热电阻基本知识

热电阻基本知识
热电阻基本知识

热电阻基本知识—热电阻测温原理及材料

热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

一、热电阻测温原理及材料

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

1、铂热电阻的温度特性

(1)在0~850℃范围内:

(2)在-200~0℃范围内:

式中A、B、C的系数各为:A=3.90802×10-3C-1;B=-5.802×10-7C-2

C=-4.27350×10-12C-4

铂电阻阻值与温度的分度关系由止两式决定。

2、铜热电阻的温度特性

在-50~150℃范围内:

式中A=4.28899×10-3C-1;B=-2.133×10-7C-2;C=1.233×10-9C-3

铜电阻和温度的分度关系由上式决定,铂热电阻和铜热电阻的技术性能见表1-1

表1-1常用热电阻的技术性能

2 #2

二、热电阻测温系统的组成

热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。必须注意以下两点:

1、热电阻和显示仪表的分度号必须一致

2、为了消除连接导线电阻变化的影响,必须采用三线制接法。

三、热电阻故障原因及处理方法

热电阻的常见故障是热电阻的短路和断路。一般断路更常见,这是因为热电阻丝较细所致。断路和短路是很容易判断的,可用万用表的"×1Ω"档,如测得的阻值小于R0,则可能有短路的地方;若万用表指示为无穷大,则可断定电阻体已断路。

电阻体短路一般较易处理,只要不影响电阻丝的长短和粗细,找到短路处进行吹干,加强绝缘即可。

电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用。热电阻测温系统在运行中常见故障及处理方法见表3-1。

表3-1热电阻测温系统常见故障及处理方法

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

热电阻的测温电路

Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

目录 1 前言 (4) 1.1 传感器概况 (4) 1.2 设计目的 (7) 2 设计要求 (8) 2.1 设计内容 (8) 2.2 设计要求 (9) 3 原器件清单 (10) 4 Pt100热电阻的测温电路 (11) 4.1 总体电路图 (11) 4.2 工作原理 (11) 5 Pt100热电阻测温电路的原理及实现 (12) 5.1 测温电路的工作原理 (12) 5.2 测温电路的实现 (14) 5.3 测量结果及结果分析 (15) 6 制作过程及注意事项 (16) 6.1 制作过程 (16) 6.2 注意事项 (17) 7 总结 (18) 8 致谢 (19) 参考文献 (20)

热电阻,热敏电阻及热电偶有哪些区别

热电阻,热敏电阻及热电偶有哪些区别? 热电阻、热电偶都是常见的温度传感器https://www.360docs.net/doc/b09452907.html,/类型,都用于测量物体温度,但热电阻和热电偶也是存在一些区别的。下面我们主要讲讲热电阻和热电偶有哪些区别? 热电阻被广泛应用于工业领域,它可以将电信号运输较远距离,且具有稳定性好,精确度高,灵敏性好等特点,热电阻需要电源激励,不能测量温度变化的瞬时值,热电阻测温范围不是很大,工业上应用的热电阻主要有:Pt100,Pt10,Cu50,Cu100。热电阻不需要补偿导线,价格比热电偶要便宜。有些人容易将热敏电阻和热电阻混淆,其实热敏电阻和热电阻是完全2个不一样的概念,热电阻主要用于加热使用,如电热毯等等里面用的电热丝;热敏电阻,是根据温度的不同,自身的电阻值发生变化,主要用在温度传感器上面,如ntc热敏电阻https://www.360docs.net/doc/b09452907.html,/,即负温度系数热敏电阻。 相对于热电阻,热电偶测温范围更广,动态响应好,结构也不复杂,稳定性能好,能够很好地进行自动集中控制。是应用最广泛的温度传感器,热电偶的测温原理是基于热电效应,又称为塞贝克效应。普通型和铠装型是热电偶的2种不同结构。热电偶需要补偿导线来传递电信号。 目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子

