用于物联网的几种无线通信技术wifi、bt、zigbee对比

用于物联网的几种无线通信技术wifi、bt、zigbee对比
用于物联网的几种无线通信技术wifi、bt、zigbee对比

用于物联网的几种无线通信技术

wifi\bt\zigbee介绍

随着物联网市场的加速发展,物联网变得更为触手可及,围绕物联网的宣传更加紧锣密鼓,而且令人更加困惑。我们是时候面对现实情况,去鉴定现状并且评估事情走向。有些困惑已经消除了,而有些则变本加厉——让我们一起从简化了的方面开始探讨吧。

无线电技术

两年前,世界对可能有助于物联网的不同无线电技术掀起了讨论热潮。一些公司主张,WiFi和蓝牙的存在就已足够,而其他公司开始推动IEEE 802.15.4(即ZigBee和Thread 的底层无线电技术)。实际上,如今大多数的联网技术决策者能坦然接受并完全明白,物联网会针对不同的应用程序使用全部三种技术。

为了弥补WiFi的劣势(相对于ZigBee而言),市场开始推行使低功耗WiFi(IEEE 802.11ah)标准化的活动。虽然该领域的活动仍在如火如荼地进行,并且可能会由此制订出标准,但全球对此的接纳程度却难以预测。由于世界不同地区所用的规格和型号不同,该标准并非是放诸四海而皆准的。雪上加霜的是,即使这一全新的低功耗标准被称为WiFi,但其并不兼容「真正」的WiFi,而是一种完全不同的无线电和MAC技术。既然如此,那为什么不采用IEEE 802.15.4呢?这已经是一个通用标准,并且涵盖了新的低功耗WiFi开发商为之奋斗的所有特性,而新类型的「WiFi」并没有多大意义。

而蓝牙作为物联网标准而言,存在致命性缺陷——其设计理念是替代点对点有线传输技术而非联网技术的。为了解决该缺陷,一些公司开始针对蓝牙研究网络层(「蓝牙网格」(Bluetooth Mesh)),但面临着严峻挑战。以前,许多业内联网工程师已经见证了类似的mesh联网所作出的努力均以失败告终。例如IEEE 802.11s虽然存在,但几乎未曾使用,

并只应用于单跳网格拓扑(中继器)之中,其主要问题是,在支持多跳时无法控制延时。因此,网络技术工程师对新的蓝牙mesh情况持怀疑的态度也在意料之中。

因此,结果就是全球无线市场已经承认了三大核心的物联网无线电技术,我们目前熟悉的IEEE/802.11/WiFi,适用于内容-分发;IEEE 802.15.4/ZigBee则适用于像智能家居类的传控器Sentroller(即具备控制功能的传感器)网络,而蓝牙,包括低功耗蓝牙,则适用于连接个人局域网络(围绕智能手机)以及可穿戴式设备。前两种用于将家居设备连接到互联网,最后一种主要使用智能手机进行网络连接。

许多供应商已经提供了各种各样的交叉无线电产品:WiFi/蓝牙、ZigBee/蓝牙和WiFi/ZigBee/蓝牙。所有这些产品的定价可能尚不太合理,却传达了明确的潜在信息:全球三大开放的统一无线电通信标准奠定了物联网的基础,由此带来了福音。

联网技术

现在谈谈不太好的消息:新困惑。十多年前,相互竞争的无线电技术冲突随着WiFi的出现而结束,WiFi是最后的赢家(而HomeRF和其他几种技术随之销声匿迹),之后,围绕联网和应用层爆发了新的技术革命。今天,所有人都熟悉TCP/IP,即使未曾听闻该项技术,也会在通过网络和本地网络进行通信时用得到。然而,为了达到该阶段,多个网络标准进行过殊死搏斗:网络操作系统Novell Netware(谁还记得?)、Bayan Vines、Microsoft LanManager、IBM SNA等。当时,几乎各大型电子公司都觉得必须通过自行定义网络层技术,在历史上留下个人专属印记。

坦白地说,这就是今天物联网和智能家居领域正在经历的一切。显而易见,许多业内领先公司再次重蹈覆辙,忘记了标准战争会不利于且会减缓新技术的采用。苹果公司的HomeKit、谷歌公司的Brillo、高通公司的Alljoyn、英特尔公司的IoTivity以及最近华为公司从中国家居层面出发而提出的LiteOS。所有这些新兴的应用程序框架现在均在角逐获取行业的精神支持,努力成为「物联网的佼佼者」,期待着世界效仿。

同时,也存在另一重的困惑。紧随应用程序框架层的步伐,联网层面也是箭弩拔张之势。ZigBee 3.0明显是竞争对手,其挑战者则是Thread。然而,更令人百思不得其解的是,Thread Group中几个主力角色(如飞思卡尔、ARM 以及Silicon Labs,特别都是半导体公司)同时也在ZigBee Alliance占据突出的领导地位(是的,这是一个混杂的世界)。因此,看似这些科技公司自己也或多或少有点困惑……

Thread于去年年底公布,但至今仍然处于保密状态。人们只能纷纷猜测它的内涵,但从已泄露的资料来看,Thread要想发展成为ZigBee 3.0强而有力的竞争对手是有难度的。这也在意料之中,因为ZigBee 3.0已经整合了许多应用领域(照明控制、家庭自动化、楼宇自动化、零售等)多年的经验。ZigBee的认证程序已经稳健地启动并开展,授权了多家检测中心,对1,000多个ZigBee产品进行了认证。ZigBee显然已经成为世界上众多物联网和智能家居系统制造商的首选技术。同时,ZigBee功能非常容易使用,更支持强大的安全协议。由于传感器和边缘设备通常未设有键盘来输入安全码,因此其实现正面临着重大挑战,故强而有力的安全协议显得十分重要。

