变压器不平衡电流产生原因及消除方法(针对变压器的差动保护) 2020.08.03

变压器不平衡电流产生原因及消除方法(针对变压器的差动保护) 2020.08.03
变压器不平衡电流产生原因及消除方法(针对变压器的差动保护) 2020.08.03

变压器不平衡电流产生原因及消除方法

(针对变压器的差动保护)

在电厂的联络段的开关改造完后,投入新柜子,但是1#隔离变的高低压侧跳闸,显示的为差动保护,经过技术人员调整了电流互感器接线后,运行正常。难道是调整接线就能改变差动保护的局面。

查阅《电力工程电气设计手册二次部分》P65,对于Y,d接线的变压器差动回路,需计算使所选用的两侧电流互感器在变压器以额定容量运行时,其两侧电流互感器的二次电流能使差动继电器达到平衡,通常为达到此目的,将变压器Y侧的电流互感器的额定一次电流增大√3倍。为何??

针对以上内容进行分析,讨论解决方法。

1.由于变压器的组别为Y/Δ的方法,就会造成相位差,接线通常为Y/d11,造成了高低压侧的电流相位差为30°。就会因为相位差造成了不平衡电流。绕组的接线图和相量图如下所示:

由图可以看出,Ia超前于IA 30°,就是低压侧的三角形接线超

前于高压侧的星形接线30°,通过相量图可以看出相量三角形中,I A(I a’) =I a+I b’。这样就出现了不平衡电流,这样的电流是会造成差动保护的。

解决的方法首先就是电流互感器的接线选型,在变压器的Y侧选用Δ的电流互感器,在变压器的Δ选用Y形的电流互感器,就如下图所示:

采用这样的接线就是为补偿相位的,要点就是如何能补偿相位的。可以看下图的:

如何判断IA2-IB2与IA2?是同一相位的,通过以下两个相量图可以看得出来的。如何还是因存在着相位差产生不平衡电流,就会在差动继电器有电流,差动继电器会动作的,这三个差动继电器出线侧都是接地的,而且还是一点接地的。这与当初的继电保护改造时所想的一样。

这都是Δ形超前于Y形30°,从左面图可以看出IA2-IB2与IA2?是同一相位的,这样就解决了电流互感器的相位差问题,下面就是如何解决大小相差了√3的问题。即高压侧的电流互感器的变比应该增大

√3倍,这样才可以的。

采用相位补偿方式接线后,在电流互感器绕组接成三角形的一侧,流入差动臂中的电流要比电流互感器的二次电流大√3,而变压器的三角形侧的电流互感器的二次电流确没有增大,为了保证在正常工作时及外部故障时差动回路中两差动臂电流大小相等,可通过正确选择电流互感器变比来解决。

Y侧的变比:K=√3IY

5

Δ侧的变比为:K=I?

5

实际的情况是如何实现的?实际变比可能与计算变比不一致。因电流互感器的变比不可能那么合适的。

这样能看出来,还是存在着不平衡电流的。在外部故障时,此电流会迅速增大的。

对于变压器还存在着诸多的不平衡电流原因,电流互感器的型号不同,二次负载阻抗和短路电流倍数不同时,都会产生励磁电流增大的。

这次电厂改造的开关柜投入运行后,变压器的差动动作,可以分析出有以下原因:

TA有极性,也就是同名端,是指向母线还是指向的变压器,这一点很关键的,相序接反会导致误动作的,正常相序为正序,A相为基准,B相比A相超前120°,C相比B相超前120°,如果是相序接反,会形成差电流,导致误动作的。