热电阻热电偶基础知识资料

热电偶热电阻测温应用原理 1热电偶测温的应用原理 1.1热电偶测温基本原理 1.2热电偶的种类与结构形成 1.2.1热电偶的种类 1.2.2热电偶的结构形式 1.3热电偶冷端的温度补偿 1.4温度测量仪表的分类 2热电阻的应用原理 2.1热电阻测温原理与材料 2.2.1精通型热电阻 2.2.2铠装热电阻 2.2.3端面热电阻 2.2.4隔爆型热电阻 2.3热电阻测温系统的组成

热电偶热电阻测温应用原理 1热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-501600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如

钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.1热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个接触点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 1.2热电偶的种类与结构形成 1.2.1热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不与标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

浅谈热电阻温度计的日常维护

浅谈热电阻温度计的日常维护 摘要:本文介绍了热电阻的分类,结构特点,原理特性以及应用范围,热电阻的改进等。从各方面阐述热电阻在工业上的应用,以及热电阻日常维护需要注意的问题。 关键词:温度,热电阻,端面,Pt100 温度是表征物体冷热程度的物理量,是工业生产和科学试验中最普通、最重要的热工参数之一。物理的许多物理现象和化学性质都与温度有关,许多生产过程均是在一定的温度范围内进行的。因此,温度的测量是保证生产正常进行、确保产品、质量和安全生产关键环节。温度不能直接加以测量,只能借助于冷热不同的物体之间的热交换,以及物体的某些物理性质随冷热程度不同而变化的特性,来进行间接测量。利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计是不可缺少仪表元器件之一。今天,我就谈一谈我对热电阻温度计的认识。 首先我们说一说热电阻的测温原理、特点:热电阻是中低温区的一种测温元件。热电阻利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。热电阻的受热部分(感温元件)是用细金属丝均匀的缠绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。它的主要特点是测温精度高,性能稳定。其中铂热电阻的测量精确度最高。 热电阻的结构特点:热电阻通常和显示仪表、记录仪表和变送器配套使用。它可以直接测量各种生产过程中从—200至+600范围内的液体、蒸汽和气体介质及固体表面的温度。 (1)WZ系列装配热电阻:通常由感温元件、安装固定装置和接线盒等主要部件组成,具有测量精度高,性能稳定可靠等优点。实际运用中以Pt100铂热电阻运用最为广泛。 (2)WZPK系列铠装铂热电阻:铠装热电阻是由感温元件、引线、绝缘材料、不锈钢套管组合而成的坚实体,它有下列优点:体形细长,热响应时间快,抗振动,使用寿命长等优点。现在的本钢马耳岭球团厂采用的就是这种热电阻。 (3)防爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把接线盒内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引起爆炸。大多使用在化工产业中。 (4)端面热电阻:端面热电阻感温元件由特殊处理的电阻丝缠绕制成,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速反映被测端面的实际温度,适用于测量表面温度。

热电偶和热电阻的知识

热电偶温度计 热电现象和关于热电偶的基本定律 热电偶温度计由热电偶、电测仪表和连接导线组成。它被广泛用于测量-200~1300℃范围内的温度。在特殊情况下,可测至2800℃的高温或4K 的低温。热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。 1. 热电偶测温原理 由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。 热电势由温差电势与接触电势组成。 温差电势:是指一根导体上因两端温度不同而产生的热电动势。同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。温差电势的方向:由低温端指向高温端。 温差电势的大小:,()dt dt t N d N e k t t e t t t t ) (1,00?=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的 函数;t 、to 是导体两端的温度。可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。 热端 测量端 工作端 冷端 自由端 参比端 热电极B (e AB ()0t AB (,t t e (0,t t e B 热电偶回路的总电势

