开关电器中电弧产生原因及灭弧方法

开关电器中电弧产生原因及灭弧方法
开关电器中电弧产生原因及灭弧方法

开关电器中电弧产生原因及灭弧方法开关电器中电弧是如何产生的

电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧。

电弧产生和熄灭的物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中的电子又碰撞出来,这种现象称作碰撞游离。由于碰撞游离的连锁反应,自由电子成倍地增加(正离子亦随之增加),大量的电子奔向阳极,大量的正

离子向负极运动,开关触头间隙便成了电流的通道,触头间隙间介质被击穿就形成电弧。

由于电弧温度很高,在高温的作用下,处在高温下的中性质点由于高温而产生强烈不规则的热运动,在中性质点互相碰撞时,又将被游离而形成电子和离子,这种因热运动而引起的游离称为热游离。热游离产生大量电子和离子维持触头间隙间电弧。产生电弧主要由碰撞游离,维持电弧主要依靠热游离。

开关电器中电弧熄灭常用哪些方法

开关电器中电弧熄灭常用的方法如下:

(1)利用气体或油熄灭电弧。在开关电器中利用各种形式的灭弧室使气体或油产生巨大的压力并有力地吹向弧隙,电弧在气流或油流中被强烈地冷却和去游离,并且其中的游离物质被未游离物质所代替,电弧便迅速熄灭。气体或油吹动的方式有纵吹和横吹两种,纵吹使电弧冷却变细,然后熄灭;横吹是把电弧拉长切断而熄灭。不少断路器采用纵横混合吹弧方式,以取得更好灭弧效果。

(2)采用多断口。高压断路器常制成每相有两个或多个串联的断口,使加于每个断口的电压降低,电弧易于熄灭。

(3)断路器断口加装并联电阻。在高压大容量断路器中,广泛利

用弧隙并联电阻来改善它们的工作条件。断路器每相假如有两对触头,一对为主触头,另一对为辅助触头,电阻并联在主触头上。当

断路器在合闸位置时,主、辅触头都闭合。当断开电路时,主触头

先断开,这时并联在主触头断口上的电阻在主触头断开过程中起分

流作用,有利于主触头断口灭弧。主触头的电弧熄灭后,并联电阻

串联在电路中,有效地降低触头上的恢复电压数值及电压恢复速度。另外,并联电阻对切断小电感电流或电容电流时,可限制过电压产生。

(4)采用新介质。利用灭弧性能优越的新介质,例如SF6(六氟化硫)断路器和真空断路器等。

(5)利用金属灭弧栅熄灭电弧。用铁磁物质制成金属灭弧栅,当

电弧发生后,立刻把电弧吸引到栅片内,将长弧分割成一串短弧,

当电弧过零时,每个短弧的附近会出现150~250伏的介质强度,如

果作用于触头间的电压小于各个介质强度的总和时,电弧就立即熄灭。这种灭弧方法在低压开关中用得很多。

真空断路器灭弧原理和方法分析-民熔

真空断路器灭弧原理和方法-民熔 真空断路器,系三相交流50Hz额定电压为12KV的电力系统的户内开关设备,民熔真空断路器作为电网设备、工矿企业动力设备的保护和控制单元。适用于要求在额定工作电流下的频繁操作,或多交开断短路电流的场所。 灭弧是断路器的重要应用之一,电弧不仅会损坏设备线路,还会影响人身安全。一般来说,常用的灭弧方法有四种,包括机械灭弧、磁吹弧等。本文介绍了常用的灭弧方法和几种常用断路器的原理。首先讨论了常用的灭弧方法,包括以下四种:

1机械灭弧:限位装置使电弧迅速拉长。这种方法常用于开关器件。 2灭磁弧:在与触头串联的磁吹线圈产生的磁场作用下,在电磁力的作用下拉长电弧,吹入由固体介质组成的灭弧罩内,与固体介质接触,使电弧冷却熄灭。 3窄缝(纵缝)灭弧方法:在电弧形成的磁场的电场作用下,电弧被拉长,进入灭弧罩窄(纵)槽内。将纵向电弧分为若干段并与之接触的固体弧段迅速熄灭。这种结构主要用于交流接触器。

4栅极灭弧法:当触头分离时,所产生的电弧在电力的作用下被推入一组金属光栅中,并分成若干段。每一块相互绝缘的金属网格相当于一个电极,因此正负极之间会有许多电压降。对于交流电弧,当电弧过零时,阴极附近会出现150V~250V的介电强度,使电弧无法维持和熄灭。由于栅极灭弧效果比直流灭弧效果强得多,在交流电器中常采用栅极灭弧。 这些方法主要针对一些低压断路器。为了了解使用这些方法的原因,有必要阐明断路器的灭弧原理。以下是一些常用断路器的讨论。真空断路器中断电弧原理。真空断路器在分闸瞬间,由于触头间存在电容,两触头间的绝缘被击穿,产生真空电弧。由于触头的形状和结构,真空弧柱迅速向弧柱外的真空区扩散。当开断电流接近零时,触头间电弧的温度和压力急剧下降,使电弧无法维持和熄灭。灭弧后几μs内,触头间真空间隙的耐压水平迅速恢复。