变压器一二次侧电流计算

变压器一、二次额定电流计算 容量处电流,系数相乘求。 六千零点一,十千点零六。 低压流好算,容量一倍半。 说明:通常我们说变压器多大,是指额定容量而言,如何通过容量很快算出变压器一、二次额定电流?口诀说明了只要用变压器容量数(千伏安数)乘以系数,便可得出额定电流。 “6 千乘零点1,10千乘点零6”是指一次电压为6千伏的三相变压器,它的一次额定电流为容量数乘0.1,即千伏安数乘0.1。一次电压为10千伏的三相变压器,一次额定电流为容量数乘0.06,即千伏安数乘0.06。以上两种变压的二次侧(低压侧)额定电流皆为千伏安数乘1.5,这就是“低压流好算,容量一倍半”的意思。 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。

已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、 380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的 10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9

变压器差的动保护原理(详细)

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

什么叫变压器的不平衡电流

什么叫变压器的不平衡电流?有什么要求? 变压器的不平衡电流系统指三相变压器绕组之间的电流差而言。三相三线式变压器中,各相负荷的不平衡度不许超过20%,在三相四线式变压器中,不平衡电流引起的中性线电流不许超过低压绕组额定电流的25%。如不符合上述规定,应进行调整负荷。 变压器长时间在极限温度下运行有哪些危害? 答:一般变压气的主要绝缘是A级绝缘,规定最高使用温度为105℃,变压器在运行中绕组的温度要比上层油温高10~15℃.如果运行中的变压器上层油温总在80~90℃左右,也就是绕组经常在95~105℃左右,就会因温度过高绝缘老化严重,加快绝缘油的劣化,影响使用寿命。 断路器电动合闸时应注意:1)操作把手必须扭到终点位置,监视电流表,当红灯亮后将把手返回,操作把手返回过早可能造成合不上闸。2)油断路器合上以后,注意直流电流表应返回,防止接触器KII保持,烧毁合闸线圈。3)油断路器合上以后,注意检查机械拉合闸位置指示、传动杆、支持绝缘子等应正常,内部无异常。 如何正确进行电器设备停电后的验电工作 1)设备停电后进行验电时,应使用相应电压等级而合格的接触式验电器,在装设接地线或合接地刀闸处对各相分别验电。验电前,应先在有电设备上进行试验,确证验电器良好。2)无法在有电设备上进行试验时可用高压发生器等确证验电器良好。3)如果在木杆、木梯或木架上验电,不接地线不能指示者,可在验电器绝缘杆尾部接上接地线,但经运行值班负责人或工作负责人许可。 变压器油位过低,对运行有何危害啊 变压器油位过低会使轻瓦斯保护动作,严重缺油时,变压器内部铁芯线圈暴露在空气中,容易绝缘受潮(并且影响带负荷散热)发生引线放电与绝缘击穿事故。 电流互感器运行中为什么二次侧不准开路 二次开路会长生以下后果:1出现的高电压会危及人身安全及设备安全;2铁心高度饱和将在铁心中产生较大的剩磁,使误差增大;3长时间作用可能造成铁心过热

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器差动保护计算要领

变压器比率制动纵差保护 整定计算步骤及要领 1.计算制动电流启动值 正常运行中变压器负荷电流通常在额定电流I e 以下,不平衡I bp 电流很小, 无需比率制动,差动动作电流I cd 为恒定,不随制动电流的增大而增大。 所以制动电流启动值:I Zd qd =(0.8~1.0)I e /n L 式中:n L -电流互感器变比 制动电流启动值也就是一折线的拐点电流值。 2.计算差动保护启动电流值 差动保护启动电流(门槛值)现场一般取:I cd qd =(0.4~0.7)I e /n L 如果有条件,最好在现场实测变压器的不平衡电流I bph ,作为差动启动电流 整定计算的依据。 3.计算差动保护速断电流值 差动速断电流值:I cd sd =(6~8)I e /n L 4.计算比率制动系数 比率制动系数K zd 与变压器外部三相最大短路电流、制动电流启动值相关, 与差动电流启动值、速断值相关。 计算比率制动系数:K zd = e I .max )3(I e I 23.0.max )3(I 5.40--外外 5.计算制动电流 制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd 举 例 一、已知参数: 主变容量=10000KVA ;额定电压=35/10.5KV ;