最重要的是,ZigBee 3.0支持经历过众多迭代形成的应用程序库。因此,Thread Group认真考虑采用ZigBee应用程序库运行Thread也就不足为奇了。但不仅限于此:(1)ZigBee 3.0和ZigBee RF4CE在消费电子世界稳占一席之地;(2)ZigBee 3.0同时包括ZigBee Green Power 功能。让我们详细了解一下吧。

ZigBee RF4CE

ZigBee RF4CE最初是在消费电子领域开发的,用于替代基于无线电远程控制的红外(IR)遥控,因此无需再使用瞄准后单击的模式了。随后,其经历了明显的演变,最新的版本(ZRC 2.0)已完全集成了ZigBee应用程序库。这意味着针对电视和机顶盒设计的遥控器同样可以控制家里的灯具、灯光、窗帘、遮阳罩等。随着时间的推移,消费电子领域和智能家居领域有望继续重叠及融合,而ZRC 2.0对此的定位恰到好处。

ZigBee RF4CE依然完全向后兼容传统的红外技术。ZigBee远程控制可自动检测并下载需要红外的传统设备所需的代码集。由于具有以上所有功能以及得到国际上的认可,

RF4CE使得ZigBee成为智能家居的重要推动者也就不足为奇了,而智能家居又给有线电视运营商和电视运营商的服务带来了重大的新机遇。

除了超低功耗需求外(可与低功耗蓝牙媲美,而覆盖范围更好),ZigBee RF4CE的关

键增值特性就是低延时。用户接口设备能从低延时中受益,原因是这些接口设备使得产品制造商能即时向用户提供即时反馈(通常在30毫秒以内)。一般而言,网状网络(包括Thread)倾向具有高达几百毫秒或以上的延时,造成用户很不愉悦的体验。几乎所有人都经历过按下按钮后没有反应,然后再按下按钮,灯光终于亮起,却又立即关掉的情形:这很令人崩溃!

现今,采用有线的照明开关不会产生类似情况,因此没人仅仅由于「现在是用无线的」作为理由而接受这种窘况。能够在网络中新增低延时的人性化接口装置对ZigBee而言非常关键。

ZigBee Green Power

ZigBee 3.0还包括ZigBee Green Power。ZigBee Green Power最初是制定为超低功耗的无线标准,用以支持能量收集设备。能量收集设备是指不使用电池也能从环境中提取能量需求(如运动、光线、压电、帕尔贴效应等)的设备。最常见的应用是照明开关,其中,开关的拉动产生了能量,然后向电灯传送无线通信包(「开」、「关」等)。Green Power

对于只偶尔存在于网络中的设备而言十分有效(设备通电时)。Green Power使得这些设备能够安全地进出网络,因此可在大部分时间处于关闭状态。

作为超低功耗的无线技术,Green Power对于使用电池供电的设备而言也是非常有效的,这是因为其使得这些设备能用同一电池运行多年。Green Power同时还允许低成本端网点与网络中其他设备通信,特别是在不需要mesh的情况下。总之,Green Power是ZigBee 3.0的重大补充。

ZigBee 3.0 IP兼容性

ZigBee 3.0也完全兼容IP。ZigBee设备与WiFi设备类似,通常通过路由器、网关或机顶盒连接到互联网,让人可在世界其他地方利用连接了互联网的个人计算机、平板电脑或智能手机应用程序等任何其他设备实现即时控制。由于ZigBee 完全兼容WiFi和IP,因此没有必要在手机本身插入ZigBee芯片,从而发现和控制ZigBee连接的智能家居和物联网设备。只要通过任何联网中心(如路由器、机顶盒、网关)均可让这一切实现,这意味着,通过WiFi或蜂窝网进行联网的个人计算机和智能手机可以作为指示板,并其可以毫不费力地发现并与其他ZigBee设备进行通信。

ZigBee 3.0

ZigBee 3.0具有开放性、普遍性和完整性,可与现有的互联网应用程序完全互相操作。现在,相关设备已经可以批量供货,预计可从每周生产一百万台至每天生产一百万台不等,可能已经有五亿台ZigBee设备面世。ZigBee 3.0是智能家居的最佳解决方案,应用范围广泛:照明、安全、恒温器、遥控器等。ZigBee 3.0十分安全,支持不使用电池的设备、网状、低延时以及能量收集,更是无与伦比,甚至未受到过挑战,即使Thread想方设法地想对其提出挑战。对于许多应用程序创造者而言,它是高于IEEE 802.15.4无线电技术的独一联网解决方案。

NB-IoT、LoRa、Zigbee、WIFI、蓝牙无线组网对比

NB-IoT、LoRa、Zigbee、WIFI、蓝牙无线组网对比LoRa LoRa(长距离)是由Semtech公司开发的一种技术,典型工作频率在美国是915MHz,在欧洲是868MHz,在亚洲是433MHz。LoRa的物理层(PHY)使用了一种独特形式的带前向纠错(FEC)的调频啁啾扩频技术。这种扩频调制允许多个无线电设备使用相同的频段,只要每台设备采用不同的啁啾和数据速率就可以了。其典型范围是2km至5km,最长距离可达15km,具体取决于所处的位置和天线特性。 NB-IoT 窄带物联网(Narrow Band Internet of Things,NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。 NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网(LPWAN)。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。据说NB-IoT设备电池寿命可以提高至少10年,同时还能提供非常全面的室内蜂窝数据连接覆盖。

