实验七交流电路等效参数的测量 (1)

实验七交流电路等效参数的测量 (1)
实验七交流电路等效参数的测量 (1)

实验七交流电路等效参数的测量

一、实验目的

1. 学习用交流电压表、交流电流表和功率表测量交流电路的等效参数

2. 熟练掌握功率表的接法和使用方法

二、原理说明

1. 三表法测电路元件的参数

正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U,流过该元件的电流I和它所消耗的功率P,如图7-1所示,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz交流电路参数的基本方法。

根据交流电的欧姆定律,可以有

阻抗的模│Z│=U/I

电路的功率因数cosφ=P/UI

等效电阻R=P/I2 =│Z│cosφ

等效电抗X=│Z│sinφ

对于感性元件X=X L=2πfL

对于容性元件X=Xc=1/2πfC

2. 三表法测交流电路的等效参数

如果被测对象不是一个单一元件,而是一个无源二端网

络,也可以用三表法测出U、I、P后,由上述公式计算出R和X,但无法判定出电路的性质(即阻抗性质)。

3. 阻抗性质的判别方法

阻抗性质的判别可以在被测电路元件两端并联或串联电容来实现。

(1)并联电容判别法

在被测电路Z两端并联可变容量的试验电容C′,如图7-2(a)所示,(b)图是(a)的等效电路,图中G、B 为待测阻抗Z的等效电导和电纳,B′=ωC′为并联电容C′的电纳。根据串接在电路中电流表示数的变化,可判定被测阻抗的性质。

设并联电路中B+B′=B″,在端电压U不变的条件下:

①若B′增大,B″也增大,电路中总电流I 将单调地上升,故可判断B为容性元件;

②若B′增大,B″先减小后再增大,总电流I 也是先减小后上升,如图7-3所示,则可判断B为感性元件。

由上分析可见,当B为容性元件时,对并联电容C′值无特殊要求;而当B为感性元件时,B′<│2B│才有判定为感性的意义。B′>│2B│时,电流将单调上升,与B为容性时的情况相同,并不能说明电路是感性的。因此判断电路性质的可靠条件为

C′<│2B│/ω

(2) 串联电容判别法

在被测元件电路中串联一个适当容量的试验电容C′,在电源电压不变的情况下,根据被测阻抗的端电压的变化,可以判断电路阻抗的性质。若串联电容后被测阻抗的端电压单调下降,则判为容性;若端电压先上升后下降,则被测阻抗为感性,判定条件为

C′>1/ω│2X│

式中X为被测阻抗的电抗值,C′为串联试验电容值,此关系式可自行证明。

⑶相位关系测量法

判断待测元件的性质,还可以利用单相相位表测量电路中电流、电压间的相位关系进行判断,若电流超前于电压,则电路为容性;电流滞后于电压,则电路为感性。

4. 功率表的使用

一般单相功率表(又称为瓦特表)是一种动圈式仪表,它有两个测量线圈,一个是有两个量限的电流线圈,测量时应与负载串联;另一个是有三个量限的电压线圈,测量时应与负载并联。

为了不使功率表的指针反向偏转,在电流线圈和电压线圈的一个端钮上都标有“*”标记。正确的连接方法是:必须将标有“*”标记的两个端钮接在电源的同一端,电流线圈的另一端接至负载端,电压线圈的另一端则接至负载的另一端。图7-4 是功率表在电路中的连接线路和测试端钮的外部连接示意图。

三、实验设备

序号名称型号与规格数量备注

单相交流电源0~220V 1 RTDG-1

交流电压表0~300V 1 RTT03-1

交流电流表0~5A 1 RTT03-1

单相功率表D34-W或其它 1 RTT04

自耦调压器 1 RTDG-RTDG-11

电感线圈40W日光灯配用镇流器 1 RTDG08

电容器μ/400V 1 RTDG07

白炽灯40W/220V 3 RTDG07

四、实验内容与步骤

测试线路如图7-5所示,电源电压取自实验装置配电屏上的可调电压输出端,并经指导教师检查后,方可接通市电电源。

1. 测量单一元件的等效参数

⑴分别将40W白炽灯(R)和μF电容器(C)接入电路,用交流电压表监测将电源电压调到220伏,读出电流表和功率表的读数,数据记入表7-1中。

⑵将调压器调回到零,断开电源;

⑶将40W日光灯镇流器(L)接入电路,将电源电压从零调到电流表的示数为额定电流0.4A时为止。

⑷读出电压表和功率表的读数,数据记入表7-1中。

表7-1测量单一元件的等效参数

被测阻抗

测量值计算电路等效参数

U(v) I(A) P(W) Cos(Ф) Z(Ω) sinФR(Ω) L(mH) C(μF)