计算变压器一次侧额定电流=35 310000?=165(A ); 一次侧CT 变比=300/5、CT 二次额定电流=60 165=2.75(A ) 主变阻抗电压百分比=7.33% 通过短路电流计算已知主变外部三相最大短路电流=2095(A ) 二、计算定值 1.计算制动电流启动定值:I Zd qd =1.0I e /n L =60 165=2.75(A ) 2.计算差动启动电流定值:I cd qd =0.7I 2e =0.7×2.75=1.925 取I cd qd =2.0 3.计算差动速断电流定值:I cd sd =8I e /n L =60 1658?= 22(A ) 4. 计算比率制动系数:K zd =e max )3(e .max )3(I .I I 23.0I 5.40--外外 =165 209516523.02095I 5.40-?-? =0.468 取K zd =0.5 5.计算制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd =(22-2)/0.5+2.75 =42.75A 取I Zd =43A 说明:本计算公式中的代表符号与说明书不一致,在使用时应注意。

分析主变纵差动保护不平衡电流原因及解决方法

分析主变纵差动保护不平衡电流原因及解 决方法 摘要:本文从对变压器纵差保护原理进行阐述的基础上,较详细地分析了纵差保护不平衡电流的形成原因,并提出了解决变压器纵差保护中不平衡电流的方法。 关键词:主变;纵差保护;不平衡电流;解决方法 前言:纵差动保护是变电站主变压器的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,使得变压器纵差保护所固有原理性矛盾更加突显。 一、变压器纵差保护原理 纵差保护作为变压器内部故障的主保护,将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于“0”,但是实际上在外

部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 二、纵差保护不平衡电流分析 1、稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 (1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

变压器差动电流计算原理之变压器CT的接线方式

上一期我们和大家一起了解了变压器的接线组别,定量分析了变压器高低压侧一次电流的相位、幅值关系。我们的继电保护装置在进行差流计算时使用的是二次电流,因此需要经过电流互感器(CT)将一次电流转换为供保护使用的二次电流。本期我们和大家一起来讨论一下变压器CT的接线方式。 1、CT的极性 我们先来了解一下CT接线的极性问题。这就需要搞清楚几个名词:极性端、同名端、减极性。 极性端一般用“*”标记,在图中,一次侧P1为极性端,P2为非极性端,一般设计P1装于母线侧(或变压器侧),P2装于负荷侧。二次侧S1为极性端,S2为非极性端。P1和S1(P2和S2)互为同名端。 至于减极性,我们只需要简单的记住:若CT采用减极性,对于一次绕组电流从极性端流入,对于二次绕组电流从极性端流出。 如果将CT二次回路断开,将保护装置直接串联在一次回路中,流过装置的电流方向与CT减极性标注的二次电流方向相同。所以减极性标注对于判断二次电流的流向非常直观。

所以我国CT均采用减极性标注。 2、变压器两侧CT的接线方式 在模拟型变压器保护中,为了相位校正的需要CT有些情况下需要接成三角形。现在的微机型保护中,相位校正都在软件中实现,所以变压器两侧CT均使用Y接线。以下图所示的Yd-11变压器两侧CT的接线方式为例:

如图所示的CT接线形式,其高压侧及低压侧电流互感器二次绕组中,靠近变压器侧的端子连在一起,我们称为封CT的变压器侧。如果是靠近母线侧的二次绕组端子连在一起,则称为封CT的母线侧。 设高压侧电流互感器变比为nH,低压侧电流互感器变比为nL。分析流入保护装置的二次电流(Iha,Ihb,Ihc,Ila,Ilb,Ilc)与变压器一次电流(IHa,IHb,IHc,ILa,ILb,ILc)的对应关系。从图中可以看出高压侧二次电流从极性端流出,流入保护装置。低压侧二次电流从保护装置流出,从极性端流入CT二次绕组。若程序设定二次电流的方向以流入保护装置的(A,B,C)端为正方向,则有:

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

智能变电站变压器差动保护的不平衡电流产生原因分析

智能变电站变压器差动保护的不平衡电流产生原因分析 发表时间:2018-06-27T09:41:18.663Z 来源:《电力设备》2018年第6期作者:郭财[导读] 摘要:本文扼要分析智能变电站变压器合并单元采样差动保护的工作原理,分析导致智能变电站变压器差动保护产生不平衡电流异常的原因,并针对智能变电站变压器差动保护不平衡电流产生提出有效的防范措施,提高智能变电站变压器差动保护动作的正确性,防止保护装置误动,从而保证变压器的安全稳定运行。 (国网青海省电力公司检修公司青海西宁 810007)摘要:本文扼要分析智能变电站变压器合并单元采样差动保护的工作原理,分析导致智能变电站变压器差动保护产生不平衡电流异常的原因,并针对智能变电站变压器差动保护不平衡电流产生提出有效的防范措施,提高智能变电站变压器差动保护动作的正确性,防止保护装置误动,从而保证变压器的安全稳定运行。 关键词:智能变电站;差动保护;不平衡;合并单元前言 变压器的纵差保护作为变压器故障时的主保护,差动保护的保护范围是构成变压器差动保护的各侧电流互感器之间包围的设备,可以反映变压器的引线、内部线圈的匝间短路、大电流接地系统中线圈及引线的接地等故障。变压器的差动保护是按照循环电流原理构成的,变压器各侧装设电流互感器,当各侧电流互感器的同极性相同一般减极性设置电流从母线流向变压器,在正常运行或外部故障时,各侧的二次电流大小相等、方向相反、差动电流为零,因此差动保护不动作。 与常规变电站相比智能变电站交流采样采用合并单元,在一次设备就近将来自电压、电流互感器的交流量通过合并单元进行时间数字的组合,组合后将采样数据以数字信号发送出去供保护装置、测控装置等使用。在变压器实际运行中由于各种原因引起的不平衡电流使得差动电流增大,就可能造成保护误动。在常规变电站内,因运行时间较长对各种不平衡电流已经有较完善防范措施,所以不至导致保护误动。但智能变电站推广技术较短,相关技术不是很成熟,尤其是合并单元在处理数据采样及传输中出现问题较多,引起电流不平衡的现象较多,易引起保护误动,给电力系统稳定性带来较大隐患。 1、产生的原因 变压器正常运行的状态时,会产生不平衡电流,从而对差动保护造成影响。常规变电站变压器差动不平衡电流的产生的原因有:在变压器正常运行时产生较大的励磁涌流,比如变压器在空载合闸的状态,或在切除故障中突然产生电压时有较大的励磁涌流,通常能达到额定电流的7倍左右,通过CT以二次电流的形式全部进入到保护当中,从而产生不平衡电流;变压器两侧接线不同产生的不平衡电流,变压器两侧的电流相位是由变压器的接线方式决定的,不同的接线方式,两侧的电流有一定相位差,即CT上两侧二次电流值虽然一样,但通过参考电压折算会产生不平衡电流;由CT变比误差产生的不平衡电流;由计算变比与标准变比不同产生的不平衡电流及带负荷调整变压器分接头位置改变产生的不平衡电流。 相对于常规站,智能变电站中由于引进合并单元,且运维人员对设备原理认识欠缺验收不到位等原因导致变压器差动异常时有发生。