能说下么 因为620KW的电流要根据电阻、电导率、线路远近和功率因数来计算,只能是估算大约1200~1300A,然后根据变压器的电流计算方式,估算出1000KVA的容量可以满足你的要求。 变压器容量计算 总容量210KW,需要多大的变压器。 总负荷容量210KW,负荷电流399A, 需要变压器的容量:S(视在功率)=1.732*0.4*399=276.4KVA 变压器长期运行的负荷率不宜超过85% 一般控制在70%-80% , 补偿后功率因数一般能达到0.95 但变压器允许短时的过负荷其中油变的过负荷能力比干变要强,发生事故时干变120%负荷能运行1小时油变130%负荷能运行2小时 根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。 即:β=S/Se 式中:S—计算负荷容量(kVA);Se—变压器容量(kVA);β—负荷率(通常取80%~90%) 已知道现场用电电流,怎样选择变压器的容量。 1.7321*线电压*相电流=变压器容量,单位KVA

开关电源变压器的计算

一,变压器 (1)选磁性材料 PC40(100℃,Bs=0.39T ,Br=0.055T) 取B =0.2T (2)磁芯型号 AP= 1.14311.1()'pin k Bf = 1.143411.160()0.3610.950.1140.275103cm ?=???? AP ’=441.28 1.08 1.380.36cm cm ?=> 选EE40 (3)计算原边绕组匝数 令Dmax=0.45 则Ton (max )=DmaxT=630.45610(7510)-=?? min max P P B B Vin N Ae N Ae T Ton == min max 43410.459.61.28100.27510P Vin Ton N Ae B -?===????? 取P N =10匝 (4)计算副边绕组的匝数 min max max ()()(1)s fwd o O fwd p N Vin V V D T V V D T N --=+- min max 121107.046410.45 o fwd s p V V N N Vin D ++==?=? 取s N =7匝 (5)计算原边电流有效值 0.75 2.3479s prms p N I I A N ===?= 22.34790.52184.5 prms p I A mm j === 0.815D === 考虑到集肤效应 0.273mm δ== 20.546D δ≤= 20.815() 3.010.47 =

(6)计算副边线径 5 3.354srms I I A ==== 0.974D == 考虑到集肤效应 20.974() 4.290.47 = 所以取副边为0.47mm 的漆包线五股并绕 (7)计算电感的阈值,线径与匝数 令10%0.5oc on I I A ≤= ()11(1)22O fwd oc l V V I i D T L +==- min ()(1)()(1)22O fwd O fwd oc oc V V D T V V D T L I I +-+-=≥ max min min ()()(1)s fwd O o fwd p N Vin V V D T V V D T N --=+- min max 121100.326577 p o fwd B V V D N Vin N ++= ?=+ 3 (121)(10.326)11720.157510L H μ+-≥=???? 5.5Lpk oc o I I I A =+= 选取pc40磁性材料(100℃ Bs=0.39T Ur=230) 24 1.1434410()0.4784500.60.25ppk LI AP cm cm ?==?? 选EE40 41.28 1.08 1.380.478AP cm =?=> 6 45.51171020.111.28100.25 lpk L E m LI N A B --??===??取21匝 5Lrms n I I A ≈= 5 1.1114.5L A = = 1.189L D == 21.189() 3.140.67 =

相关文档
最新文档