各种电弧灭弧原理

各种电弧灭弧原理、条件及措施的比较 1. 开关电弧灭弧的基本原理:首先使触头间的介质成为良好电导率的电弧,进而使电弧冷却,迅速降低其电导率,最终使其转变为良好的绝缘体。 单位体积内的能量平衡: 电源提供的能量=电弧的能量增量— v ?gradp (由对流引起的散热功率)—s (T) (由辐射引起的散热功率)— div Χ?gradT (由广义热传导引起的散热功率) 应根据不同条件、不同场合,提高后三项的散热功率。 2.直流电弧 灭弧条件:稳态电路方程与电弧伏安特性无交点 灭弧措施:(1)拉长电弧→Ua ↗;(2)冷却电弧→Ua ↗(加装灭弧室,选用好的介质);(3)制造电流过零点 3.交流电弧 交流电弧的熄灭措施:实质上是防止电弧重燃:利用电流过零点的有利时机,使U d >Utr 措施:提高U d 及其上升率,同时降低Utr 及其上升率 具体措施:(略) 4.SF 6电弧 灭弧原理:使大量SF 6分子与电弧接触而分解吸热,冷却电弧。 散热方式:以弧柱的热传导和对流换热为主,散热条件良好。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr 。 gradT div T s gradp v dt dh E ?--?-=χρσ)(2

5.真空电弧 散热方式:以辐射和经电极与屏蔽罩的热传导为主,散热条件较差。只要保持为扩散型电弧,电流过零后,在微秒级内带电粒子即可消散而恢复间隙的绝缘强度。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr, 纵向磁场的特点: (1)延缓离子贫乏现象、阳极斑点的产生,使集聚电流值提高;(2)降低了电弧电压:一方面:不利于增大电弧电压的灭弧措施; 另一方面,降低了电弧能量,电极的温度可降低,不易形成阳 极斑点。 (3)不能使阳极斑点在阳极表面快速移动,局部熔融严重。 不同形式横向磁场的特点: (1)纵向电流自身产生的角向磁场(自箍缩磁场):有助于形成集聚型电弧。 (2)径向磁场:使电弧在电极表面快速移动,避免局部温度过高; 且可在工频后半周使集聚型电弧转变为扩散型电弧。 (3)抵消或部分抵消自箍缩磁场的角向磁场:使电弧向电极边缘移动而拉长电弧。一方面,电弧电压增高有利于灭弧;另一方面,电弧能量增大使电极温度升高。 (4)X向磁场:在电极的一边(y<0区域)增强自箍缩磁场,在电极的另一边(y>0区域)减弱自箍缩磁场。可利用来产生漂移

开关电器中电弧产生原因及灭弧方法通用版

操作规程编号:YTO-FS-PD865 开关电器中电弧产生原因及灭弧方法 通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

开关电器中电弧产生原因及灭弧方 法通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 开关电器中电弧是如何产生的? 电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中

开关电器中电弧产生及灭弧方法

开关电器中电弧产生原因及灭弧方法 问:开关电器中电弧是如何产生的? 答:电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中的电子又碰撞出来,这种现象称作碰撞游离。由于碰撞游离的连锁反应,自由电子成倍地增加(正离子亦随之增加),大量的电子奔向阳极,大量的正离子向负极运动,开关触头间隙便成了电流的通道,触头间隙间介质被击穿就形成电弧。 由于电弧温度很高,在高温的作用下,处在高温下的中性质点由于高温而产生强烈不规则的热运动,在中性质点互相碰撞时,又将被游离而形成电子和离子,这种因热运动而引起的游离称为热游离。热游离产生大量电子和离子维持触头间隙间电弧。产生电弧主要由碰撞游离,维持电弧主要依靠热游离。 问:开关电器中电弧熄灭常用哪些方法? 信息来源:https://www.360docs.net/doc/b110106259.html, 答:开关电器中电弧熄灭常用的方法如下:

(1)利用气体或油熄灭电弧。在开关电器中利用各种形式的灭弧室使气体或油产生巨大的压力并有力地吹向弧隙,电弧在气流或油流中被强烈地冷却和去游离,并且其中的游离物质被未游离物质所代替,电弧便迅速熄灭。气体或油吹动的方式有纵吹和横吹两种,纵吹使电弧冷却变细,然后熄灭;横吹是把电弧拉长切断而熄灭。不少断路器采用纵横混合吹弧方式,以取得更好灭弧效果。 (2)采用多断口。高压断路器常制成每相有两个或多个串联的断口,使加于每个断口的电压降低,电弧易于熄灭。 (3)断路器断口加装并联电阻。在高压大容量断路器中,广泛利用弧隙并联电阻来改善它们的工作条件。断路器每相假如有两对触头,一对为主触头,另一对为辅助触头,电阻并联在主触头上。当断路器在合闸位置时,主、辅触头都闭合。当断开电路时,主触头先断开,这时并联在主触头断口上的电阻在主触头断开过程中起分流作用,有利于主触头断口灭弧。主触头的电弧熄灭后,并联电阻串联在电路中,有效地降低触头上的恢复电压数值及电压恢复速度。另外,并联电阻对切断小电感电流或电容电流时,可限制过电压产生。 (4)采用新介质。利用灭弧性能优越的新介质,例如SF6(六氟化硫)断路器和真空断路器等。 (5)利用金属灭弧栅熄灭电弧。用铁磁物质制成金属灭弧栅,当电弧发生后,立刻把电弧吸引到栅片内,将长弧分割成一串短弧,当电弧过零时,每个短弧的附近会出现150~250伏的介质强度,如果作用于触头间的电压小于各个介质强度的总和时,电弧就立即熄灭。这种灭弧方法在低压开关中用得很多。

栅片灭弧方式及相关低压电器介绍..