由合并单元引起的的不平衡原因,有因各侧合并单元程序设计缺陷造成不同电流、电压量之间不同步产生不平衡电流;也有因智能变电站保护电流电压接收需要投入SV接收漏投产生不平衡电流;还有因装置虚端子额定延时错误造成不平衡电流。 2、影响和防范措施 在运维中,常规变电站中确定的几条不平衡电流在运维中已有比较完善的防范措施,下面就智能变电站变压器差动保护中的几种产生不平衡电流原因和防范措施进行阐述。 2.1 变压器合并单元程序设计缺陷的影响和防范措施 由于装置设计中的软、硬件等出现问题导致合并单元发送出数据异常导致保护误动。应增加出厂前的测试项目,对要使用的装置软件硬件都必须经过国网公司检测合格且版本硬件均与入网测试合格的产品一致。加强现场验收由于现场调试中对合并单元验收不重视在测试中部分项目未开展,应在验收细则中增加该类验收项目。并采用专用的合并单元校验仪测试合并单元的绝对延时、稳态性能检验、动态性能检验等测试项目,测试装置数据正确性。 2.2 变压器压板未正确投入的影响和防范措施 智能变电站大量减少硬压板的设置,只有检修压板为硬压板,保护装置广泛采用软压板。SV软压板(数据接收软压板)的主要功能是按MU投入状态控制本端是否接收处理采样数据。智能变电站继电保护装置模拟量输入要求一个MU设置一个SV压板,此压板作用如下:SV接收软压板投入时,该链路中的采样值才参与保护计算,否则不参与保护计算同时显示为0;SV接收软压板投入时,对该链路状态进行检测,包括断链、失步和接收不匹配;SV接收软压板投入时,对该链路所包含采样进行品质异常、检修不一致、双AD不一致、交流断线和交流反序的判别。SV接收软压板位于保护装置内部,其功能是控制保护装置是否处理SV报文中的数据。此压板相当于PT、CT的二次连线。退出间隔SV接收软压板相当于封CT,退出母线电压SV接收软压板相当于断开PT二次。退出SV接收软压板后,保护装置面板上会显示该SV报文的电流信息,但不用于保护计算以及逻辑判断。当保护装置SV软压板与实际运行状态不一致时就会造成保护误动或拒动,造成事故扩大。应加强智能变电站保护装置的“SV投入”软压板的管理,在运规编制中严格执行国网间隔检修压板投退要求进行编写,保证运规正确性,运维人员在操作过程中,应严格执行操作票制度,并与运规一致。 2.3 额定延时错误的影响和防范措施 主变保护装置采样来自不同合并单元时,各侧测样数据同步问题可能会导致保护装置采样数据异常,导致保护不正确动作。合并单元的延时主要是由合并单元自身采样到各插件数据传输延时导致。当交流电流、电压经合并单元转换为数字量输出时就会产生延时,延时主要有A/D变换时间、插件数据接收时间、CPU数据处理时间和光口插件数据发送延时。不同厂家由于软、硬件不同,合并单元的延时也不相同。为了消除保护装置接收到不同合并单元采样数据不同步的问题,通常采用额定延时来消除,即所有合并单元发出的电流电压都等待一定的时间后再将电流电压输出给保护测控装置,保护测控装置解析数据报文中的时标,并通过额定延时进行时间或相角补偿,来消除各侧采样不同步的影响。为了避免由于矢量计算导致的差流及合并单元额定延时不正确对保护同步计算产生较大影响,验收调试中运维人员必须清楚装置采样同步原理和实现方法并增加对合并单元对额定延时的测试,以避免因多个合并单元额定延时设置错误导致的保护异常。 3、结语