热电阻温度计和热电偶温度计的比较与使用_许小华

热电阻温度计和热电偶温度计的比较与使用Ξ 许小华 (江苏省盐城技师学院,江苏盐城 224002) 摘 要:温度的测量是保证工业生产正常进行、确保产品质量和安全生产的关键环节。热电偶温度计及热电阻温度计在工业生产中应用广泛。本文主要对这两种温度计的工作原理、特点、选择及安装故障排除等作比较,以便于人们熟悉两种温度计的使用。 关键词:热电偶温度计;基本原理;选择;安装;注意事项 温度是表示物体冷热程度的物理量,温度的测量是保证化工生产实现稳产、高产、安全、优质、低消耗的关键之一。温度不能直接测量,只能借助于冷热不同的物体之间的热变换,以及物体的某些物理性质随冷热程度不同而变化的特征间接测量。 利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计和热电偶温度计在化工产业中广泛应用,但它们有各自的使用特点,下面从几个方面进行比较。 1 基本原理比较 两种温度计都属于接触式温度测量仪表。 1.1 热电偶温度计 热电偶温度计是根据热电效应来测量温度的。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度。 1.2 热电阻温度计 热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的。大家知道,金属导体的电阻值是随温度的变化而变化的。实际证明,大多数金属在温度每升高1℃时,其阻值要增加0.4%~0.6%,热电阻温度计就是把温度变化所引起的导体电阻的变化,通过测量电路(电桥)转换成电压(毫伏)信号,然后送至显示仪表以指示或记录被测温度的。 由上可知,两种温度计的测量原理是不同的。热电偶温度计是把温度的变化通过测温元件—热电偶转化为热电势的变化来测量温度的;而热电阻温度计则是把温度的变化通过测温元件—热电阻转换为电阻值的来测量温度的。 2 结构、特点比较 2.1 结构比较 热电偶温度计外形很多,但各种热电偶的基本结构通常均由热电极、绝缘套管、保护套管和接线盒等主要部分构成。热电偶温度计测量精度高,测量范围广,常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。需冷端温度补偿。在低温段测量精度较低,一般适用于测量500℃以上的温度。 2.2 使用特点比较 对于500℃以下的中、低温利用热电偶进行测量,有时就不一定适合。例如在100℃时,热电偶的热电势仅为0.645m v,如此小的热电势,对电位差计的放大器和抗干扰措施要求很高,仪表维修也困难。另外,在较低的温度范围内,由于冷端温度变化和环境温度所引起的相对误差就显得很突出,且不易得到全补偿。所以在中、低温区,采用热电阻温度计测量是很适宜的。目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻温度计的主要特点是测量精度高,性能稳定,其中铂热电阻的测量精度最高。热电阻通常和显示仪表、记录仪和变送器配套使用。它可以直接测量各种生产过程中从-200至+600范围内的液体、蒸汽和气体及固体表面的温度。 这两种温度计的共同特点是都构造简单,使用方便。都便于远传、自动记录和集中控制,因而在化工生产中应用极为普遍。下面是我国已定型生产的几种温度计。 工业常用热电偶 热电阻类型测温范围℃分度号 铂铑30-铂铑6300~1600B 铂铑10-铂-20~1300S 镍铬-镍硅-50~1000K 镍铬-铜镍-40~800E 铁-铜镍-40~700J 铜-铜镍-40~300T w zp型铂电阻-200~420P t100 w zc型铜电阻-150~100Cu50 65内蒙古石油化工 2009年第23期 Ξ收稿日期:2009-07-14 作者简介:许小华(1970-),女,江苏盐城人。讲师,学士,主要从事化学技术应用的研究。