栅片灭弧方式中,电弧为什么会在电动力的作用下朝灭弧栅运动呢?灭弧栅是用钢片作的,它放置在触头的上方。当触头间产生电弧的时候,由于电弧下方是空气,上方是灭弧栅,由于钢的导磁率比空气大,这样在同样的磁场强度H下,电弧上方的磁通密度B应该比下方的大阿,因此电弧所受电磁力(F=BIL)的合力方向应该向下,这样电弧因该背离灭弧栅运动才对啊。那位前辈高人能指点一下不? 答1:钢片在这里的作用是分割电弧,不是利用其磁导的。电弧向内运动是利用磁吹原理,仔细观察一下接触器的通流部分,结合左右手定则,相信你一定能分析出来 答2:可以把灭弧栅想像成一整块软铁,电弧是流过恒稳电流的导线,这样不影响分析。应用右手螺旋定则,导线产生同心圆磁场,磁力线穿过软铁块,软铁块被磁化,磁化软铁块的NS极记住,由于铁被磁化,其产生磁场有独立性,即使导线移出也不变,在此磁场作用下,导线的受力方向,应用左手定则,有难度的只是想像软铁NS极之间的磁力线,受力方向指向软铁。实际的灭弧栅,时变的电弧不影响分析结果。 答3:交流接触器的栅片灭弧原理是由于触点上方的钢片栅片磁阻很小,电弧上部磁通大都进入栅片,使电弧周围空气中的磁场分布形式上疏下密,将电弧拉入灭弧栅。电弧被栅片分割多若干短弧。 常用自动控制电器 图5.6 接触器控制电路的工作原理 当按钮揿下时,线圈通电,静铁心被磁化,并把动铁心(衔铁)吸上,带动转轴使触头闭合,从而接通电路。 当放开按钮时,过程与上述相反,使电路断开。 根据主触头所接回路的电流种类,接触器分为交流和直流两种。 (1).交流接触器 ①.触头 触头是接触器的执行部分。 主要任务:完成接触器接通或断开电路的任务。 对触头的要求:接通时导电性能良好、接触电阻小;闭合时不跳动(不振动);闭合时

电弧的原理

电弧 电弧当用开关电器断开电流时,如果电路电压不低于10—20伏,电流不小于80~100mA,电器的触头间便会产生电弧。电弧是高温高导电率的游离气体,它不仅对触头有很大的破坏作用,而且使断开电路的时间延长。因此,在了解开关电器的结构和工作情况之前,首先来看看其是如何产生和熄灭的。电弧的形成是触头间中性质子(分子和原子)被游离的过程。开关触头分离时,触头间距离很小,电场强度E很高(E = U/d)。当电场强度超过3×10---6---V/m时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。这种游离方式称为:强电场发射。从阴极表面发射出来的自由电子和触头间原有的少数电子,在电场力的作用下向阳极作加速运动,途中不断地和中性质点相碰撞。只要电子的运动速度v足够高,电子的动能A = mv2足够大,就可能从中性质子中打出电子,形成自由电子和正离子。这种现象称为碰撞游离。新形成的自由电子也向阳极作加速运动,同样地会与中性质点碰撞而发生游离。碰撞游离连续进行的结果是触头间充满了电子和正离子,具有很大的电导;在外加电压下,介质被击穿而产生电弧,电路再次被导通。触头间电弧燃烧的间隙称为弧隙。电弧形成后,弧隙间的高温使阴极表面的电子获得足够的能量而向外发射,形成热电场发射。同时在高温的作用下(电弧中心部分维持的温度可达10000℃以上),气体中性质点的不规则热运动速度增加。当具有足够动能的中性质点相互碰撞时,

将被游离而形成电子和正离子,这种现象称为热游离。随着触头分开的距离增大,触头间的电场强度E逐渐减小,这时电弧的燃烧主要是依靠热游离维持的。在开关电器的触头间,发生游离过程的同时,还发生着使带电质点减少的去游离过程。电弧是一种空气导电的现象,在两电极之间产生强烈而持久的放电现象,称为电弧。电弧的能量集中,温度极高,亮度很强。例:10kv QF 断开20kv的电流,电弧功率达到一万kw以上。电弧由阴级区、阳极区和弧柱区组成。弧柱处温度最高,可达6-7k0C到1万度以上。在弧柱周围温度较低。亮度明显减弱的部分叫弧焰,电流几手都从弧柱内部流过。电弧的气体放电是自持放电,维持电弧燃烧的电压很低。在大气中,1cm长的直流电弧的弧柱电压仅15-30v。在变压器油中,1cm长的直流电弧的弧柱电压仅100-220v。电弧是一束游离的气体,质量极轻,极易变形。电弧在气体或液体的流动作用下或电动力作用下,能迅速移动,伸长或弯曲。电弧对电力设备、动力设备的断路器有破坏作用,必须尽量消除。但在机械、建筑等领域,电焊却是一种广泛应用的工艺。在化工等领域,电弧喷涂也得到广泛应用! 灭弧 灭弧室是盆状的,底部有孔,动触头在孔中穿过,与静触头接触形成导电通路。灭弧室、静触头和动触杆上都有铜钨合金,灭弧室外有灭弧线圈。当动触杆和静触头分开即分闸操作时电弧会马上转移到灭弧室内,电流流过线圈,在灭弧室内建立磁场。