ZigBee ZigBee是物联网的理想选择之一。 虽然ZigBee一般工作在2.4GHz ISM频段,但它也可以在902MHz到928MHz和868MHz 频段中使用。在2.4GHz频段中数据速率是250kb/s。它可以用在点到点、星形和网格配置中,支持多达216个节点。与其它技术一样,安全性是通过AES-128加密来保证的。ZigBee 的一个主要优势是有预先开发好的软件应用配置文件供具体应用(包括物联网)使用。最终产品必须得到许可。 Wi-Fi Wi-Fi被广泛用于许多物联网应用案例,最常见的是作为从网关到连接互联网的路由器的链路。然而,它也被用于要求高速和中距离的主要无线链路。 大多数Wi-Fi版本工作在2.4GHz免许可频段,传输距离长达100米,具体取决于应用环境。流行的802.11n速度可达300Mb/s,而更新的、工作在5GHz ISM频段的802.11ac,速度甚至可以超过1.3Gb/s。 一种被称为HaLow的适合物联网应用的新版Wi-Fi即将推出。这个版本的代号是802.11ah,在美国使用902MHz至928MHz的免许可频段,其它国家使用1GHz以下的类似频段。虽然大多数Wi-Fi设备在理想条件下最大只能达到100米的覆盖范围,但HaLow在使用合适天线的情况下可以远达1km。 802.11ah的调制技术是OFDM,它在1MHz信道中使用24个子载波,在更大带宽的信道中使用52个子载波。它可以是BPSK、QPSK或QAM,因此可以提供宽范围的数据速率。在大多数情况下100kb/s到数Mb/s的速率足够用了——真正的目标是低功耗。Wi-Fi联盟透露,它将在2018年前完成802.11ah的测试和认证计划。 针对物联网应用的另外一种新的Wi-Fi标准是802.11af。它旨在使用从54MHz到698MHz 范围内的电视空白频段或未使用的电视频道。这些频道很适合长距离和非视距传输。调制技术是采用BPSK、QPSK或QAM的OFDM。每个6MHz信道的最大数据速率大约为24Mb/s,不过在更低的VHF电视频段有望实现更长的距离。 蓝牙5.0 蓝牙是一种无线传输技术,理论上能够在最远100米左右的设备之间进行短距离连线。其最大特色在于能让轻易携带的移动通讯设备和电脑,在不借助电缆的情况下联网,并传输资料和讯息,目前普遍被应用在智能手机和智慧穿戴设备的连结以及智慧家庭、车用物联网等领域中。新到来的蓝牙 5.0不仅可以向下相容旧版本产品,且能带来更高速、更远传输距离的优势。云里物里的低功耗蓝牙模块MS50SFB就是采用5.0芯片,从而达到更快的速度,更稳定的效果。 本文来源网络,如有侵权请联系删除。

物联网中的通信技术

物联网中的通信技术 典型的物联网是将所有的物品通过短距离射频识别(RFID)等信息传感设备与互联网连接起来,实现局域范围内的物品“智能化识别和管理”。即从智慧地球到感知中国,无论物联网的概念如何扩展和延伸,其最基础的物物之间感知和通信是不可替代的关键技术。 普遍认为,M2M技术是物联网实现的关键。M2M技术原意是机器对机器,通信的简称,是指所有实现人、机器、系统之间建立通信连接的技术和手段,广义上也指人对机器、机器对人以及移动网络对机器之间的连接与通信。 M2M是无线通信和信息技术的整合,用于双向通信,因此适用范围广泛,可以结合GSM/GPRS/UMTS等远距离连接技术,也可以结合Wifi、蓝牙、Zigbee、RFID和UWB等近距离连接技术,此外还可以结合XML和Corba,以及基于GPS、无线终端和网络的位置服务技术等。 随着科技飞速发展,最近,三种新兴的短距离无线传输技术凭借其独有的特点进入了我们的视线。 其一紫蜂(ZigBee)技术,新一代的无线传感器网络将采用802.15.4(Zig.Bee)协议。ZigBee是一种供廉价的固定、便携或移动设备使用的极低复杂度、成本和功耗的低速率无线连接技术,主要适合于自动控制和远程控制领域,可以嵌入在各种设备中,同时支持地理定位功能。 Zigbee技术的特点主要有:低速率、低时延、低功耗、实现简单

、低成本、网络容量高。ZigBee技术的应用范围非常广泛,其中包括智能建筑、军事领域、工业自动化、医疗设备、智能家居及各种监察系统等。ZigBee技术弥补了低成本、低功耗和低速率无线通信市场的空缺,其成功的关键在于丰富而便捷的应用,而不是技术本身。 其二是RFID,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签(Tag)、解读器(Reader)和天线(Antenna)三个基本要素组成。其基本工作原理并不复杂,标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(PassiveTag,无源标签或被动标签),或者主动发送某一频率的信号(ActiveTag,有源标签或主动标签)。解读器读取信息并解码后,送至中央信息系统进行有关数据处理。 RFID可被广泛应用于安全防伪、工商业自动化、财产保护、物流业、车辆跟踪、停车场和高速公路的不停车收费系统等。从行业上讲,RFID将渗透到包括汽车、医药、食品、交通运输、能源、军工、动物管理以及人事管理等各个领域。然而,由于成本、标准等问题的局限,RFID技术和应用环境还很不成熟。主要表现在:制造技术较为复杂,智能标签的生产成本相对过高;标准尚未统一,最大的市场尚无法启动;应用环境和解决方案还不够成熟,安全性将接受很大考验。 形形色色的传感技术、通信技术、无线技术、网络技术共同组成了以物联网为核心的智慧网络。亚里士多德曾说过“给我一个支点我

基于zigbee的物联网实训报告

学生实习报告 实习类型: 学号: 学生姓名: 指导教师: 专业班级: 院(部): 2016年12月31日 填写说明 1.该实习报告适用于本校全日制本科生的各类实习教学活动。 2.实习类型应严格按照教学任务规定的名称填写。 3.实习报告装订顺序为:封面、填写说明、实习成绩评定表、实习报告正文。 4.实习报告正文应包含以下内容: ①实习目的 ②实习单位概况 ③实习内容及过程 ④实习总结及体会 要求实习报告内容详实、条理清楚、重点突出、逻辑性强,着重写出对实习内容的分析与总结、体会和感受,特别是自己所学的专业理论与实践的结合与对照。 实习成绩评定表