40W白炽灯/ /

电容器C / /

电感线圈L /

LC串联

LC并联

2. 测量L、C串联与并联后的等效参数

分别将元件L、C串联和并联后接入电路,在电感支路中串入电流表,调节输入电压时使IL=0.4A,并将电压表和功率表的读数记入表7-1中。

3.测量电路的阻抗性质

在L、C串联和并联电路中,保持输入电压不变,并接不同数值的试验电容,测量电路中总电流的数值,根据电流的变化情况来判别LC串联和并联后阻抗的性质。数据记入表7-2中。

表7-2测量电路的阻抗性质

测量电路

并联电容

电路电流

F

μF μF μF μF μF

电路

性质

LC串联I(A)

LC并联I’A

五、实验注意事项

1. 本实验直接用市电220V交流电源供电,实验中要特别注意人身安全,必须严格遵守安全用电操作规程,不可用手直接触摸通电线路的裸露部分,以免触电。

2. 自耦调压器在接通电源前,应将其手柄置在零位上,输出电压从零开始逐渐升高。每次改接实验线路或实验完毕,都必须先将其旋柄慢慢调回零位,再断电源。

3. 功率表要正确接入电路,并且要有电压表和电流表监测,使两表的读数不超过功率表电压和电流的量限。

4. 在测量有电感线圈L的支路中,要用电流表监测电感支路中的电流不得超过0.4A。

六、预习思考题

1. 在50Hz的交流电路中,测得一只铁心线圈的P、I和U,如何算得它的阻值及电感量?

2. 如何用串联电容的方法来判别阻抗的性质?试用I随Xc′(串联容抗)的变化关系作性分析,证明串联试验时,C′满足

1/ωC′<│2X│

七、实验报告

1. 根据实验数据,完成各项数据表格的计算。

2. 回答预习思考题中的问题。

3. 总结功率表与自耦调压器的使用方法。

4. 心得体会及其他。

交流电路元件参数的测定电路分析

深圳大学实验报告 课程名称:电路分析 实验项目名称:交流电路元件参数的测定学院: 专业: 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务部制

实验目的与要求: 1.正确掌握交流电流表、电压表、功率相位组合表的用法。 2.加深对交流电路元件特性的了解。 3.掌握交流电路元件参数的实验测定方法。 方法、步骤: 电阻器、电容器和电感线圈是工程上经常使用的基本元件。在工作频率不高的条件下,电阻器、电容器可视为理想电阻和理想电容。一般电感线圈存在较大电阻,不可忽略,故可用一理想电感和理想电阻的串联作为其电路模型。 电阻的阻抗为: 电容的阻抗为: 电感线圈的阻抗为: 电阻器、电容器、电感线圈的参数可用交流电桥等仪器测出,若手头没有这些设备,可搭建一个简单的交流电路,通过测阻抗算出元件参数值。 1.三表法 利用交流电流表、交流电压表、相位表(或功率表)测量元件参数称为三表法。这种方法最直接,计算简便。元件阻抗为 对于电阻 对于电容 对于电感,, 由已知的电源角频率ω,可进一步确定元件参数。 2.二表法 若手头上没有相位表或功率表,也可只用电流表和电压表测元件参数,这种方法称为二表法。由于电阻器和电容器可看作理想元件,已知其阻抗角为0或90度,故用二表法测其参数不会有什么困难。 二表法测电感线圈参数的电路如图2所示。图中的电阻R是一个辅助测量元件。由 图2可见,根据基尔霍夫电压定律有,而,其中和为假想电压,分别代表线圈中等效电阻r和电感L的端电压。各电压相量关系如图3所示,由于电压U、U1、U2可由电路中测得,故图中小三角形Δaob的各边长已知,再利用三角 形的有关公式求出bc边和ac边的长度,即电压U r和U L可求。最后,由式、 及已知的电源角频率ω可求得线圈的参数。 3.一表法 只用一个交流电压表测量元件参数的方法称为一表法,其原理与二表法相同,不同 的是辅助测量电阻R的阻值应预先已知,这样电路中电流可求,可省去一个电流表。此法有更强的实用性。

交流电路参数的测定实验报告

交流电路参数的测定实验报告 一、实验目的: 1.了解实际电路器件在低频电路中的主要电磁特性,理解理想电路与实际电路的差异。明确在低频条件下,测量实际器件哪些主要参数。 2.掌握用电压表、电流表和功率表测定低频元件参数的方法。 3.掌握调压变压器的正确使用。 二、实验原理: 交流电路中常用的实际无源元件有电阻器、电感器和电容器。 在低频情况下,电阻器周围的磁场和电场可以忽略不计,不考虑其电感和分布电容,将其看作纯电阻。可用电阻参数来表征电阻器消耗电能这一主要的电磁特征。 电容器在低频时,可以忽略引线电感,忽略其介质损耗和漏导,可以用电容参数来表征其储存和释放电能的特征。 电感器的物理原型是导线绕制成的线圈,导线电阻不可忽略,在低频情况下,线匝间的分布电容可以忽略。用电阻和电感两个参数来表征。 交流电流元件的等值参数R、L、C可以用专用仪器直接测量。也可以用交流电流表、交流电压表以及功率表同时测量出U、I、P,通过计算获得,简称三表法。 本实验采用三表法,由电路理论可知,一端口网络电压电流及 将测量数据分别记入表一、表二、表三。每个原件各测三次,求其平均值。 三、仪器设备