很实用-很准的计算变压器资料

MOSFET开关管工作的最大占空比Dmax: 式中:Vor为副边折射到原边的反射电压,当输入为AC220V时反射电压为135V;VminDC为整流后的最低直流电压;VDS为MOSFET功率管导通时D与S极间电压,一般取10V。 变压器原边绕组电流峰值IPK为: 式中:η为变压器的转换效率;Po为输出额定功率,单位为W。 变压器原边电感量LP: 式中:Ts为开关管的周期(s);LP单位为H。 变压器的气隙lg:

式中:Ae为磁芯的有效截面积(cm2);△B为磁芯工作磁感应强度变化值(T);Lp单位取H,IPK单位取A,lg单位为mm。 变压器磁芯 反激式变换器功率通常较小,一般选用铁氧体磁芯作为变压器磁芯,其功率容量AP为 式中:AQ为磁芯窗口面积,单位为cm2;Ae为磁芯的有效截面积,单位为cm2;Po 是变压器的标称输出功率,单位为W;fs为开关管的开关频率;Bm为磁芯最大磁感应强度,单位为T;δ为线圈导线的电流密度,通常取200~300A/cm2,η是变压器的转换效率;Km 为窗口填充系数,一般为0.2~0.4;KC为磁芯的填充系数,对于铁氧体为1.0。 根据求得的AP值选择余量稍大的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减少漏感。 变压器原边匝数NP: 式中:△B为磁芯工作磁感应强度变化值(T),Ae单位为cm2,Ts单位为s。 变压器副边匝数Ns:

式中:VD为变压器二次侧整流二极管导通的正向压降。 功率开关管的选择 开关管的最小电压应力UDS 一般选择DS间击穿电压应比式(9)计算值稍大的MOSFET功率管。 绕组电阻值R: 式中:MUT为平均每匝导线长度(cm);N为导线匝数; 为20℃时导线每cm的电阻值(μΩ)。 绕组铜耗PCU为: 原、副边绕组电阻值可通过求绕组电阻值R的公式求出,当求原边绕组铜耗时,电流用原边峰值电流IPK来计算;求副边绕组铜耗时,电流用输出电流Io来计算。 磁芯损耗 磁芯损耗取决于工作频率、工作磁感应强度、电路工作状态和所选用的磁芯材料的性能。对于双极性开关变压器,磁芯损耗PC:

变压器差动保护的功能及定值计算

差动保护的功能及定值计算 1 微机变压器差动保护功能 1.1比率制动式差动保护 比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路故障。当突变量大于0.25倍差动定值时投入,动作判据为; {Icd≥Icdset 当Izd≤Izdset时, Icd≥Icdset+K1(Izd-Izdset) 当Izd〉Izdset时, 电流方向以实际的功率方向为准。其中Icd为差电流: Icdset为差动保护整定计算值; Icdset为差动保护门槛计算值; Izd为保护制动电流 K1为比率制动系数(0.4~0.7)可选; H为变压器35kV侧流进差动保护实际电流; L为变压器10kV侧流进差动保护实际电流; 1. 2二次谐波闭锁功能 变压器投入时,励磁涌值为变压器额定电流的5~8倍,励磁涌中含有63%比率的二次谐波电流Im2。微机差动保护设置了二次谐波闭锁差动保护功能,来防止变压器空载投入时励磁涌流导致差动保护误动作。二次谐波制动功能的判据如下: Icd2≥K2Icd 式中,Icd为差动电流的基波分量; Icd2为差动电流中的二次谐波分量; K2为二次谐波制动系数(0.1~0.4)可选; 1.3差动速断保护 当变压器内部发生严重短路时,短路电流很大,由于铁芯饱和输出电压波形将发生畸变,为提高保护的可靠性和动作速度,差速断保护不受二次谐波闭锁条件限制直接动作,此功能由软件控制投入或退出。 1.4差流过大告警 动作判据为: Icd≥Icdset/2 式中,Icd为任一相的差动电流; Icdset为差动保护最小定值; 任一相差动电流大于差动电流定值一半时,运行超过3S后,发出差流过大告警信号。此功能由软件控制投入或退出。 1.5电流互感器二次回路断线监视功能 微机差动保护与传统常规差动保护在接线不同之处是: 为了判断电流互感器TA二次断线,差保高压侧TA必须接成星形接线,保护装置给出以下判据为: | a+ b+ c|>0.5A时,保护会发出断线警告信号,并由微机软件控制是否闭锁差动保护。此项功能均由自适应的门槛值控制,无需整定定值。 1.6变压器高压侧相位差与平衡补偿 Y,d——11组双绕组变压器,Y侧电流相位需要校正相位,常规接线高压侧TA的二次侧接成d型接线,而微机差动保护具有软件校正功能,只要投入Y/d功能即可,就校正了相位,相当于把二次接成了d型接线,TA二次输出线电流。 1.7变压器低压侧电流平衡系数 差保接线,变压器低压侧TA与高压侧TA二次电流平衡补偿,常规差保接线靠适当选择变压器两侧TA变比来实现,而微机差动保护是靠软件功能来完成,以高压侧二次电流为基