实训报告正文

一、实训目的: 1.了解物联网的概念及应用; 2.了解无线传感网络的概念及应用; 3.掌握基于Zigbee的无线传感网络的设计; 4.学习并使用CC2530核心板; 5.通过进一步学习掌握物联网相关知识; 二、实训原理简述: 1.物联网的概念: 物联网的概念最初在1999年提出:即通过射频识别(RFID)(RFID+互联网)、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。简而言之,物联网就是“物物相连的互联网”。 物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。其在2011年的产业规模超过2600亿元人民币。构成物联网产业五个层级的支撑层、感知层、传输层、平台层,以及应用层分别占物联网产业规模的2.7%、22.0%、33.1%、37.5%和4.7%。而物联网感知层、传输层参与厂商众多,成为产业中竞争最为激烈的领域。

物联网简介及基于ZigBee的无线传感器网络

物联网简介及基于ZigBee的无线传感器网络 摘要 物联网,是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是一个全新的技术领域,给IT和通信带来了广阔的新市场。积极发展物联网技术,尽快扩展其应用领域,尽快使其投入到生产、生活中去,将具有重要意义。 ZigBee无线通信技术是一种新兴的短距离无线通信技术,具有低功耗、低速率、低时延等特性,具有强大的组网能力与超大的网络容量,可以广泛应用在消费电子品、家居与楼宇自动化、工业控制、医疗设备等领域。由于其独有的特性,ZigBee无线技术也是无线传感器网络的首选技术,具有广阔的发展前景。ZigBee协议标准采用开放系统接口(051)分层结构,其中物理层和媒体接入层由IEEE802.15.4工作小组制定,而网络层,安全层和应用框架层由ZigBee联盟制定。 本文首先从概念、技术架构、关键技术和应用领域介绍了物联网的相关知识,然后着重介绍了基于ZigBee的无线传感器网络,其中包括无线传感网简介、ZigBee技术概述和基于ZigBee的无线组网技术。 关键词:物联网;ZigBee;无线传感器网络

物联网简介 物联网概念 “物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。其定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。 最简洁明了的定义:物联网(Internet of Things)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征。 技术架构 从技术架构上来看,物联网一般可分为三层:感知层、网络层和应用层。 感知层是物联网的皮肤和五官-用于识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS、传感器、M2M终端、传感器网关等,主要功能是识别物体、采集信息,与人体结构中皮肤和五官的作用类似。 感知层解决的是人类世界和物理世界的数据获取问题。它首先通过传感器、数码相机等设备,采集外部物理世界的数据,然后通过RFID、条码、工业现场总线、蓝牙、红外等短距离传输技术传递数据。感知层所需要的关键技术包括检测技术、短距离无线通信技术等。 网络层是物联网的神经中枢和大脑-用于传递信息和处理信息。网络层包括通信网与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。 网络层解决的是传输和预处理感知层所获得数据的问题。这些数据可以通过移动通信网、互联网、企业内部网、各类专网、小型局域网等进行传输。特别是在三网融合后,有线电视网也能承担物联网网络层的功能,有利于物联网的加快推进。网络层所需要的关键技术包括长距离有线和无线通信技术、网络技术等。 应用层是物联网的"社会分工"-结合行业需求,实现广泛智能化。应用层是物

物联网无线通信技术行业标准对比

物联网无线通信技术标准对比 目前无线通信就其范围大小来分有广域的和局域的,广域的通常就是指我们的移动通信网,目前已经发展到第三代,也就是 3G,其三大主流标准将来都将会经历LTE过渡到第四代;局域的通常指短距离无线通信,标准有IrDA、Bluetooth、Wi-Fi、ZigBee、RFID和UWB。 IrDA(InfraredDataAssociation)是点对点的数据传输协议,通信距离一般在0到1M之间,传输速率最快可达16Mbps,通信介质为波长900纳M左右的近红外线。其传输具备小角度(30度锥角以内),短距离,直线数据传输,保密性强,传输速率较高的特点,适于传输大容量的文件和多媒体数据。并且无需申请频率的使用权,成本低廉。IrDA已被全球范围内的众多厂商采用,目前主流的软硬件平台均提供对它的支持。 IrDA的不足在于它是一种视距传输,2个相互通信的设备之间必须对准,中间不能被其他物体阻隔,因而只适用于2台(非多台)设备之间的连接。 Bluetooth是1998年5月,东芝、爱立信、IBM、Intel和诺基亚共同提出该技术标准。它能够在10M的半径范围内实现单点对多点的无线数据和声音传输,数据传输带宽可达1Mbps。Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为 2.402GHz到 2.480GHz的电磁波。一台Bluetooth设备可同时与七台Bluetooth设备建立连接,在有效范围内可越过障碍物进行连接,没有特别的通信视角和方向要求。此外,Bluetooth还具备功耗低、通信安全性好、支持语音传输、组网简单等特点。 但Bluetooth同时存在植入成本高、通信对象少、通信速率较低和技术不够成熟的问题,它的发展与普及尚需经过市场的磨炼,其自身的技术也有待于不断完善和提高。 802.11Wi-Fi(Wireless Fidelity)即无线保真技术是另一种目前流行的技术。它使用的是2.4GHz附近的频段。Wi-Fi基于IEEE802.11a、IEEE802.11b、IEEE802.11g和IEEE802.11n。不仅传输的有效距离很长,而且速率还高达上百兆,与各种802.11DSSS设备兼容。目前最新的交换机能把Wi-Fi无线网络从接近100M的通信距离扩大到约6.5公里。另外,使用Wi-Fi的门槛较低。厂商只