开关电器典型灭弧装置的工作原理

开关电器典型灭弧装置的工作原理 教学基本内容: 开关电器典型灭弧装置的工作原理 提高灭弧装置开断能力的辅助方法 概述 当电源电压超过数十伏、开断电流在数十安以上时,为减少电弧对触头的烧损和限制电弧扩展的空间,通常需要采取加强灭弧能力的措施,为此而采用的装置称为灭弧装置。 这些灭弧装置的灭弧原理主要有下列十几种: 1.简单开断; 2.磁吹线圈; 3.纵缝灭弧装置; 4.绝缘栅片灭弧装置; 5.金属栅片灭弧装置; 6.固体产气灭弧装置, 7.石英砂灭弧装置; 8.变压器油灭弧装置; 9.压缩空气灭弧装置; 10.SF6灭弧装置; 11.真空灭弧装置。 此外,为了增加灭弧装置的开断能力,通常可以采用下列辅助方法: 1.在弧隙两瑞并联电阻; 2. 附加同步开断装置; 3.附加晶闸管装置。

上述灭弧装置的灭弧原理是: (1) 在大气中依靠触头分开时的机械拉长,使L增大; (2) 利用流过导电回路或特制线圈的电流在燃弧区产生磁场,使电弧迅速移动和拉长; (3)依靠磁场的作用,将电弧驱入用耐弧材料制成的狭缝中,以加强电弧的冷却和消电离; (4) 用金属板将电弧分隔成许多串联的短弧; (5) 在封闭的灭弧室中,利用电弧自身能量分解固体材料,产生气体,以提高灭弧室中的压力,或者利用产生的气体进行吹弧; (6) 利用电弧自身能量,使变压器油分解成含有大量氢气的气体并建立起很高的压力,再利用此压力推动冷油和气体去吹弧; (7) 利用压缩空气吹弧; (8) 利用SF6气体吹弧; (9) 在高真空中开断触头,利用弧隙中由电极金属蒸汽形成的弧柱在电流过零时迅速扩散的原理进行灭弧; (10) 利用石英砂等固体颗粒介质,限制电弧直径的扩展和加强冷却。 开关电器典型灭弧装置的工作原理 一、拉长电弧 (1)大气中,利用机械拉长电弧方式的原理与图例。 电弧放长后,电弧电压就增大,其静态伏——安特性向上移

开关电器中电弧产生原因及灭弧方法示范文本

开关电器中电弧产生原因及灭弧方法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

开关电器中电弧产生原因及灭弧方法示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 开关电器中电弧是如何产生的? 电孤是一种气体放电现象,它有两个特点:一是电弧 中有大量的电子、离子,因而是导电的,电孤不熄灭电路 继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度 很高,弧心温度达4000~5000摄氏度以上,高温电弧会 烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电 弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过 程中,由于动触头的运动,使动、静触头间的接触面不断 减小,电流密度就不断增大,接触电阻随接触面的减小就 越来越大,因而触头温度升高,产生热电子发射。当触头

刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中的电子又碰撞出来,这种现象称作碰撞游离。由于碰撞游离的连锁反应,自由电子成倍地增加(正离子亦随之增加),大量的电子奔向阳极,大量的正离子向负极运动,开关触头间隙便成了电流的通道,触头间隙间介质被击穿就形成电弧。 由于电弧温度很高,在高温的作用下,处在高温下的中性质点由于高温而产生强烈不规则的热运动,在中性质点互相碰撞时,又将被游离而形成电子和离子,这种因热运动而引起的游离称为热游离。热游离产生大量电子和离子维持触头间隙间电弧。产生电弧主要由碰撞游离,维持

第十三章 电弧及灭弧装置

第十三章电弧及灭弧装置 在有触点电器中,触头接通和分断电流的过程中往往伴随着气体放电现象一电弧的产生及熄灭。电弧对电器具有一定的危害。本章通过对电弧现象的介绍,分析其产生和熄灭的过程,从而找出并介绍在电器常用的灭弧方法及装置,以解决电弧在电器中的影响。 第一节电弧的物理基础 一、电弧现象及特点 电弧属于气体放电的一种形式。气体放电分为自持放电与非自持放电两类,电弧属于气体自持放电中的弧光放电。试验证明,当在大气中开断或闭合电压超过10V、电流超过0.5A的电路时,在触头间隙(或称弧隙)中会产生一团温度极高、亮度极强并能导电的气体,称为电弧。由于电弧的高温及强光,它可以广泛应用于焊接、熔炼、化学合成、强光源及空间技术等方面。对于有触点电器而言,由于电弧主要产生于触头断开电路时,高温将烧损触头及绝缘,严重情况下甚至引起相间短路、电器爆炸,酿成火灾,危及人员及设备的安全。所以从电器的角度来研究电弧,目的在于了解它的基本规律,找出相应的办法,让电弧在电器中尽快熄灭。 我们借助一定的仪器仔细观察电弧,可以发现,除两个极(触头)外,明显的分为3个区域,即近阴极区、近阳极区及弧柱区。如图13—1所示。 图13—1 电弧3个区及电位降、电位梯度分布