1.调压变压器 2.交流电压表 3.功率表 4.交流电流表 5.电感电容电阻。 四、注意事项: 1.测量电路的电流限制在1A以内。 2.单相调压器使用时,先把电压调节手轮调在零位,接通电源后再从零位开始升压。每做完一项实验随手把调压器调回零再断开电源。 六、报告要求: 根据测试结果,计算各元件的等效参数,并与实际设备参数进行比较。 五、思考题 若调压变压器的输出端与输入端接反,会产生什么后果,

实验三--单相交流调压电路实验

信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) /学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期: 2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相围要求。 二.实验容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

交流调功电路工作原理及谐波分析

1、交流调功电路的工作原理 交流调功电路的工作周期为交流电网周期的整数倍,在一个周期内导通整数个周波, 这对电网来讲是非线性负载,存在谐波污染。由于交流调功电路工作频率低于电网频率,因此谐波次数为分数次,不能用电源频率作为基频来进行傅里叶分析。单相交流调功电路工作原理 单相交流调功电路如图1所示,其中u s.为交流电源电压,u T为反并联晶闸管两端压,R为负载电阻,u为负载电压,i为负载电流,各变量正方向如图1所示。单相交流调功电路在整数倍交流电源周期内,使反并联的晶闸管在电源电压过零时刻导通整数个电源周期。此时,电源频率f不能作为傅里叶分析的基频,最低频率是分数次谐波频率。 假设交流调功电路工作周期为M个电源周期,则T=M/f,此时的基频为f/M(HZ) ,晶闸管导通时,电流i就可表示为 " 式中,为电流瞬时最大值;为最低角频率。 在工作周期内,以N个导通交流电源周期的中点为零点,左右对称选取M/2f构成完整的工作 周期。如:当f=50HZ,M=5,N=3时,负载电流参考坐标系如图2所示,

此时负载电流i可以表示为 当自变量为ωt时,式(2)可以化为

2、单相交流调功电路的谐波统一公式及特点 根据三角函数傅里叶级数的正交性,通过选择坐标系使电流在一个工作周期内为奇函数(如图2所示),此时电流i(t)的傅里叶级数中直流分量和余弦分量均为零,只含正弦分量,则有 根据 得 式中,当N=M时,为交流电源频率分量。从式 (6)中可得,当N=kM (k=2,3,……)时,Bn=0,因此谐波成分均为电源频率的非整数次。式(4)和式(6)构成单相交流调功电路的谐波统一公式。 当f=50HZ,M=5,N=3时,负载电流的谐波特性如图3所示。

实验十五 交流电路功率的测量

实验十五 交流电路功率的测量 实验目的 1.学习交流电路中功率及功率因数的测定方法; 2.加深对功率因数概念的理解,进一步了解交流电路中电阻、电容、电感等元件消耗功率的特点; 3.学习一种提高交流电路功率因数的方法. 仪器和用具 负载(铁芯电感为 40W 日光灯镇流器,阻值为 300Ω左右的变阻器)、电动型瓦特表(低功率因数瓦特表W -D34型额定电流为 0.5A 、1A ,额定电压为 150V 、300V 、600V ,功率因数20.φcos =)、铁磁电动型交流电压表、电磁型电流表、电容(0.5μF 、l μF 、2μF 、4μF 、10F 各一个)、调压变压器、示波器、音频信号发生器.-MF 20型晶体管万用表、双刀双掷开关两个等. 实验原理 一、交流功率及功率因数 在直流电路中、功率就是电压和电流的乘积,它不随时间改变.在交流电路中,由于电压和电流都随时间变化,因而它们的乘积也随时间变化,这种功率称为瞬时功率p . 设交流电路中通过负载的瞬时电流i 为 t ωI i sin m = (C.13.1) 负载两端的瞬时电压u 为 ()φt ωU u +=sin m (C.13.2) 则瞬时功率 ()()φt ωt ωI U i u p +=?=sin sin m m (C.13.3) 平均功率 R 图C.13.1