十大物联网通讯技术优劣及应用场景

十大物联网通讯技术优劣及应用场景 在实现物联网的通讯技术里面,蓝牙、zigbee、Wi-Fi、GPRS、NFC等是应用最为广泛的无线技术。除了这些,还有很多无线技术,它们在各自适合的场景里默默耕耘,扮演着不可或缺的角色。现在随着物联网解决方案供应商云里物里科技一起来看下常见的十大无线通讯技术优劣及应用场景。 1、蓝牙的技术特点 蓝牙是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换,蓝牙可连接多个设备,克服了数据同步的难题。蓝牙技术最初由电信巨头爱立信公司于1994年创制。如今蓝牙由蓝牙技术联盟管理,蓝牙技术联盟在全球拥有超过25,000家成员公司,它们分布在电信、计算机、网络、和消费电子等多重领域。 蓝牙技术的特点包括采用跳频技术,抗信号衰落;快跳频和短分组技术能减少同频干扰,保证传输的可靠性;前向纠错编码技术可减少远距离传输时的随机噪声影响;用FM调制方式降低设备的复杂性等。其中蓝牙核心规格是提供两个或以上的微微网连接以形成分布式网络,让特定的设备在这些微微网中自动同时地分别扮演主和从的角色。蓝牙主设备最多可与一个微网中的七个设备通讯,设备之间可通过协议转换角色,从设备也可转换为主设备。 2、ZigBee的技术特点 与蓝牙技术不同,ZigBee技术是一种短距离、低功耗、便宜的无线通信技术,它是一种低速短距离传输的无线网络协议。这一名称来源于蜜蜂的八字舞,由于蜜蜂是靠飞翔和“嗡嗡”(zig)地抖动翅膀(bee)的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。 ZigBee的特点是近距离、低复杂度、自组织、低功耗、低数据速率,ZigBee协议从下到上分别为物理层、媒体访问控制层、传输层、网络层、应用层等,其中物理层和媒体访问控制层

基于zigbee的物联网实训分析报告

基于zigbee的物联网实训报告

————————————————————————————————作者:————————————————————————————————日期:

学生实习报告 实习类型: 学号: 学生姓名: 指导教师: 专业班级: 院(部): 2016年12月31日

填写说明 1.该实习报告适用于本校全日制本科生的各类实习教学活动。 2.实习类型应严格按照教学任务规定的名称填写。 3.实习报告装订顺序为:封面、填写说明、实习成绩评定表、实习报告正文。 4.实习报告正文应包含以下内容: ①实习目的 ②实习单位概况 ③实习内容及过程 ④实习总结及体会 要求实习报告内容详实、条理清楚、重点突出、逻辑性强,着重写出对实习内容的分析与总结、体会和感受,特别是自己所学的专业理论与实践的结合与对照。

实习成绩评定表 学生姓名:学号:专业班级: 指导教师评语: 成绩: 指导教师: 年月日

实训报告正文 一、实训目的: 1.了解物联网的概念及应用; 2.了解无线传感网络的概念及应用; 3.掌握基于Zigbee的无线传感网络的设计; 4.学习并使用CC2530核心板; 5.通过进一步学习掌握物联网相关知识; 二、实训原理简述: 1.物联网的概念: 物联网的概念最初在1999年提出:即通过射频识别(RFID)(RFID+互联网)、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。简而言之,物联网就是“物物相连的互联网”。 物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。其在2011年的产业规模超过2600亿元人民币。构成物联网产业五个层级的支撑层、感知层、传输层、平台层,以及应用层分别占物联网产业规模的 2.7%、22.0%、33.1%、37.5%

【zigbee和wifi的区别】分析局域无线通信协议WiFI,Bluetooth,ZigBee技术的优劣

【zigbee和wifi的区别】分析局域无线通信协议WiFI,Bluetooth,ZigBee技术的优劣 分析局域无线通信协议wiFi,Bluetooth,zigBee技术的优劣 分析局域无线通信协议wiFi,Bluetooth,zigBee技术的优劣wiFi是目前应用最广泛的无线通信技术,传输距离在100-300m,速率可达300mbps,功耗10-50ma,频段2.4G。 优点: 1.wiFi技术无线电波的覆盖范围广:wiFi的半径则可达100米,适合办公室及单位楼层内部使用。 2.wiFi技术速度快,可靠性高:802.1lb无线网络规范是iEEE802.1l 网络规范的变种,最高带宽为1mbps,在信号较弱或有干扰的情况下,带宽可调整为 5.5mbps、2mbps和1mbps,带宽的自动调整,有效地保障了网络的稳定性和可靠性。 3.wiFi技术无需布线:wiFi最主要的优势在于不需要布线,可以不受布线条件的限制,因此非常适合移动办公用户的需要,具有广阔市场前景。目前它已经从传统的医疗保健、库存控制和管理服务等特殊行业向更多行业拓展开去,甚至开始进入家庭以及教育机构等领域。 4.wiFi技术健康安全:iEEE802.1规定的发射功率不可超过100毫瓦,实际发射功率约6o~70毫瓦,手机的发射功率约200毫瓦至1

瓦间,手持式对讲机高达5瓦,而且无线网络使用方式并非像手机直接接触人体,是绝对安全的。 缺点: 1.wiFi最大的缺点是安全性非常低,很容易泄露个人信息。稳定性比较差,用户体验度不是很好。 2.功耗大,大规模使用的情况下更明显。这导致其在智能家居里应用有限。 3.组网能力低,拓展空间有限。 蓝牙(Bluetooth?):是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换(使用 2.4—2.485GHz的iSm波段的UHF无线电波,点对点无线通讯,方圆10米范围内)。蓝牙技术最初由电信巨头爱立信公司于1994年创制,当时是作为RS232数据线的替代方案。蓝牙可连接多个设备,克服了数据同步的难题。 蓝牙优点: 1.在智能设备的普及性高,应用广。 2.成本低廉,产量大。 3.使用方便,点对点。 缺点 蓝牙是一种还没有完全成熟的技术,尽管被描述得前景诱人,但还有待于实际使用的严格检验。蓝牙的通讯速率也不是很高,在当今这个