热电偶基础知识及选型

热电偶基础知识及选型 一、热电偶基础 1. 热电效应:将两根不同的导体连接在一起,当导体的两端温度不一致时,导体构成的回路中就有电流产生,这种现象叫物质的热电效应(塞贝克效应)。热电特性是物质普遍具有的一种物理特性。 2. 热电偶:以测量热电动势的方法来测量温度的一对金属导体。注意是两根不同的均质导体,且只有热电特性曲线线性好、稳定性好、热电势率较大、耐蚀性好的一对金属导体才可用于热电偶。 3. 热电极:构成热电偶的两根金属导体叫热电极,其中一根叫正极,另一根叫负极。 4. 测量端与参比端:热电偶的焊接端叫测量端,也叫热端,另一端用于连接显示仪叫参比端,也叫冷端。 5. 热电动势:热电偶回路中由于测量端和参比端温度不一致时所产生的电动势,叫热电动势,包括温差电势和接触电势两部份。当参比端温度恒定时,热电偶的热电动势大小与测量端温度一一对应。 6. 热电势率:指温度每变化1℃引起热电偶的热电动势的变化值,又称“塞贝克系数”,单位为μV/℃。温度需换算成热电动势才能进行运算。 7. 热电偶的基本定律:均质导体定律、中间导体定律、中间温度定律、连接导体定律、参考电极定律。

8. 热电偶起源:基于1821年塞贝克发现的热电效应,1826年贝克雷尔首先根据热电效应来测量温度。 9. 分度号:对热电特性在一定范围内一致的一个类别的热电偶的命名符号。热电极化学成分相同的两支热电偶,其分度号相同。 10. 分度表:每类分度号的热电偶在每摄氏度对应的热电动势的数据表,叫热电偶分度表。 11. 热电偶的结构:两端五部,热电偶三要素 12. 装配热电偶:热电偶偶丝、绝缘材料、保护套管经过装配而成,并可拆卸的热电偶。 13. 铠装热电偶:热电偶偶丝采用氧化镁粉绝缘,将偶丝、绝缘材料、保护套管组装在一起,反复拉拔缩径,加工成一体化的细长的不可拆卸的热电偶电缆,再分剪成需要的长度,制作测量端和接线端,即成为铠装热电偶。 三、热电偶选型基础

热电偶和热电阻的作用与区别

热电偶和热电阻的作用与区别 热电偶和热电阻的作用与区别 首先热电偶与热电阻在工业温度测控方面是最普通、最常用的,均属于温度测量中的接触式测温。但两者在原理,接线方式,测温范围都有所区别。 一、原理 1、热电偶的测温原理基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接端处的温度不同时,回路中将产生热电势,又称为seeback效应。 回路中产生的热电势有两种:温差电势和接触电势。 1)温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同, 2)接触电势是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。 2、测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性来进行温度测量的。 二、特点 1、热电偶主要特点就是测温范围宽,性能比较稳定,而且结构简单,动态响应好,可以远传4-20mA 电信号,便于自动控制和集中控制。 2、热电阻的其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。 三、接线方式 1、热电偶的材料一般都比较贵重,距离较远时,为节省材料费用,降低成本,通常采用补偿导线(补偿性、延长性)传递。ps:注意型号相配,极性不能接错(热电偶正极连接补偿导线的红色线,而负极则连接剩下的颜色。),补偿导线温度于热电偶连接端的温度不能超过100℃。 2、热电阻接线方式有两线、三线、四线制接线方式,1)两线制适合不需要精确温度的场合,使用可以预先测量出导线电阻,折合成温度在测量结果中扣除,是一种粗略的补偿方法。2)三线制是比较常用、比较专业的温度测量,消除导线电阻前提:相同的材质,相同的线径,相同的长度。3)四线制比较复杂,一般不采用。 四、种类 1、热电偶国际规定分为B,R,S,K,N,E,J和T,其中B,R,S属于铂系列的热电偶,铂属于贵重金属,它们又称为贵金属热电偶。 分为普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。 2、热电阻分为:1)普通型热电阻根据其原理引出线或各种导线的电阻变化会给温度测量带来影响;2)铠装热电阻外径一般为2-8 mm,比普通型优点:能弯曲,体积小,机械性能好、耐震、抗冲击,