()()()[]???+-?=+==T T T dt φt ωφI U T dt φt ωt ωI U T pdt T P 0m m 0 m m 02cos cos 2 1 1sin sin 11 其中第二项积分为零,所以 φUI φI U dt φI U T P T cos cos 2 1 cos 211m m 0m m ===? (C.13.4) 平均功率不仅和电流、电压的有效值有关,并和功率因数φcos 有关. 由图C.13.1所示可知 I U φUI P R ==cos (C.13.5) 故平均功率也就是电路中电阻上消耗的功率,也称有用功率.由于电压与电流有效值的乘积称为总功率,也称视在功率S ,即 UI S = (C.13.6) 故 φUI φ UI S P cos cos == (C.13.7) 功率因数φcos 就是电源送给负载的有用功率P 和总功率S 的比值,它是反映电源利用率大小的物理量. 测量功率的方法很多,最常用的是瓦特表,此外示波器也可测量功率(示波器适用于测量高频情况下较小的功率). 二、瓦特表测量功率及功率因数 1.瓦特表测功率 本实验采用电动型瓦特表,电动型瓦特表的测量机构示意图如图C.13.2所示. 电动型瓦特表内部测量机构有两个线圈,线圈A 为固定线圈,它与负载串联而接人电路,通过固定线圈的电流就是负载电 流,因此称固定线圈A 为瓦特表的电流线圈;线圈B 为动圈,线圈本身电阻很小,往往与扩程用的高电阻相串联,测量时与负载相并联,动圈支路两端的电压就是负载电压1U ,因此图C.13.2 电动型仪表测量机构示意图 1.固定线圈;2.可动线圈;3、4.支架; 5.指针;6.游丝

单相交流调功电路实验

创新性实验 姓名刘太阳 班级自动化2013级2班 学号201301100221 单相交流调功电路实验 一、实验目的

熟悉调功电路的基本工作原理与特点。 二、实验所需挂件及附件 三、实验线路及原理 单相交流调功电路方框图如图所示。 单相交流调功电路方框图 把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流输出。这种电路不改变交流电的频率,称为交流电力控制电路。 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同。他不是采用移相控制而采用通断控制方式。 交流调功电路不是在每个交流电源周期都通过触发延迟角对输出电压波形进行控制。而是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 L C336

单相交流调功主电路 采用周波控制方式,使得负载电压电流的波形都是正弦波,不会对电网电压电流造成通常意义的谐波污染。此外由于在BCR导通期间,负载上的电压保持为电源电压,因此若将此控制方式用于手电钻在低速下对玻璃或塑性材料进行钻孔,将非常有利。 交流调功电路典型波形图 实验线路,选用灯泡作为实验负载,从灯泡亮、暗时段的变化,可了解交流调功电路的原理与特征。实验线路中双向晶闸管的触发信号由555组成振荡器,产生一个占空比可调的触发脉冲,并通过模拟门形成可靠的触发信号,其频率要低于市电的频率,并可在一定的范

交流电路参数的测定三表法的实验原理

交流电路参数的测定三表法的实验原理 1.交流电路元件的等值参数R,L,C可以用交流电桥直接测得,也可以用交流电压表、交流电流表和功率表分别测量出元件两端的电压U、流过该元件的电流I和它消耗的功率P,然后通过计算得到。后一种方法称为“三表法”。“三表法”是用来测量50Hz频率交流电路参数的基本方法。 如被测元件是一个电感线圈,则由关系 可得其等值参数为 同理,如被测元件是一个电容器,可得其等值参数为 2.阻抗性质的判别方法。如果被测的不是一个元件,而是一个无源一端口网络,虽然从U,I,P三个量,可得到该网络的等值参数为R=|Z|cos,X=|Z|sin,但不能从X的值判断它是等值容抗,还是等值感抗,或者说无法知道阻抗幅角的正负。为此,可采用以下方法进行判断。 (1)在被测无源网络端口(入口处)并联一个适当容量的小电容。在一端口网络的端口再并联一个小电容C'时,若小电容C'=Zsinr,a,视其总电流的增减来判断。若总电流增加,则为容性;若总电流减小,贝刂为感性。图1(a)中,Z为待测无源网络的阻抗,C'为并联的小电容。图1(b)是图1(a)的等效电路,图中G,B为待测无源网络的阻抗Z的电导和电纳,B'为并联小电容C'的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ①设B+B'=B",若B'增大,B"也增大,则电路中电流I单调地增大,故可判断B为容性。 ②设B+B'=B",若B'增大,而B"先减小再增大,则电流I也是先减小再增大,如图2所示,则可判断B为感性。 由以上分析可见,当B为容性时,对并联小电容的值C'无特殊要求;而当B为感性时,B'<|2B|才有判定为感性的意义。B'>|2B|时,电流单调增大,与B为容性时相同,但并不能说明电路是感性的。因此, B'<|2B|是判断电路性质的可靠条件。由此可得定条件为

交流电路元件参数的测定

深圳大学实验报告 课程名称:电路与电子学 实验项目名称:交流电路元件参数的测定 学院:信息工程学院 专业:无 指导教师:吴迪 报告人:王文杰学号:2013130073 班级:信工02 实验时间:2014/5/22 实验报告提交时间:2014/5/26 教务部制