物联网通信

1 融合包含以下三个层次的内容: 业务融合,终端融合,网络融合 异构网络融合的实现分为两个阶段:连通阶段和融合阶段。连通阶段是指传感网、RFID 网、局域网、广域网等的互联互通,将感知信息和业务信息传送到网络另一端的应用服务器进行处理,以支持应用服务。 2物联网框架结构 3 感知控制层 (1)数据采集子层通过各种类型的感知设备获取现实世界中的物理信息,这些物理信息可以描述当前“物”属性和运动状态。感知设备的种类主要有各种传感器、RFID、多媒体信息采集装置、条码(一维、二维条码)识别装置和实时定位装置等。 (2)短距离通信传输子层将局部范围内采集的信息汇聚到网络传输层的信息传送系统,该系统主要包括短距离有线数据传输系统、无线传输系统、无线传感器网络等。 (3)协同信息处理子层将局部采集到的信息通过汇聚 装置及协同处理系统进行数据汇聚处理,以降低信息的冗余度、提高信息的综合应用度、降低与传送网络层的通信负荷为目的。协同信息处理子层主要包括信息汇聚系统、信息协同处理系统、中间件系统及传送网关系统等。 4 网络传输层 网络传输层将来自感知控制层的信息通过各种承载网络 传送到应用层。各种承载网络包括了现有的各种公用通信网络、专业通信网络,目前这些通信网主要有移动通信网、固定通信网、互联网、广播电视网、卫星网等。 5 应用层及其应用子层的作用 应用层是物联网框架结构的最高层次,是“物”的信息综合应用的最终体现。“物”的信息综合应用与行业有密切的关系,依据行业的不同而不同。 应用层主要分为两个子层次,即服务支撑层和行业应用层。服务支撑层主要用于各种行业应用的信息协同、信息处理、信息共享、信息存储等,是一个公用的信息服务平台;行业应用层主要面向诸如环境、电力、智能、工业、农业、家居等方面的应用。 6 按照物联网的框架结构,物联网的通信系统可大体分为两大类,即感知控制层通信和网络层传输通信 7 感知控制层通信系统功能及特点 感知控制层的通信目的是将各种传感设备所感知的信息在较短的通信距离内传送到信息汇聚系统,并由该系统传送(或互联)到网络传输层。 其通信的特点是传输距离近,传输方式灵活、多样。 8 网络传输层通信系统 网络传输层是由数据通信主机(或服务器)、网络交换机、路由器等构成的,在数据传送网络支撑下的计算机通信系统 9 多个无线接入环境的异构性体现在以下几个方面: (1)无线接入技术的异构性(2)组网方式的异构性。(3)终端的异构性。(4)频谱资源的异构性(5)运营管理的异构性 第一章 1 什么是通信系统模型 通信的任务是完成消息的传递。消息具有不同的形式,如符号、文字、语音、数据、图像等,为了将消息传递到目的地,须经过若干个环节构成的“通信系统”来完成,将这些环节抽象为一般的模型,即形成了通信系统的模型。

zigbee芯片与zigbee模块的区别和优缺点对比

zigbee芯片与zigbee模块的区别和优缺点对比 ZigBee在个人网络中越来越被称为短距离无线通信协议。它的最大特点是具有低功耗,低网络,特别是可路由的网络功能,并且在理论上可以无限扩展ZigBee期望的通信范围。对于蓝牙,红外点对点通信和WLAN星型通信,ZigBee协议要复杂得多。因此,我应该选择ZigBee芯片自行开发协议,还是应该直接选择具有ZigBee协议的模块直接应用? 芯片研发:需要足够的人力和技术储备以及长时间的开发 市场上的ZigBee无线收发器“芯片”实际上是符合物理层标准的芯片。因为它仅调制和解调无线通信信号,所以必须将其与单片机结合使用以完成数据收发器和协议的实现。另一方面,单片机仅集成了射频部分和单片机部分,并且不需要额外的单片机。它的优点是节省成本和简化电路。 在这两种情况下,用户都需要自己通过微控制器的结构和寄存器的设置自行开发所有软件部分,还要参考物理层部分的IEEE802.15.4协议和网络层部分的ZigBee协议。对于实际应用用户而言,这种工程量很大,开发周期和测试周期都非常长,并且由于它是无线通信产品,因此不容易保证其产品质量。 目前,许多ZigBee公司都在提供自己的芯片ZigBee协议栈,它仅提供该协议的功能,并不意味着它具有真正的适用性和可操作性。没有提供用户数据界面的详细描述。用户为什么可以忽略芯片中的程序,而只使用芯片来传输自己的数据?这不仅可以简单地实现包含ZigBee协议栈的芯片,也不能仅实现包含ZigBee协议栈的芯片。 所有这些都要求用户基于完整的协议代码和他们自己的上层通信协议,完整的简单

数据无线发送和接收,完整的路由,完整的网络通信以及调试步骤,来修改协议栈的内容。因此,对于实际应用的用户来说,开发周期大大延迟了,具有如此复杂协议的无线产品具有更多不确定因素,并且容易受到外部环境条件的影响。实际的发展问题是多种多样的,难以解决。 模块生产的成本 通过节省ZigBee开发周期,或许可以抓住项目推广的第一个机会。ZigBee模块已经包括所有外围电路和完整的协议栈。这是一种即用型产品。经过制造商的优化设置修订和老化测试,具有一定的质量保证。出色且可靠的zigBee应用程序“模块”紧凑,硬件小巧,具有芯片焊盘设置校正功能,能够内置芯片和外部SMA天线,通信距离范围为100米至1200米。 该软件包括完整的ZigBee协议栈。它在PC上具有自己的部署工具。它可以使用串行端口与用户的产品通信并部署模块的网络拓扑参数,例如发射功率和信道,使用方便快捷。 透传模块的优点在于,用户无需考虑其程序的工作方式,只要用户通过串行端口将其数据发送到模块,模块就会根据预设的网络自动无线传输数据结构体。