热电偶温度计和热电阻温度计的比较及应用

热电偶温度计和热电阻温度计的比较及应用 【摘要】 温度不能直接测量,只能借助于冷热不同物体之间的热交换,以及物体的某些物理性质随冷热程度不同而变化的特性来加以间接测量。温度测量范围很广,有的处于接近绝对零度的低温, 有的在几千度的高温下进行,所以需要各种不同的测温方法和测温仪器。 关键词:热电偶温度计,热电阻温度计,选型,特点,区别,应用 一引言 热电偶是一种感温元件,是一次仪表。它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 二两种温度计的工作原理 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的

热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 三热电偶温度计 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 特点 ◆装配简单,更换方便 ◆压簧式感温元件,抗震性能好 ◆测量范围大

热电阻与热电偶的测量原理及区别

热电阻与热电偶的测量原理及区别 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50——+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端

热电阻与热电偶的区别

[原创,但不是首发]热电阻和热电偶的区别dgiz,2008-01-22 23:05:05 一,区别:1.虽然都是接触式测温仪表,但它们的测温范围不同,热电偶使用在温度较高的环境,如铂铑30---铂铑6(B型)测量范围为300度~~1600度,短期可测1800度.S型测一 20~~1300(短期1600),K型测一50~~1000, (短期1200).XK型一50~~600(800),E型一 40~~800(900).还有J型,T型等.这类仪表一般用于500度以上的较高温度,因它们在中,低温区时输出热电势很小(查表可以看一下),当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。这时在中低温度时,一般使用热电阻测温范围为一 200~~500,甚至还可测更低的温度(如用碳电阻可测到1K左右的低温).现在正常使用铂热电阻Pt100,(也有Pt50,100和50代表热电阻在0度时的阻值,在旧分度号中用BA1,BA2来表示,BA1在0度时阻值为46欧姆,在工业上也有用铜电阻,分度号为CU50和CU100,但测温范围较小,在一50~~150之间.在一些特殊场合还有铟电阻,锰电阻等) 2.热电偶测量温度的基本原理是热电效应.二次表是一个检伏计或为了提高精度时使用电子电位差计.电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的,二次表是一个不平衡电桥. 3.由热电偶测温原理可知,只有在其冷端温度恒定时,被测温度才与热电势成单值函数关系.在实际使用中,就用一种热电特性与相应热电偶特性相似的廉价的连接导线(也称为补偿导线),使热电偶冷端引伸到温度相对恒定的地方(最好为0度),如用铜--康铜做补偿导线来引申镍铬---镍硅热电阻.因此,热电偶到二次表延长线是两根.热电阻与二次表之间是用铜导线连接的,为了减小环境变化引起的测量误差,一般均采用三线制接法,其中有两根导线将热电阻串联于相邻的两个桥臂上,另一根导线是引来电源.使用时要求每根导线的电阻值与调整电阻之和都保证为5欧姆(±. dgiz,2008-01-22 23:05:58 工作中的现场判断. 1.热电偶. 热电偶有正负极,补偿导线也有正负之分.首先保证连接,配置确.在运行中,常见的有短路,断路,接触不良(有万用表可判断)和变质(根据表面颜色来鉴别).检查时,要使热电偶与二次表分开.我在实践中判断的方法,供大家参考:用工具短接二次表上的补偿线,表指示室温(不是的话,表坏),再短接热电偶接线端子,表批示热电偶所在的环境温度(不是,补偿线有故障),再用万用表mv档大体估量热电偶的热电势(如正常,请检查工艺). 2.热电阻.不外乎短路,和断路.用万用表可判断.在运行中.怀疑短路,只要将电阻端拆下一个线头,看显示仪表,如到最大,热电阻短路.回零,导线短路.保证正常连接和配置时,表值显示低或不稳,保护管可能性进水了.显示最大,热电阻断路.显示最小,短路.