一、实验目的与要求: 1.正确掌握交流数字仪表(电压表、电流表、功率表)和自耦调压器的用法。 2.加深对交流电路元件特性的了解。 3.掌握交流电路元件参数的实验测定方法。 二、方法、步骤: 电阻器、电容器和电感线圈是工程上经常使用的基本援建。在工作频率不高的条件下,电阻器、电容器可视为理想电阻和理想电容。一般电感线圈存在较大电阻,不可忽略,故可用一理想电感和理想电阻的串联作为电路模型。 电阻的阻抗为:Z=R 电容的阻抗为:Z=jX C=-j(1/ωC) 电感线圈的阻抗为:Z=r+ jX L=r+jωL=|Z|∠ 电阻器、电容器、电感线圈的参数可用交流电桥等一起测出,若手头没有这些设备,可大减一个简单的交流电路,通过测阻抗算出元件参数值。 1.三表法 利用交流电流表、交流电压表、相位表(或功率表)测量元件参数称为三表法、这种方法最直接,计算简便。实验电路如图1所示。元件阻抗为: 对于电阻 对于电容 对于电感 由已知的电源角频率ω,可进一步确定元件参数。

2.二表法 若手头上没有相位表或功率表,也可只用电流表和电压表测元件参数,这种方法称为二表法。由于电阻器和电容器可看作理想元件,已知其阻抗为0或者90度,故用二表法测其参数不会有什么困难。 二表法测电感线圈参数如图2所示。途中的电阻R是一个辅助测量元件。由图2课 件,根据基尔霍夫电压定律有,而,其中和为假想电压,分别代表线圈中等效电阻r和电感L的端电压。各电压相量关系如图3所示,忧郁U、U1、U2可由电路中测的,故途中小三角△aob的各边长已知,再利用三角形的有关公式(或准确地画出图3,由图3直接量的)求出bc边和ac边的长度,即电压U r 和U L可求。最后,由式及已知的电源角频率ω可求得线圈的参数。 3.一表法 只用一个交流电压表测量元件参数的方法称为一表法,其原理与二表法相同,不同

实验十二--用三表法测量交流电路等效参数

实验报告 一、实验目的 1. 学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法 2. 学会功率表的接法和使用 二、原理说明 1. 正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U,流过该元件的电流I和它所消耗的功率P,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz交流电路参数的基本方法。 计算的基本公式为 阻抗的模 │Z│= U I 电路的功率因数 cosφ= P UI 等效电阻 R=P I 等效电抗X=│Z│sinφ 如果被测元件是一个电感线圈,则有: X= XL=│Z│sinφ= 2πf L 如果被测元件是一个电容器,则有: X= X C=│Z│sinφ= 1 2πfc 2. 阻抗性质的判别方法: 在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 (a) (b) 图12-1 并联电容测量法 图12-1(a)中,Z为待测定的元件,C’为试验电容器。(b)图是(a)的等效电路,图中G、B为待测阻抗Z的电导和电纳,B'为并联电容C’的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ①设B+B’=B",若B’增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。 ②设B+B’=B",若B’增大,而B"先减小而后再增大,电流I 也是先减小后上升, 如图5-2所示,则可判断B为感性元件。 I I2

I g B 2B B ’ 图5-2 I -B'关系曲线 由上分析可见,当B 为容性元件时,对并联电容C ’值无特殊要求;而当B 为感性元件时,B ’<│2B │才有判定为感性的意义。B ’>│2B │时, 电流单调上升,与B 为容性时相同,并不能说明电路是感性的。因此B ’<│2B │是判断电路性质的可靠条件,由此得判定条件为 C ’= 2B ω (2) 与被测元件串联一个适当容量的试验电容,若被测阻抗的端电压下降,则判为容性,端压上升则为感性,判定条件为 1ωC ’ <│2X │ 式中X 为被测阻抗的电抗值,C ’为串联试验电容值,此关系式可自行证明。 判断待测元件的性质,除上述借助于试验电容C'测定法外还可以利用该元件电流、电压间的相位关系,若i 超前于u ,为容性;i 滞后于u ,则为感性。 序号 名称 型号与规格 数量 备注 1 交流电流表 1 D37-1 2 交流电压表 1 D38-1 3 单相功率表 1 D34- 2 4 自耦调压器 1 DG01 5 电容负载 4.7μF 450V 1 DG09 6 电感线圈 40W 日光灯配用 1 DG09 7 白炽灯 25W/220V 3 DG08 四、实验内容 测试线路如图12-3所示 1. 按图12-3接线,并经指导教师检查后,方可接通市电电源。 2. 分别测量15W 白炽灯(R),40W 日光灯镇流器(L) 和4.7μf 电容器( C)的等效参数。要求R 和C 两端所加的电压为220V ,L 中流过电流小于0.4A 。 3. 测量L 、C 串联与并联后的等效参数。 4. 用并接试验电容的方法来判别LC 串联和并联后阻抗的性质。 计算所需的电容大小:

单相交流调功电路正文

1概述 1.1晶闸管交流调功器 交流调功器:是一种以晶闸管为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 1.2 交流调压与调功 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图3-21所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 1.3 过零触发和移相触发 过零触发是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。过零触发的主要缺点是当通断比太小时会出现低频干扰,当电网容量不够大时会出现照明闪烁、电表指针抖动等现象,通常只适用于热惯性较大的电热负载。 移相触发是早期触发可控硅的触发器。它是通过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频率,实际改变控制可控硅的触发角。早期可控可是依靠这样改变阻容移相线路来控制。所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。故称移相触发线路。

2系统总体方案 2.1交流调功电路工作原理 单相交流调功电路方框图如图2.1.1所示。 图2.1.1 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图2.1.2所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 图2.1.2 LO AD BCR TLC336A1 A2 g u 脉宽可调矩形波信号发生器

实验3三相交流调压电路实验

实验3 三相交流调压电路实验 一、实验目的 (1) 了解三相交流调压触发电路的工作原理。 (2) 加深理解三相交流调压电路的工作原理。 (3) 了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 三、实验线路及原理 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-1所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 (3)三相交流调压电路带电阻电感性负载(选做)。 图3-1三相交流调压实验线路图 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 ②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct 相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦将DJK02-1面板上的U 端接地,用20芯的扁平电缆,将DJK02-1的 lf “正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-21连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载,接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值,填入下表:

RLC正弦交流电路参数测量实验报告(001)

RLC正弦交流电路参数测量实验报告

【RLC正弦交流电路参数测量】实验报告 【实验目的】 1.熟悉正弦交流电的三要素,熟悉交流电路中的矢量关系; 2.学习用示波器观察李萨尔图形的方法; 3.掌握R,L,C元件不同组合时的交流电路参数的基本测量方法。 【实验摘要(关键信息)】 1.在面包板上搭接R、L、C的并联电路; 2、将R、L并联,测量电压和电流的波形和相位差,计算电路的功率因素。 3、将R、C并联,测量电压和电流的波形和相位差,计算电路的功率因素。 4、将R、L、C并联,测量电压和电流的波形和相位差,由相位差分析负载性质。计算功率因素。 【实验原理】 1.正弦交流电的三要素 初相角:决定正弦量起始位置; 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小。 2.电路参数 在正弦交流电路的负载中,可以是一个独立的电阻器、电感器或电容器,也可以由他们相互组合(以串联为例)。电路里元件的阻抗特性为 当采用交流电压表、电流表和有功功率表对电路 测量时(三表法),可用下列计算公式来表述Z与 P、U、I相互之间的关系: 负载阻抗的模︱Z︱;负载回路的等效电阻 ; 负载回路的等效电抗; 功率因数cosφ;电压与电流的相位差φ 当φ>0时,电压超前电流;当φ<0时,电压滞后电流。 3.矢量关系:基尔霍夫定律在电路电路里依然成立,有和,可列出回路方程与节点方程。 【电路图】

电路图1 电路图2

电路图3 【实验环境(仪器用品等)】 面包板,示波器,1KΩ电阻,47Ω电阻,导线,函数发生器,10mH电感,0.1μF 电容 【实验操作】 1.分别按照电路图1、2、3在面包板上连接电路; 2.调节函数发生器,使其通道1输出频率为1KHz,峰峰值为5V的正弦波; 3.示波器校准,通道1接入函数发生器输出的信号,通道2接入通过47Ω小 电阻的信号,两通道地线要接在一起; 4.调节示波器,使其为李萨尔图形,观察两波形相位差,记录数据并分析。【实验数据与分析】 1.R、L并联

7单相交流调压电路实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相交流调压电路实验 实验时间: 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:指导教师签名: 实验(七)项目名称:单相交流调压电路实验 1.实验目的和要求 (1)加深理解单相交流调压电路的工作原理。 (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。 (3)了解KC05晶闸管移相触发器的原理和应用。 2.实验原理 三、实验线路及原理 本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。 单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。 图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器L d从DJK02上得到,用700mH。 图 3-15 单相交流调压主电路原理图

3.主要仪器设备 1.电路调试

主电路放大电路: (1)KC05集成移相触发电路的调试。 (2)单相交流调压电路带电阻性负载。 (3)单相交流调压电路带电阻电感性负载。 (l)KCO5集成晶闸管移相触发电路调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根 导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,

单相电路参数测量和功率因数的提高

单相电路参数测量及功率因数的提高 一实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。 3.研究日光灯电路中电压、电流相量之间的关系。 4.理解改善电路功率因数的意义并掌握其应用方法。 二实验原理 1.日光灯电路的组成 日光灯电路是一个RL串联电路,由灯管、镇流器、起辉器组成,如图3-1所示。由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。 I 图3-1日光灯的组成电路 灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。 镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻R L和一个电感L串联组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的U形动触片。动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此