近阴极区的长度约等于电子的平均自由行程(小于m 610 )。在电场力的作用下正离子向阴极运动,造成此区域内聚集着大量的正离子而形成正的空间电荷层,使阴极附近形成高电场强度(约为m V /10~1076)。正的空间电荷层形成阴极压降,其数值随阴极材料和气体介质的不同而有所变化,但变化不大,约在10-20V 之间。 近阳极区的长度约等于近阴极区的几倍。在电场力的作用下自由电子向阳极运动,它们聚集在阳极附近而且不断被阳极吸收而形成电流。在此区域内聚集着大量的电子形成负的空间电荷层,产生阳极压降,其值也随阳极材料而异、但变化不大,稍小于阴极压降。由于近阳极区的长度比近阴极区的长,故其电场强度较小。 阴极压降与阳极压降的数值几乎与电流大小无关,在材料及介质确定后可以认为是常数。 弧柱区的长度几乎与电极间的距离相同。是电弧中温度最高、亮度最强的区域。因在自由状态下近似圆柱形,故称弧柱区。在此区中正、负电粒子数相同,称等离子区。由于不存在空间电荷,整个弧区的特性类似于一金属导体。每单位弧柱长度电压降相等。其电位梯度E 。也为一常数,电位梯度与电极材料、电流大小、气体介质种类和气压等因素有关。 电弧按其外形分为长弧与短弧。长短之别一般取决于弧长与弧径之比。把弧长大大超过弧径的称为长弧。长弧的电压是近极压降(阴极压降与阳极压降)与弧柱压降之和。若弧长小于弧径,两极距离极短(如几毫米)的电弧称为短弧。此时两极的热作用强烈,近极区的过程起主要作用。电弧的压降以近极压降为主,几乎不随电流变化。 电弧还可按其电流的性质分为直流电弧和交流电弧。 二、开断电路时电弧产生的物理过程 当触头开断电路,在间隙中产生电弧时,电路仍然是导通的。这就说明已分开触头间的气体由绝缘状态变成了导电状态。那么,究竟有哪些物理过程在这个气体由不导电状态的变成导电状态过程中起作用了呢?下面就此进行一些分析。 1.碰撞游离 带电粒子(自由电子、正离子和负离子)在电场力中获得动能而加速,当这

开关电器的灭弧

开关电器的灭弧 电弧是电气设备运行中经常发生的物理现象,其特点是光亮很强和温度很高。它不仅对触头有很大的破坏作用,电弧的产生对供电系统的安全运行有很大影响。首先,电弧延长了电路开断短路电流的时间。在开关分断短路电流时,开关触头上的电弧就延长了短路电流通过电路的时间,使短路电流危害的时间延长,这可能对电路设备造成更大的损坏。同时,电弧的高温可能烧坏开关的触头,烧毁电气设备和导线电缆,甚至可能引起火灾和爆炸事故。此外,强烈的电弧可能损伤人的视力,严重的可导致人失明。因此,开关设备在结构设计上就要保证其操作时电弧能迅速地熄灭。 当电弧稳定燃烧时是处在热动平衡状态,此时不可能有电子和离子的积累。这说明电弧中气体游离现象的同时还存在一个相反的过程,我们称之为消游离。消游离就是正、负带电粒子中和而变成中性粒子的过程。消游离的方式分两类:复合和扩散。 1.复合 带异性电荷的粒子相遇后相互作用中和而变成中性粒子称为复合。复合按其地点可分为: (1)表面复合:带正、负电荷的粒子附在金属或绝缘材料表面上,相互吸引而中和电荷,变成中性粒子。 (2)空间复合:带正、负电荷的粒子在放电间隙中相互吸引而中和电荷,变成中性粒子。自由电子与正离子相遇,相互吸引而中和电荷而变成中性粒子,称为直接复合。由于自由电子的运动速度比正离子大得多,所以直接复合的机率很小。往往自由电子粘合在中性粒子上,再与正离子相遇而复合,中和电荷形成两个中性粒子。这种过程称间接复合。因为正、负离子的运动速度相当,间接复合的机率大,约为直接复合的上千倍。自由电子粘合在中性粒子上形成负离子的强弱与气体的种类和纯净度有关。氟原子及其化合物SF 分子与自由电子的粘合 6 的复合能力很强,是比较理想的消游离和作用很强,所以称为负电性气体。SF 6 绝缘介质。现已应用在高压断路器中。 显而易见,带电粒子运动速度是直接影响复合作用大小的重要因素。降低温度、减小电场强度可使粒子运动速度减小,易于复合。此外,带电粒子浓度增大时,复合机会增多,复合作用也可以加强。在电弧电流不变的条件下,设法缩小电弧直径,则粒子浓度可增大。 复合过程总是伴随着能量的释放。释放出来的能量成为加热电极、绝缘物及气体的热源,同时也向四周散发。 2.扩散 带电粒子从电弧区转移到周围介质中去的现象称为扩散。扩散的方向一般为从高温、高浓度区向低温、低浓度区。扩散使电弧中的带电粒子减小。扩散出来的带电粒子因冷却很容易相互结合,中和电荷而形成中性粒子。扩散速度与电弧内外浓度差、温度差成正比。电弧直径愈小,弧区中带电粒子浓度愈大;电弧与周围介质温差愈大,扩散速度愈大。因此,加速电弧的冷却是提高扩散作用的有效方法。 综上所述,电弧中存在着游离和消游离两方面的作用。当游离作用占优势时电弧就会产生和扩大,当消游离作用占优势时,电弧就趋于熄灭。游离与消游离作用与许多物理因素有关,如电场强度、温度、浓度、气体压力等。那么,我们可以

低压开关电器触头的灭弧方法

低压开关电器触头的灭弧方法 1.低压开关电器触头的接触电阻低压开关电器的触头是执行机构的最重要部分。低压开关电器的触头用于接通和分断电路,因此要求的触头导电性和导热性都非常好。通常触头材料是铜、银和镍的合金材料,也有在铜触头的表面电镀银和镍构成的。铜的表面极易氧化。若仅仅使用铜来作触头材料,则它将增加触头的接触电阻,使得触头的损耗和温度也随之增加。因此在中间继电器等小容量低压开关电器上,触头常常采用银质合金,它的氧化膜电阻仅仅只有铜质触头的十几分之一。(1)膜电阻膜电阻是触头接触表面在大气中自然氧化而生成的氧化膜。氧化膜的电阻要比触头本身的电阻大数十到上千倍,且导电性极差。这种氧化膜电阻被称为触头膜电阻。(2)收缩电阻 由于触头表面的粗糙度造成触头的实际接触面积小于触头 截面面积,从而造成触头的有效导电截面减小,当电流流过时会出现电流收缩的若干导电岛的现象。这种收缩现象增加的电阻称为触头的收缩电阻。(3)触头的磨损低压电器触头的磨损包括电磨损和机械磨损。触头的电磨损是由于在通断过程的电弧烧蚀引起的触头材料损耗,电磨损取决于拉弧后通过触头间隙的电荷量及触头材质。电磨损是触头材料损耗的主因。触头的机械磨损是由于