热电阻与热电偶的区别

热电阻与热电偶 1. 外形: 热电阻接三根线,热电偶接两根线 2. 材料 热电阻可以用普通的线,热电偶一定要用补偿线。 热电阻使用贵金属制造,价格稍高一点,一般来说相差不大 3. 测温时间 热电阻检测温度似乎更快一些。 4. 测温原理 热电阻是通过电阻大小的变化来反映温度的变化;热电偶是通过电势的变化来反映温度变化 (热电阻是基于随温度的升高电阻而增大的原理工作的,而热电偶是基于随温度的升高输出电势而增大的原理工作的。) 热电阻是根据导体(测温电阻)的电阻值随温度而变化的特性而工作的。 热电偶是由两种不同材料的金属制作出来的,其中一头两种金属焊接在一起,作为测温端(热端),另一头两根线(冷端)接入仪表。当冷端与热端有温度差时,热电偶回路中就会有电势产生,根据该电势差查该种型号热电偶的分度表,就能知道热端的温度。 5. 精度 热电阻精度高一点,热电偶的测温范围一般比热电阻宽。 6. 信号类型 一个是变化的毫伏电压,一个是变化的电阻.。) 7. 处理这两种信号的温控仪(智能型除外 热电阻是利用电阻的温度特性来测量温度的.热电偶是一种把温度转换成电压信号的温度传感器.热电阻性能稳定,特别是铂电阻,性能很稳定,常用作标准测温器件.在-259.34至630.74度之间,可以用铂电阻温度计作为温度测量的基准.热电偶是由两种自由电子浓度不同的金属(合金)组成,其端点焊接在一起.热电偶的特点是测量温度的范围宽,但灵敏度不高,且产生的热电势较低,抗干扰能力较弱. 8. 输入功能:

输入信号为小电压,常为毫伏电压(热电偶),毫伏电压范围为:–100mV ~+100mV,主要用于热电偶信号的测量。 TCB铂铑30 铂铑60: 0℃~1820℃对映0~14mV TCT铜-铜镍: -270℃~400℃对映-6.3~21mV TCEEA镍铬-铜镍: -270℃~1000℃对映-10~77mV TCJ铁-铜镍: -210℃~1200℃对映-8.1~69.536mV TCKEU镍铬-镍硅: -270℃~1372℃对映-6.5~55mV TCN镍铬硅-镍硅: -270℃~1300℃对映-4.4~48mV TCR铂铑13-铂热电偶: 0℃~1700℃对映0~21mV TCS铂铑10: -50℃~1770℃对映-0.3~19mV 输入信号为电阻(热电阻)信号,可用于热电阻或应变片电阻信号的测量,测量范围为1~500Ω,接线方式为三线制接线。 RTDPt100 18.49~391Ω对映-200~850度 RTDPt10 1.849~39.1Ω对映-200~850度 RTD Cu100 78~166Ω对映-50~150度 RTD Cu10 7.8~16.6Ω对映-50~150度 RTD Cu50 39~82Ω对映-50~150度

热电偶热电阻产品选型样本详解

产品选型样本 温度仪表 一、热电偶 1、WR□□-□□□系列装配式热电偶 工业用装配式热电偶是一种常用温度传感器,通常 与温度变送器、调节器及显示仪表等配套使用,组成过程 控制系统。可以直接测量各种生产过程中液体、蒸汽和 气体介质及固体表面温度。 □型号构成表 型号举例:WRK2-230表示感温元件为镍铬-镍硅、双支、固定螺纹、保护管直径为Ф16mm 金属管(不作特殊标注为1Cr18Ni9Ti)的装配式热电偶。