时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电,并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。 灯管点亮后,电路中的电流在镇流器上产生较大的电压降(有一半以上电压),灯管两端(也就是起辉器两端)的电压锐减,这个电压不足以引起起辉器氖管的辉光放电,因此它的两个触片保持断开状态。即日光灯点亮正常工作后,起辉器不起作用。 3.日光灯的功率因数 日光灯点亮后的等效电路如图2 所示。灯管相当于电阻负载R A ,镇流器用内阻R L 和电感L 等效代之。由于镇流器本身电感较大,故整个电路功率因数很低,整个电路所消耗的功率P 包括日光灯管消耗功率P A 和镇流器消耗的功率P L 。只要测出电路的功率P 、电流I 、总电压U 以及灯管电压U R ,就能算出灯管消耗的功率P A =I ×U R , 镇流器消耗的功率P L =P ?P A ,UI P =?cos R A 图3-2日光灯工作时的等效电路 2.功率因数的提高 日光灯电路的功率因数较低,一般在0.5 以下,为了提高电路的功率因数,可以采用与电感性负载并联电容器的方法。此时总电流I 是日光灯电流 I L 和电容器电流 I C 的相量和:? ? ? +=C L I I I ,日光灯电路并联电容器后的相量图如图3 所示。由于电容支路的电流I C 超前于电压U 90°角。抵消了一部分日光灯支路电流中的无功分量,使电路的总电流I 减小,从而提高了电路的功率因数。电压与电流的相位差角由原来的 1?减小为?,故cos ?>cos 1?。 当电容量增加到一定值时,电容电流C I 等于日光灯电流中的无功分量,?= 0。cos ?=1,此时总电流下降到最小值,整个电路呈电阻性。若继续增加电容量,

9. 三相交流电路功率测量

三相交流功率的测量 一、实验目的 1. 掌握用一瓦特表法、二瓦特表法测量三相电路有功功率与无功功率的方法 2. 进一步熟练掌握功率表的接线和使用方法 二、原理说明 1.对于三相四线制供电的三相星形联接的负载(即Y o接法),可用一只功率表测量各相的有功功率P A、P B、P C,则三相负载的总有功功率ΣP=P A+P B+P C。这就是一瓦特表法,如图9-1所示。若三相负载是对称的,则只需测量一相的功率,再乘以3 即得三相总的有功功率。 图9-1 图 9-2 2. 三相三线制供电系统中,不论三相负载是否对称,也不论负载是Y接还是△接,都可用二瓦特表法测量三相负载的总有功功率。测量线路如图9-2所示。若负载为感性或容性,且当相位差φ>60°时,线路中的一只功率表指针将反偏(数字式功率表将出现负读数), 这时应将功率表电流线圈的两个端子调换(不能调换电压线圈端子),其读数应记为负值。而三相总功率∑P=P1+P2(P1、P2本身不含任何意义)。 除图9 -2的I A、U AC与I B、U BC接法外,还有I B、U AB与I C、U AC以及I A、U AB与I C、U BC两种接法。 3. 对于三相三线制供电的三 相对称负载,可用一瓦特表法测得 三相负载的总无功功率Q,测试原 理线路如图9-3所示。 图示功率表读数的倍,即为 对称三相电路总的无功功率。除了 此图给出的一种连接法(I U、U VW) 外,还有另外两种连接法,即接成图 9-3 (I V、U UW)或(I W、U UV)。

三、实验设备 四、实验内容 1. 用一瓦特表法测定三相对称Y0接以及不对称Y0接负载的总功率ΣP。实验按图9-4线路接线。线路中的电流表和电压表用以监视该相的电流和电压,不要超过功率表电压和电流的量程。 图 9-4 经指导教师检查后,接通三相电源,调节调压器输出,使输出线电压为220V,按表9-1的要求进行测量及计算。

交流电路参数的测定三表法的实验原理(精)