五大无线技术比较(ZigBee、UWB、Wi-Fi、蓝牙、NFC)

ZigBee:巨头力挺前途难料 ZigBee联盟成立于2001年8月。但作为该项技术发展过程中具有里程碑意义的是,2002年下半年,英国Invensys公司、日本三菱电气公司、美国摩托罗拉公司以及荷兰飞利浦半导体公司四大巨头共同宣布,它们将加盟「ZigBee联盟」,以研发名为「ZigBee」的下一代无线通信标准。到目前为止,除了Invensys、三菱电子、摩托罗拉和飞利浦等国际知名的大公司外,该联盟大约已有27家成员企业,并在迅速发展壮大。Zigbee联盟负责制定网络层以上协议。 ZigBee的芯片和产品已经面市,每个Zigbee通信模块的成本将有望控制在1.5美元到2.5美元之间。分析家认为,到2006年,ZigBee设备将会达到每年4亿台的市场规模。预计4~5年内,每个家庭将会安装大约50个ZigBee设备,最终达150个ZigBee设备6~7年内占据家庭自动化市场的三分之二。 但是也有人认为:ZigBee几年前刚出现时,它的支持者曾设想这种基于IEEE 802.15.4规范的无线技术拥有潜在的巨大市场。但现在看来当初的设想并没有成为现实,目前有消息称由于芯片厂商推迟出货,因而ZigBee的前景并不像先前设想的那样一帆风顺。 UWB:前途无量受困争战 UWB是一种无载波通信技术,它不采用正弦载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。 由于UWB可以利用低功耗、低复杂度发射/接收机实现高速数据传输而在近年来得到迅速发展。它在非常宽的频谱范围内采用低功率脉冲传送数据而不会对常规窄带无线通信系统造成大的干扰,并可充分利用频谱资源。基于UWB技术而构建的高速率数据收发机有着广泛的用途,从无线局域网到Ad hoc网络,从移动IP计算到集中式多媒体应用等。UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,低截获能力,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入,非常适于建立一个高效的无线局域网或无线个域网(WPAN)。 UWB标准于 2005年确定,但其中显然不只是技术原因,以Intel与TI为代表的MBOA提案,以及以摩托罗拉与XSI为代表的DS-CDMA提案是两种技术特性完全不同的方案,UWB标准只能二选其一。不过最近无线电制造商PulseLink对外宣布,它已经找到一种途径,允许基于不同技术的UWB系统共存。该公司正准备向IEEE 802.15.3a任务组成员详细讲解它的公共信号协议(CSP),该协议使原本相互冲突的多种UWB物理层可以共存。PulseLink希望协调UWB 的发展步伐,同时回避相互竞争的UWB标准提案之间的分歧。 一些产业观察家赞同PulseLink的提议,认为这为采用不同的实体层创造了整合的机会,因而使UWB的创新态势得以延续。但另一方面,其它人质疑在缺乏互通条件下共存没有什么价值,并认为这会产生鼓励开发多种PHY的负面效果。这最终会增加OEM厂商的负担,因为他们必须支持多种PHY。 PulseLink声称不会偏袒已经提交给IEEE的任何一种UWB技术。802.15.3a小组曾试图为这种高速个域网技术定义一个物理层,但由于双方拒绝做出妥协,这项努力被迫搁浅。最坏的结果可能是两大阵营将定义各自的事实标准,而由市场决定存亡。 Wi-Fi:发展迅速瓶颈犹存 Wi -Fi热点是通过在互联网连接上安装访问点来创建的。这个访问点将无线信号通过短程进行传输,一般覆盖300英尺。当一台支持Wi-Fi的设备遇到一个热点时,这个设备可以用无线方式连接到那个网络。大部分热点都位于供大众访问的地方,例如机场、咖啡店、旅馆、书店以及校园等等,许多家庭和办公室也拥有 Wi-Fi网络。互联网服务提供商(ISP)会在用户连接到互联网时收取一定费用。 Wi-Fi也存在着一些问题: *高昂的价格让消费者止步不前; *Wi-Fi的运营商很多,成为一个运营商的客户并不能共享其它运营商的资源;

几种常见的物联网通讯方式及其技术特点

Computer Science and Application 计算机科学与应用, 2017, 7(10), 984-993 Published Online October 2017 in Hans. https://www.360docs.net/doc/b09613621.html,/journal/csa https://https://www.360docs.net/doc/b09613621.html,/10.12677/csa.2017.710111 Several Communication Modes of the Internet of Things and the Technical Characteristics Qin Zhang1,2, Shenglong Yang1, Yumei Wu1, Yang Dai1* 1Ministry of Agriculture Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 2College of Engineering Science and Technology, Shanghai Ocean University, Shanghai Received: Oct. 5th, 2017; accepted: Oct. 18th, 2017; published: Oct. 24th, 2017 Abstract In today’s Internet era, the existing wireless communication networks have been developed from the interconnection between people and people or people and things to the interconnection be-tween things and things [1]. Low power wireless communication is one of the main hot spot of to-day’s Internet network technology. With the characteristics of low power consumption and low cost, the low power wireless communication is a good technology to match the application re-quirements of the Internet of things. The low-power wireless communication technologies include the low-power wide area network (WAN) and the low-power local area network (LAN). The low-power wide area network includes LoRa, NB-IOT, Sigfox, Weightless, and the Low-power local area network includes Zigbee and bluetooth 4.0, the technical introduction and the key techniques of each communication are discussed respectively, and the prospect of the low-power network technology is discussed. Keywords Low Power Consumption, The Internet of Things, Low Power Consumption WAN, Low Power Consumption LAN 几种常见的物联网通讯方式及其技术特点 张琴1,2,杨胜龙1,伍玉梅1,戴阳1* 1中国水产科学研究院东海水产研究所,农业部东海及远洋渔业渔业资源开发利用重点实验室, 上海 *通讯作者。