□主要技术指标│ ◎热响应时间 在温度出现阶跃变化时,热电偶的输出变化至相当于该阶跃变化的50%所需要的时间,称为热响应时间。用t0.5表示。

◎公称压力 一般是指在工作温度下,保护管所能承受的静态外压而不破裂。实际上,容许工作压力不仅与保护管材料、直径、壁厚有关,而且还与其结构、安装方法、置入深度以及被测介质的流速和种类有关。 ◎热电偶最小插入深度 对陶瓷保护管而言,应不小于其保护管直径的8~10倍;对金属及合金保护管,应大于其保护管直径的10倍以上 ◎绝缘电阻 常温绝缘电阻的试验电压为直流500±50V,测量常温绝缘电阻的大气条件为:温度15~35℃,相对湿度45%,大气压力86~106KPa。热电偶在该条件下放置时间不小于2小时。 a.对于长度超过1米的热电偶,它的常温绝缘电阻值与其长度的乘积应不小于100MW·m。 即:Rr·L ≥100MW·m L ≥1m 式中:Rr-热电偶的常温绝缘电阻值,MW L -热电偶的长度,m b.对于长度等于或不足1m的热电偶,它的常温绝缘电阻值应不小于100MW。 ◎接线盒结构(统一设计型) ◎外形尺寸

二等铂电阻温度计标准装置

二等铂电阻温度计标准装置

作者:日期:

计量标准技术报告 计量标准名称二等铂电阻温度计标准装置计量标准负责人 建标单位名称(公章)

填写日期

目录 一、建立计量标准的目的????????????????????( ) 二、计量标准的工作原理及其组成??????????????( ) 三、计量标准器及主要配套设备????????????????( ) 四、计量标准的主要技术指标???????????????( ) 五、环境条件???????????????????????( ) 六、计量标准的量值溯源和传递框图???????????????( ) 七、计量标准的重复性试验???????????????????( ) 八、计量标准的稳定性考核????????????????????( ) 九、检定或校准结果的测量不确定度评定?????????????( ) 十、检定或校准结果的验证???????????????????( ) 十一、结论??????????????????????????( ) 十二、附加说明?????????????????????????( )

一、建立计量标准的目的 为了加强计量监督管理, 保障国家计量单位制的统一和量值的准确可靠, 有利于本公司的计量校准能力的提升,开展工业铂、铜热电阻的校准工作,满足本单位及周边地区企事业单位的工作使用要求。 、计量标准的工作原理及其组成 将标准铂电阻温度计与被检的工业铂、铜热电阻按规定的要求插入恒温槽中。恒温槽温度分别设定在0℃、100℃,待温度稳定并达到热平衡后,用电测设备分别测量标准铂电阻温度计与被检工业铂、铜热电阻的电阻值,再根据相应公式进行换算、计算,由此即可计算出被检热电阻的R0 、R100 、W100 等值,并根据检定规程对被检热电阻是否合格或是否符合相应等级进行判断。

热电阻热电偶热敏电阻工作原理

热电阻热电偶热敏电阻工作原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 热电阻材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻种类 (1)精密型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制。 (2)铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点: ①体积小,内部无空气隙,热惯性上,测量滞后小; ②机械性能好、耐振,抗冲击; ③能弯曲,便于安装; ④使用寿命长。 (3)端面热电阻:端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 工业上常用金属热电阻 从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系

试验一热电偶与热电阻的特性试验

实验一热电偶与热电阻的特性实验 一、实验目的 1、熟悉热电偶与热电阻的结构。 2、掌握热电偶与热电阻的测温原理和方法。 3、掌握热电偶分度表与热电阻分度表的使用方法。 4、熟悉恒温器的使用方法。 二、实验设备 1、K型和E型热电偶各1支 2、Pt100和Cu50热电阻各1支 3、加热恒温装置1套 4、数字万用表1块 5、水银温度计1支 6、热电偶与热电阻分度表各1套 三、实验原理 1、热电偶测温原理 将两种不同性质导体的一端焊接起来,即构成一支热电偶。当热电偶的两端温度不同时,在热电偶回路中将产生热电势;如果冷端温度恒定,则热电势只与热端温度有关。因此测出热电势,查相应型号的热电偶分度表,即可测得热端温度。 2、热电阻测温原理 将热电阻插在测温场所,被测温度变化会引起金属电阻值变化,测出电阻值,查相应型号的热电阻分度表,便可测得温度的数值。 四、温度控制器的使用方法 图1 温度控制器操作面板示意图