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。 ②电流互感器计算变比与实际变比不同 由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

变压器纵差保护中不平衡电流的克服方法

变压器纵差保护中不平衡电流的克服方法 纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。 1.变压器纵差保护基本原理 纵差保护在发电机上的应用比较简单,但是作为变压器内部故障的主保护,纵差保护将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。 当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于0,但是实际上在外部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,

因为外部短路电流大,非凡是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 2.纵差保护不平衡电流分析 2.1稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变

变压器差动保护的平衡系数

变压器微机差动保护平衡系数说明 1、影响变压器差动保护差流计算的因素 1)、变压器高低压侧电流幅值不同造成的不平衡。由于变压器高低压侧电压等级不同,所以变压器高低压侧的电流幅值不同。 2)、变压器高低压侧电流相位不同造成的不平衡。由于变压器接线方式导致高低压侧电压的相位不同,所以变压器高低压侧的电流相位也不同。 3)、变压器高低压侧电流互感器的不匹配造成的不平衡。由于电流互感器的变比是一个标准的数值,而变压器虽然容量是一个标准值,但其额定电流是一个不规则的数,所以,电流互感器的选择并不考虑其对差流的影响。 2、消除电流不平衡的方法 1)、通过引入平衡系数消除高低压侧电流幅值不同及高低压侧电流互感器不匹配造成的不平衡。 2)、根据变压器高低压侧电流的相位关系,通过数学公式的计算,消除变压器高低压侧电流相位不同造成的不平衡。 3、平衡系数概念和计算方法 1)、概念:两个不同单位或相同单位而基准不同的物量归算到同一单位或同一基准时所用到的比例系数就是平衡系数。举例如下: a、一斤大米3元,一斤白面2元,归算到大米侧,白面的平衡系数为2/3。 b、一斤大米3元,一斤白面2元,归算到白面侧,大米的平衡系数为3/2。 c、一斤大米3元,一斤白面2元,一斤鸡蛋4元,归算到鸡蛋侧,大米的平衡系数为3/4,白面的平衡系数为1/2。 2)、计算方法

主变的型号为100000kVA-110kV/35kV,高压侧一次额定电流:Ieg1=524.9A,低压侧一次额定电流:Ie d1=1649.6A,高压侧电流互感器变比:800/5,低压侧电流互感器变比:2000/1。 a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧。 I12=800*110/35=2514.3A,K ph2=2000/ I12=2000/2514.3=0.80。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 K ph1=800/Ieg1=800/524.9=1.52, K ph2=2000/Ie d1=2000/1649.6=1.21。 举例验证: 高压侧一次电流Ig1=450A,低压侧一次电流Id2=1414.3A。 高压侧二次电流实际采样为:Ig2=Ig1/800=450/800=0.5625; 低压侧二次电流实际采样为:I d2=I d1/2000=1414.3/2000=0.7072; a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧,K ph2=0.80。 I12=800*110/35=2514.3A,K ph1=2000/ I12=2000/2514.3=0.80 差流I d= Ig2*1-I d1* K ph2=0.5625*1-0.7072*0.80=0.00326≈0。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧,K ph1=1.26。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26 差流I d= Ig2* K ph1-I d1*1 =0.5625*1.26-0.7072*1=0.00326≈0。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 差流I d= Ig2*K ph1-I d2*K ph2=0.5625*1.52-0.7072*1.21=0.000712≈0。 4、数学公式的计算方法

相关文档
最新文档