ZigBee、蓝牙与WIFI的对比

三种近距离技术ZigBee、蓝牙(Bluetooth)和WiFi介绍 目前常用的无线网络标准最流行的3个是ZigBee、蓝牙(Bluetooth)和WiFi。 1 ZigBee 1.1 ZigBee简介 Zigbee是IEEE 802.15.4协议的代名词,这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。 其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。 1.2 ZigBee技术优势及不足 ZigBee技术优势主要包括以下几个方面: 低功耗 两节五号电池支持长达六个月到两年左右的使用时间,然而Bluetooth仅能工作数周,WiFi只可工作数小时。 低成本 ZigBee数据传输速率低,协议简单,所以大大降低了成本,且免收专利费。 可靠 采用了碰撞避免机制,同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竞争和冲突;节点模块之间具有自动动态组网的功能,信息在整个ZigBee网络中通过自动路由的方式进行传输,从而保证了信息传输的可靠性。 网络容量大 ZigBee具有大规模的组网能力,每个网络达60 000个节点。

安全保密 ZigBee提供了一套基于128位AES算法的安全类和软件,并集成了IEEE 802.15.4的安全元素。 工作频段灵活 使用频段为2.4 GHz,868 MHz及915 MHz,均为免执照频段。 同时ZigBee也存在着一些不足: 传输范围小 在不使用功率放大器的前提下,ZigBee节点的有效传输范围一般为10~75 m,仅能覆盖普通的家庭和办公场所。 数据传输速率低 在2.4 GHz的频段也只有250 Kb/s,而且这只是链路上的速率,除掉帧头开销、信道竞争、应答和重传,真正能被应用所利用的速率可能不足100 Kb/s,并且这余下的速率也可能要被邻近多个节点和同一个节点的多个应用所瓜分。 时延不易确定 由于ZigBee采用随机接入MAC层,且不支持时分复用的信道接入方式,因此不能很好地支持一些实时的业务,而且由于发送冲突和多跳,使得时延变成一个不易确定的因素。 1.3 ZigBee应用项目 近日获悉,赫立讯科技(北京)有限公司8年自主研发技术的ZigBee无线定位系统,已成功应用在最具“人情味”的北京地铁4号线大兴线隧道工程项目中。 本项目中“地铁隧道工程安全预警系统”共安装有:ZigBee工地安全基站 21个和50张ZigBee人员识别卡。开创了以ZigBee物联网新技术为核心的“地铁隧道工程安全预警系统”,这是为工程和人员安全保驾护航的最新应用。 2 蓝牙(Bluetooth) 2.1 蓝牙简介 蓝牙技术最初由爱立信创制。1999年5月20日,索尼爱立信、IBM、英特尔、诺基亚及东芝等业界龙头创立蓝牙特别兴趣组,制订蓝牙技术标准。1998年,爱立信公司希望无线通信技术能统一标准而取名“蓝牙”。

常见的物联网通信方式

常见的物联网通信方式 随着时代进步和发展,社会逐步进入互联网+,各类传感器采集数据越来越丰富,大数据应用随之而来,人们考虑把各类设备直接纳入互联网以方便数据采集、管理以及分析计算。简而言之,物联网智能化已经不再局限于小型设备、小网络阶段,而是进入到完整的智能工业化领域,智能物联网化在大数据、云计算、虚拟现实上步入成熟,并纳入互联网+整个大生态环境。 一、前言 早期的物联网是指两个或多个设备之间在近距离内的数据传输,解决物物相连,早期多采用有线方式,比如RS323、RS485,考虑设备的位置可随意移动的方便性(有根线太丑了),后期更多的使用无线方式; 随着时代进步和发展,社会逐步进入互联网+,各类传感器采集数据越来越丰富,大数据应用随之而来,人们考虑把各类设备直接纳入互联网以方便数据采集、管理以及分析计算。简而言之,物联网智能化已经不再局限于小型设备、小网络阶段,而是进入到完整的智能工业化领域,智能物联网化在大数据、云计算、虚拟现实上步入成熟,并纳入互联网+整个大生态环境。 二、物联网的发展 最早的物联网只是简单把两个设备用信号线连接在一起:

后来使用了无线,也出现了简单的组网: 在互联网+时代,越来越多的传感器、设备接入互联网,互联网也不单是通过网线传输,引入了空中网、卫星网等,应用的领域也越来越广泛:

三、常见的物联网通信方式 笔者对常用的物联网通信方式进行归纳总结分为四大种类,见下图: 1、有线传输 设备之间用物理线直接相连,不是很方便。主要有电线载波或载频、同轴线、开关量信号线、RS232串口、RS485、USB,这里只对常用的RS232串口、RS485、USB做介绍。 RS232串口:串行通信接口,全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”,是电脑与其它设备传送信息的一种标准接口;该标准规定采用一个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定;RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信,常用的串口线一般只有1~2米。见图:

物联网中的几种短距离无线传输技术

短距离无线通信场指的是100m 以内的通信,主要技术包括Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(?U ltra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。各国也相应地制定短距离通信技术标准,特别是RFID 和NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的RFID 相关规范有欧美的EPC 规范、日本的UID(Ubiquitous ID)规范和ISO 18000 系列标准。中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。例如科技部、工信部联合14 部委制订的《中国RFID 发展策略白皮书》等。此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。 1、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(IEEE802.11b),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。 最初的IEEE802.11规范是在1997年提出的,称为802.11b,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率是2.4GHz,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如802.11a和802.11g的先后推出,Wi-Fi的应用将越来越广泛。速度更快的802.11g使用与802.11b相同的正交频分多路复用调制技术,它也工作在2.4GHz频段,速率达54Mb/s。根据最新的发展趋势判断,802.11g 将有可能被大多数无线网络产品制造商选择作为产品标准。微软推出的桌面操作系统Windows XP和嵌入式操作系统Windows CE,都包含了对Wi-Fi的支持。 2、UWB技术 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复

相关文档
最新文档