操作方法:以温度控制在40℃为例,将控制器电源开关打到开的位置后,指示灯亮,开始加温,温度数字显示表的温度值应慢慢增加。当指示灯开始闪烁,表明已达到恒温的温度值。如果此时恒温温度值高于或低于40℃,则需对设定值进行调整。 由于恒温箱有一定的升温惯性,为了提高实验的效率,最好先将温度设定值定得稍低于40℃,例如37℃。当温度接近40℃恒温时,再稍微提高温度设定值。当温度稳定在40℃时,就开始测量各支热电偶的热电势以及各支热电阻的电阻值,并做好记录。 40℃档实验结束后,进行50℃、60℃档实验,操作方法相同。 五、实验步骤 1、了解恒温箱工作原理。打开恒温箱,查看恒温箱的内部结构。理解后封闭好恒温箱。 2、将两支热电偶、两支热电阻及水银温度计的测温端同时插入恒温装置相应孔内。 3、用万用表的mV档分别测出K型和E型热电偶输出的热电势值;用万用表的欧姆档分别测出Pt100和Cu50热电阻的电阻值,记录数据;读取水银温度计数值,测出当前恒温炉内温度,记为t0。 4、打开温度控制器电源,用验电笔测试控制器外壳是否带电,如带电必须处理好后方可进行实验操作。 5、设定控制温度值为36℃,然后开始恒温箱加热。等待恒温箱升温并控制恒定在40℃时,用万用表的mV档分别测出K型和E型热电偶输出的热电势值,用万用表的欧姆档分别测出Pt100和Cu50热电阻的电阻值,记录数据。 6、将控制温度依次设定在46℃和56℃,重复第3步,控制恒定在50℃及60℃,并记录数据。 7、完成后,分析结果,填写实验报告。 8、关闭加热恒温装置电源,复原实验器具,清理实验现场,整理数据并完成实验报告。

热电阻型号规格

安徽天康热电阻(thermal resistor)是中低温区常用的一种温度检测器。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻大都由纯金属材料制成,目前应用多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。金属热电阻常用的感温材料种类较多,常用的是铂丝。工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍等。热电阻的工作原理热电阻的测温原理是基于导体或半导体的电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。热电阻大都由纯金属材料制成,目前应用多的是铂和铜,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。安徽天康热电阻的种类:Pt100是铂热电阻:它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8m屮m,小可达φmm。与普通型热电阻相比,它有下列优点:1、体积小,内部无空气隙,热惯性上,测量滞后小;2、机械性能好、耐振,抗冲击;3、能弯曲,便

于安装;4、使用寿命长。端面热电阻端面热电阻感 温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴 向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于 测量轴瓦和其他机件的端面温度。一体化热电阻:一般 由测温探头(热电阻传感器)和两线制固体电子单元组成的电阻。采 用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化热 电阻温度变送器是由基准单元、R/V转换单元、线性电路、反接保护、 限流保护、V/I转换单元等组成。输入热电阻 Cu50,Cu100,pt100,tp1000 输出二线制4-20mA DC 使用温度 -25-85 ℃负载能力< 600 Ω。热电阻的实际应用 目前应用广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和 氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越 小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适 用于无腐蚀介质,超过150易被氧化。中国常用的有R0=10Ω、 R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、 Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,热电阻型号,它们 的分度号为Cu50和Cu100。其中Pt100和Cu50的应用为广泛。热位和插入深度时要注意以下几点:1、为了使热电阻的测量端与被 测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门, 弯头及管道和设备的死角附近装设热电阻。2、带有保护套管的热 电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有 足够的插入深度:3、对于测量管道中心流体温度的热电阻,一

相关文档
最新文档