机械摩擦作用引起的触头材料损耗,机械磨损取决于材料的硬度、触头压力及触头滑动方式等。(4)触头的接触形式 触头的接触形式分为点接触、线接触和面接触三类,如下图所示。点接触因为单位面积上的压强大,可减小触头的表面电阻,因此点接触常常用于小电流的低压开关电器中。例如接触器的辅助触头和继电器的触头。线接触伴随着动、静触头之间的滚动摩擦,有利于去除触头表面的氧化膜。线接触一般用于操作频繁且电流比较大的场合。例如接触器和断路器等。面接触的触头材料一般为合金,它具有接触电阻小、抗熔焊、抗磨损、允许通过较大电流等特性。面接触一般用于中、小容量的接触器。(5)触头的状态触头按其原始的状态分为常开(动合)触头。这里所指的原始状态即低压开关电器的线圈未得电,或者开关电器未受力等情况。低压开关电器按其触头开断电流的大小分为主触头和辅助触头。主触头用于主回路的开断,允许通过较大的电流;辅助触头用于控制回路,其开断电流一般为5A。2.产生触头电弧的原因和灭弧方法 当触头开断电路时的瞬间,动静触头间微小间隙中的空气被击穿,由此引发电弧。电流流过电弧区时,产生大量的热能和光能,这些能量以高温和强光的形式作用在触头上,使得触头材料被融化烧蚀,甚至出现触头粘连而不能断开,造成严重事故。电弧产生包括四个过程:过程之一:强电场致电

各类灭弧原理

各类断路器的灭弧原理真空断路器灭弧原理? 在真空断路器分断瞬间,由于两触头间的电容存在,使触头间绝缘击穿,产生真空电弧。由于触头形状和结构的原因,使得真空电弧柱迅速向弧柱体外的真空区域扩散。当被分断的电流接近零时,触头间电弧的温度和压力急剧下降,使电弧不能继续维持而熄灭。电弧熄灭后的几μs内,两触头间的真空间隙耐压水平迅速恢复。同时,触头间也达到了一定距离,能承受很高的恢复电压。所以,一般电流在过零后,不会发生电弧重燃而被分断。这就是其灭弧的原理。 SF6开关的灭弧原理 10kV SF6断路器灭派性能优良,不仅在于SF6气体本身,而且采用旋弧式灭弧室。目前,国内外在10kV电压级的SF6断路器研制上,广泛采用了具有良好灭弧性能的旋弧式灭抓室,它利用短路电流来建立磁场,使电弧在电磁力的作用下高速旋转,以达到自动灭弧的作用。其灭弧原理从图1可见:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转,在SF6气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。 油断路器的灭弧原理 当油断路器开断电路时,只要电路中的电流超过0.1A,电压超过几十伏,在断路器的动触头和静触头之间就会出现电弧,而且电流可以通过电弧继续流通,只有当触头之间分开足够的距离时,电弧熄灭后电路才断开。1OkV少油断路器开断20KA时的电弧功率,可达一万千瓦以上,断路器触头之间产生的电弧弧柱温度可达六七千度,甚至超过1万度。油断路器的电弧熄灭过程是,当断路器的动触头和静触头互相分离的时候产生电弧,电弧高温使其附近的绝缘油蒸发气化和发生热分解,形成灭弧能力很强的气体(主要是氢气)和压力较高的气泡,使电弧很快熄灭。 灭弧的种类:灭弧有磁吹,纵缝灭弧,横吹的等等! 磁吹当然是利用磁力来灭弧。因为电弧本身就是一个比较大的电流,用线圈通上电流,当然线圈必须是在电弧的两边,把电弧加在中间!当有电弧的时候,线圈用自己本身的磁力,把电弧拉长,让他自动熄灭! 可以引申以下,原先的断路器是用油来灭弧(当然不是单纯的用油),也就是电弧形成时,会把油电离,电离出来的氢气会把电弧吹灭!现在的SF6断路器的灭弧能力是氢气的6-8倍,所以现在的断路器都是用FS6灭弧。 纵缝是把电弧引到缝里面,从而灭弧。

开关电器中电弧产生原因及灭弧方法

开关电器中电弧产生原因及灭弧方法开关电器中电弧是如何产生的 电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中的电子又碰撞出来,这种现象称作碰撞游离。由于碰撞游离的连锁反应,自由电子成倍地增加(正离子亦随之增加),大量的电子奔向阳极,大量的正