交流电路参数的测定三表法的实验原理 交流电路参数的测定三表法的实验原理 类别:电子综合 1.交流电路元件的等值参数R,L,C可以用交流电桥直接测得,也可以用交流电压表、交流电流表和功率表分别测量出元件两端的电压U、流过该元件的电流I和它消耗的功率P,然后通过计算得到。后一种方法称为“三表法”。“三表法”是用来测量50Hz频率交流电路参数的基本方法。 如被测元件是一个电感线圈,则由关系可得其等值参数为同理,如被测元件是一个电容器,可得其等值参数为2.阻抗性质的判别方法。如果被测的不是一个元件,而是一个无源一端口网络,虽然从U,I,P三个量,可得到该网络的等值参数为R=|Z|cos,X=|Z|sin,但不能从X的值判断它是等值容抗,还是等值感抗,或者说无法知道阻抗幅角的正负。为此,可采用以下方法进行判断。(1)在被测无源网络端口(入口处)并联一个适当容量的小电容。在一端口网络的端口再并联一个小电容C时,若小电容C=Zsinr,a,视其总电流的增减来判断。若总电流增加,则为容性;若总电流减小,贝刂为感性。图1(a)中,Z为待测无源网络的阻抗,C为并联的小电容。图1(b)是图1(a)的等效电路,图中G,B为待测无源网络的阻抗Z的电导和电纳,B为并联小电容C的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析:①设B+B=B",若B增大,B"也增大,则电路中电流I单调地增大,故可判断B为容性。②设B+B=B",若B增大,而B"先减小再增大,则电流I也是先减小再增大,如图2所示,则可判断B为感性。由以上分析可见,当B为容性时,对并联小电容的值C无特殊要求;而当B为感性时,B<|2B|才有判定为感性的意义。B>|2B|时,电流单调增大,与B为容性时相同,但并不能说明电路是感性的。因此,B<|2B|是判断电路性质的可靠条件。由此可得定条件为 图1 阻抗与导纳变换示意图图2 负载并联电容后电流变化示意图(2)在被测无源网络的入口串联一个适当容量的电容C。若被测网络的端电压下降,则判为容性电路;反之,若端电压上升,则判为感性电路。判定条件为,式中X为被测网络的电抗,C为串联电容的值。(3)用“三压法”测Φ,进行判断。在原一端口网络入口处串联一个电阻r,如图3(a)所示,向量如图3(b)所示,由图可得r,Z串联后的阻抗角Φ为测得U,Ur,Uz,即可求得Φ

实验三 单相交流调压电路实验

北京信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相范围要求。 二.实验内容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

实验十五-交流电路功率的测量

实验十五-交流电路功率的测量

————————————————————————————————作者:————————————————————————————————日期:

实验十五 交流电路功率的测量 实验目的 1.学习交流电路中功率及功率因数的测定方法; 2.加深对功率因数概念的理解,进一步了解交流电路中电阻、电容、电感等元件消耗 功率的特点; 3.学习一种提高交流电路功率因数的方法. 仪器和用具 负载(铁芯电感为 40 W 日光灯镇流器,阻值为 300 Ω 左右的变阻器)、电动型瓦特表 (低功率因数瓦特表 D34 - W 型额定电流为 0.5 A 、1 A ,额定电压为 150 V 、300 V 、 600 V ,功率因数 cos φ = 0.2 )、铁磁电动型交流电压表、电磁型电流表、电容(0.5 μF 、 l μF 、2 μF 、4 μF 、10 F 各一个)、调压变压器、示波器、音频信号发生器. MF - 20 型晶体 管万用表、双刀双掷开关两个等. 实验原理 一、交流功率及功率因数 U 在直流电路中、功率就是电压和电流的乘积,它不随时间 ? 改变.在交流电路中,由于电压和电流都随时间变化,因而它 O 图 C.13.1 U R I 们的乘积也随时间变化,这种功率称为瞬时功率 p . 设交流电路中通过负载的瞬时电流i 为 i = I sin ωt (C.13.1) m 负载两端的瞬时电压 u 为 u = U sin (ωt + φ) (C.13.2) m 则瞬时功率 p = u ? i = U I sin (ωt )sin (ωt + φ) (C.13.3) m m 平均功率

电力电子实验指导书完全版

电力电子技术实验指导书 目录 实验一单相半波可控整流电路实验 (1) 实验二三相桥式全控整流电路实验 (4) 实验三单相交流调压电路实验 (7) 实验四三相交流调压电路实验 (9) 实验装置及控制组件介绍 (11)

实验一单相半波可控整流电路实验 一、实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用; 2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析; 3.了解续流二极管的作用; 二、实验线路及原理 熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。 图1-1 单结晶体管触发的单相半波可控整流电路 三、实验内容 1.单结晶体管触发电路的调试; 2.单结晶体管触发电路各点电压波形的观察; 3.单相半波整流电路带电阻性负载时Ud/U2=f(α)特性的测定; 4.单相半波整流电路带电阻电感性负载时续流二极管作用的观察; 四、实验设备 1.电力电子实验台 2.RTDL09实验箱 3.RTDL08实验箱 4.RTDL11实验箱 5.RTDJ37实验箱 6.示波器; 7.万用表; 五、预习要求 1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱; 2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,

电路各部分的电压和电流波形; 3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。 六、思考题 1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决? 七、实验方法 1.单相半波可控整流电路接纯阻性负载 调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT 波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。 表1-1 2.单结晶体管触发电路的调试 RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。 4.单相半波可控整流电路接电阻电感性负载 将负载改接成阻感性负载(由滑动变阻器Rd与平波电抗器串联而成,RTDL08实验箱提供电感)。不接续流二极管VD,在不同阻抗角(改变Rd的电阻值)情况下,观察并记录α=30o、60o、90 o、120o时的Ud及U VT的波形。 接入续流二极管VD,重复上述实验,观察续流二极管的作用记录于下表1-2中。 计算公式:Ud=[0.45*U2*(1+cosα)]/2 表1-2

相关文档
最新文档