离子向负极运动,开关触头间隙便成了电流的通道,触头间隙间介质被击穿就形成电弧。 由于电弧温度很高,在高温的作用下,处在高温下的中性质点由于高温而产生强烈不规则的热运动,在中性质点互相碰撞时,又将被游离而形成电子和离子,这种因热运动而引起的游离称为热游离。热游离产生大量电子和离子维持触头间隙间电弧。产生电弧主要由碰撞游离,维持电弧主要依靠热游离。 开关电器中电弧熄灭常用哪些方法 开关电器中电弧熄灭常用的方法如下: (1)利用气体或油熄灭电弧。在开关电器中利用各种形式的灭弧室使气体或油产生巨大的压力并有力地吹向弧隙,电弧在气流或油流中被强烈地冷却和去游离,并且其中的游离物质被未游离物质所代替,电弧便迅速熄灭。气体或油吹动的方式有纵吹和横吹两种,纵吹使电弧冷却变细,然后熄灭;横吹是把电弧拉长切断而熄灭。不少断路器采用纵横混合吹弧方式,以取得更好灭弧效果。

开关电器中电弧产生原因及灭弧方法

编号:SM-ZD-44218 开关电器中电弧产生原因 及灭弧方法 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

开关电器中电弧产生原因及灭弧方 法 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 开关电器中电弧是如何产生的? 电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场

各种不同的断路器的灭弧方法

各种不同的断路器的灭弧方法 SF6断路器按照灭弧原理分为:自能吹弧式(又分为旋弧式和热膨胀式),压气式,混合吹弧式。 旋弧式灭弧:目前,国内外在10kV电压级的SF6断路器研制上,广泛采用了具有良好灭弧性能的旋弧式灭抓室,它利用短路电流来建立磁场,使电弧在电磁力的作用下高速旋转,以达到自动灭弧的作用。其灭弧原理:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转。在SF6气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。这里需要指出的是:电弧的转移,电流过零时的电磁力以及开断小电流等均进行了技术处理。 对SF6开关灭弧室的改进意见:由于SF6开关的灭弧室为圆筒型,电弧不会被拉长。如果采用圆锥型结构,情况就有所变化。当电弧被引入灭弧室后,由于灭弧室的半径是逐渐变大的,这样电弧将被逐渐拉长,电弧电阻增大,加速电弧的熄灭,从而提高了断路器的开断能力。 真空断路器按照灭弧原理的不同有纵磁灭弧,横磁灭弧,纵横磁灭弧。由触头结构在电流流经触头时产生不同的磁场,横向磁场可以拉长电弧,使阴极半点移动,减少阴极表面的烧蚀,增大了电子发射的难度,使电弧赖以存在的自由电子减少。而纵磁场是电流从触头流过时产生纵向磁场,纵向磁场像磁镜将自由电子约束在弧道内,这样电弧弧柱的电阻就小,电弧的导电性能就好,系统向电弧输入的能量就小,熄灭电弧时就容易。这些都是不同的熄灭电弧的方法。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。

灭弧的基本方法

灭弧的基本方法就是加强去游离提高弧隙介质强度的恢复过程,或改变电路参数降低弧隙电压的恢复过程,目前开关电器的主要灭弧方法有: 1.利用介质灭弧 弧隙的去游离在很大程度上,取决于电弧周围灭弧介质的特性。六氟化硫(SF6)气体是很好的灭弧介质,其电负性很强,能迅速吸附电子而形成稳定的负离子,有利于复合去游离,其灭弧能力比空气约强100倍;真空(压强在0.013Pa以下)也是很好的灭弧介质,因真空中的中性质点很少,不易于发生碰撞游离,且真空有利于扩散去游离,其灭弧能力比空气约强15倍。 采用不同介质可以制成不同的断路器,如油断路器、六氟化硫断路器和真空断路器。2.利用气体或油吹动电弧 吹弧使弧隙带电质点扩散和冷却复合。在高压断路器中利用各种灭弧室结构形式,使气体或油产生巨大的压力并有力地吹向弧隙。吹弧方式主要有纵吹与横吹两种。纵吹是吹动方向与电弧平行,它促使电弧变细;横吹是吹动方向与电弧垂直,它把电弧拉长并切断。 3.采用特殊的金属材料作灭弧触头 采用熔点高、导热系数和热容量大的耐高温金属作触头材料,可减少热电子发射和电弧中的金属蒸气,得到抑制游离的作用;同时采用的触头材料还要求有较高的抗电弧、抗熔焊能力。常用触头材料有铜钨合金、银钨合金等。 4.电磁吹弧 电弧在电磁力作用下产生运动的现象,叫电磁吹弧。由于电弧在周围介质中运动,它起着与气吹的同样效果,从而达到熄弧的目的。这种灭弧的方法在低压开关电器中应用得更为广泛。 5.使电弧在固体介质的狭缝中运动 此种灭弧的方式又叫狭缝灭弧。由于电弧在介质的狭缝中运动,一方面受到冷却,加强了去游离作用;另一方面电弧被拉长,弧径被压小,弧电阻增大,促使电弧熄灭。 6.将长弧分隔成短弧 当电弧经过与其垂直的一排金属栅片时,长电弧被分割成若干段短弧;而短电弧的电压降主要降落在阴、阳极区内,如果栅片的数目足够多,使各段维持电弧燃烧所需的最低电压降的总和大于外加电压时,电弧就自行熄灭。另外,在交流电流过零后,由于近阴极效应,每段弧隙介质强度骤增到150~250V,采用多段弧隙串联,可获得较高的介质强度,使电弧在过零熄灭后不再重燃。 7.采用多断口灭弧 高压断路器每相由两个或多个断口串联,使得每一断口承受的电压降低,相当于触头分断速度成倍地提高,使电弧迅速拉长,对灭弧有利。 8.提高断路器触头的分离速度 提高了拉长电弧的速度,有利于电弧冷却复合和扩散。

低压电器灭弧工作标准

通常,开关电器中产生电弧是有害的,因为其温度高达数千摄氏度,能烧坏触头,甚至导致触头熔焊。如果电弧不立即熄灭,就可能烧伤操作人员,烧毁设备,甚至酿成火灾。因此,有触头的电器应考虑其灭弧问题。 一、低压电器熄灭电弧的措施 灭弧的基本原理是采取措施消除电弧存在的条件,亦即不使电弧电压降因强烈的热电离得以维持。对低压电器常采取以下措施来灭弧: 1.利用磁吹线圈产生磁场,拉(吹)长电弧。在一定电压下,电弧因弧柱的电压降而难以维持,从而将电弧熄灭。 2.利用金属栅片把电弧截割成若干段短弧,从而大大增加整个电弧的电压降。通常,栅片数量越多,电弧的压降越大。 3.用冷却法清除电弧,利用固体介质吸收电弧的能量,以加速其冷却来熄弧,或使电弧迅速通过低温介质,与之紧密接触而冷却。此时在强烈的扩散和复合作用下,电离大为减弱,消电离大为增强。 4.用机械力和电动力将电弧迅速拉长而熄弧。 二、低压电器常用灭弧装置的种类和判断灭弧装置的性能 低压电器常用的灭弧装置有以下几种:磁吹装置、电动力吹弧装置、纵缝灭弧装置、栅片灭弧装置和固体产气灭弧装置。 灭弧装置的性能是否良好,一般可以根据灭弧时间和声音来判断。性能良好的灭弧装置,其灭弧时间从电弧开始点燃到完全熄灭一般不超过0.01~0.05秒,并能听到清脆有力的灭弧声;如果灭弧时发出软弱无力的“噗噗”声,则表明灭弧装置的性能已严重变坏,不能及时迅速地熄灭电弧。 如果灭弧装置发生故障,灭弧时就会出现各种异常现象,如电弧喷出灭弧罩的范围过大,声音不正常,触头烧毛,灭弧罩烧焦

等。 三、低压电器的灭弧罩的故障及处理 灭弧罩常见的故障和处理办法有以下几种: 1.受潮 灭弧罩一般用石棉水泥板制做,易受潮。受潮后,电弧高温使水分蒸发,造成灭弧罩上部压力增大,电弧很难进入罩内,所以不易灭弧。遇到这种情况,应将灭弧罩烘干。 2.炭化 分断较大的故障电流时,电弧高温有时使石棉水泥板表面烧焦,形成炭质导电桥,妨碍灭弧。此时应将烧焦部分刮掉,吹除各种导电粉尘和杂质,保持灭弧罩表面光洁。 3.破裂 如果灭弧罩破裂,应将其取下,不允许低压电器再接通或分断电流,只能作为隔离开关使用。灭弧罩破裂后,一般是无法修复的,可到原制造厂购买或配制,或者由陶瓷厂烧制一个与原来形状相同的灭弧罩。 4.栅片脱落 栅片脱落后,可用镀铜铁片来制做,一般装上后即可使用。但不得用铜或其他非磁性金属来制做栅片。 四、使用刀闸开关时发生弧光短路故障的防止 为防止刀闸开关发生弧光短路故障,保障设备和人身的安全,首先应考虑刀闸开关的适用性;其次应做好使用过程中的检查和维护工作,并严格按照规程进行操作。具体地说,应注意以下各项: 1.不得将刀闸开关用于它不能分断的电路。 2.在运行前应检查其动作是否灵活,有无卡死现象。 3.检查灭弧罩是否齐全、牢固,对无灭弧罩的胶壳开关应检查其胶盖是否盖好。 4.仅用以隔离电源的开关,其操作顺序应按规定执行,不允许分断负荷电流。 5.无灭弧罩的开关,一般不允许用来分断负荷。 6.多极开关,应保证其各极动作的同步性和接触良好。

开关电器中电弧产生原因及灭弧方法

开关电器中电弧产生原因及灭弧方法 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

开关电器中电弧产生原因及灭弧方法开关电器中电弧是如何产生的 电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中的电子又碰撞出来,这种现象称作碰撞游离。由于碰撞游离的连锁反应,自由电子成倍地增加(正离子亦随之增加),大量的电子奔向阳极,大量的正离子向负极运动,开关触头间隙便成了电流的通道,触头间隙间介质被击穿就形成电弧。

由于电弧温度很高,在高温的作用下,处在高温下的中性质点由于高温而产生强烈不规则的热运动,在中性质点互相碰撞时,又将被游离而形成电子和离子,这种因热运动而引起的游离称为热游离。热游离产生大量电子和离子维持触头间隙间电弧。产生电弧主要由碰撞游离,维持电弧主要依靠热游离。 开关电器中电弧熄灭常用哪些方法 开关电器中电弧熄灭常用的方法如下: (1)利用气体或油熄灭电弧。在开关电器中利用各种形式的灭弧室使气体或油产生巨大的压力并有力地吹向弧隙,电弧在气流或油流中被强烈地冷却和去游离,并且其中的游离物质被未游离物质所代替,电弧便迅速熄灭。气体或油吹动的方式有纵吹和横吹两种,纵吹使电弧冷却变细,然后熄灭;横吹是把电弧拉长切断而熄灭。不少断路器采用纵横混合吹弧方式,以取得更好灭弧效果。 (2)采用多断口。高压断路器常制成每相有两个或多个串联的断口,使加于每个断口的电压降低,电弧易于熄灭。 (3)断路器断口加装并联电阻。在高压大容量断路器中,广泛利用弧隙并联电阻来改善它们的工作条件。断路器每相假如有两对触头,一对

相关文档
最新文档