实验八-差分放大器实验分析报告

实验八-差分放大器实验分析报告
实验八-差分放大器实验分析报告

实验八-差分放大器实验报告

————————————————————————————————作者:————————————————————————————————日期:

2

差分放大电路

实验报告

姓名:黄宝玲

班级:计科1403

学号:201408010320

实验摘要(关键信息)

实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。

实验内容与规划:

1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。

2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2)

3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。

4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。

5、计算共模抑制比Kcm R 。

最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。

实验环境(仪器用品等)

1.仪器:示波器(DPO 2012B 100MHZ 1GS/s)

直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A)

台式万用表(UT805A)

模拟电路实验箱(LTE-AC-03B)。

2、所用功能区:单管、多管、负反馈放大电路。

实验原理和实验电路

1、实验原理:

差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。

概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。

A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。

差模信号Vid :即差模输入的两个输入信号之差。

B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。

共模信号Vic :即共模输入的两个输入信号的算数平均值。

C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 A V

D =ΔVod

ΔVid

D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 A VC =ΔVoc

ΔVic

E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。

K CMR =20lg|Avd

Avc |(dB ) CMRR =|Avd

Avc |

2、实验电路:

SW1

SW-SPDT

Q1

NPN

Q2

NPN

Q3

NPN

R1

510

R2

510

R3

10k

R4

10k

R5

10k

R6

10k

R7

10k

R8

5.1K

R9

68K

R10

36K

RV1

100

R9(1)

R10(2)

A

B

C D

AM

FM

+

-

上图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关SW1拨向左边时,构成典型的差动放大器。调零电位器RV1用来调节Q1、Q2管的静态工作点,使得输入信号Ui=0时,双端输出电压UO=0。R7为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。

实验步骤和数据记录

1、设置信号发生器

信号幅值频率偏移

相位

Ch1 300

mV

3 KHz 0 180°

Ch2 300

mV

3 KHz 0 0°

2、调试输出波形

直接将信号源输出端接到示波器输入端,若两输出波形没对齐,则用信号发生器的“同相位”功能键对齐。注意输出信号的相位分别为0°和180°得到反相信号。

图中1、2输出分别为两输出信号的单端输出Vo1、Vo2,M为输出信号1减去输出信号2的值(用这种方法计算出双端输出Vo的值)。

由于ch1和ch2等大反相,因此双端输出V0 = 2*V1 = 600 mV ,波形输出正确。

3、调零

在电路接入信号前,用电位器测量Vo1、Vo2之间的电压,使Δ=( Vo1-Vo2)=0

4、测单端差模输入时的双端输出

A端接信号ch1,B端接地,测得输出波形如图

最大值最小值峰峰值

7.60 V

Vod单 3.56 V -4.04

V

5、测双端差模输入时的双端输出

A端接信号ch1,B端接ch2,测得输出波形如图

最大值最小值峰峰值Vod双7.2 V -8.0 V 15.2 V

6、测双端共模输入时的双端输出

A端接信号ch1,相位为0°;B端接ch2,相位也为0°。测得输出波形如图

最大值最小值峰峰值

Voc 4.0 mV -16.0

mV

20.0 mV

实验结果计算和分析

单端差模输入双端差模输入双端共模输入

Vod 单Ui

Avd

Vod

Ui

Avd

Voc Ui Avc

7.6 V 300

mV

25.33 15.2

V

600

mV

25.33 20

mV

300

mV

0.067

CMRR =|Avd/Avc|=378.11

1、由于双端差模输入的两个输入信号大小相等、方向相反,此时Uipp=Ui1ppUi2pp=600

mV

2、由于双端差模输入的Ui双 = 2*Ui单,因此Vod双 = 2*Vod单

3、在差分放大器或集成运算放大器的输入级完全对称时(如本次实验电路图),共模增益应趋于零。实验测得为0.067,还是有一些误差,因此得到的共模抑制比也不是特别理想。

实验总结

1、示波器输入信号线的地极要与实验箱的地极公共,否则它们没有相同的基准,也就没有

相同的参考电压,波形会不稳定。

2、用示波器测双端输出时,我们用到示波器的运算功能(即M键),本次实验用到减法运

算,用输出信号一减输出信号二。当然还可以做加法和乘法运算。

3、由于双端差模输入时两输入信号反向,因此Uipp=Ui1pp-Ui2pp=600 mV,相位与Ui1pp

同相。

4、由于实验器材的原因,测得的共模抑制比不算很大,只有378左右,理想的话应该有1

千多。

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

GSM900低噪声放大器设计

微波电路与系统仿真实验报告 一、实验名称:GSM900频段低噪声放大器仿真 二、实验技术指标: 1.频段:909-915MHz 2.增益:≥17dB 3.噪声系数:<0.7dB 4.输入反射系数:优于-20dB 5.输出反射系数:优于-15dB 6.芯片选择:A TF-54143或VMMK-1218 三、报告日期:2015年12月14日 四、报告页数:共7页 五、报告内容: 1.电路原理图(原理图应标明变量名称的含义,可用文字表述或画图说明) 如下图所示,a为低噪声放大器的原理框图,包括晶体管以及输出输入匹配,在图中未画出部分还有晶体管的偏置电路。对于低噪声放大器设计与最大功率传输的放大器设计不同,最大功率传输放大器的设计必须满足双共轭匹配,而这样噪声的功率也会很大,所以为了获得最小噪声系数,应选择最佳信源反射系数Гopt。此时放大器的输入匹配网络的任务是使管子端口满足如下图b中所示的要求。 (a)微波晶体管放大器原理图(b)最佳噪声匹配放大器的设计步骤为:1、选管;题目指标给出了放大器设计可选择的管子,所以本次设计选择了ATF-54143,查阅ATF-54143晶体管的模型参数,由于ATF-54143晶体管在ADS2011中没有模型,所以本文是查找网络资源下载的ATF-54143的模型文件导入到设计中的,A TF-54143模型如下图所示,左图为晶体管封装模型,右图为内部电路。2、确定工

作电流和工作电压;查阅ATF-54143介绍资料确定Vds和Ids的值,如下图所示,可以看出工作频率为900MHz时的晶体管在不同电压电流下的增益、噪声系数、P1dB、三阶截断功率的值,根据这些值选择Vds=4V,Ids=60mA,此时的Vgg=0.58V。设置电压电流,建立晶 体管的直流偏置电路。

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图6-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图6-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表6-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图3-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 2.4.2. 具有平衡电位器的差动放大器 分析容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 1.13mA 6.4V 7.1V 双出 A m 100.43-? 1.13mA 6.4V 7.1V 单出 A m 100.43-? 1.13mA 3.2V 3.9V 分析容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 1.12mA 6.4V 7.1V 双出 A m 109.83-? 1.12mA 6.4V 7.1V 单出 A m 100.93-? 1.10mA 3.2V 4.0V 分析容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 -93.3 15k Ω 10k Ω ∞ 单出 -46.7 15k Ω 5k Ω 184.2 分析容 u A i R o R CMR K 空载 -179.4 15k Ω 10k Ω ∞ 双出 -90.1 15k Ω 10k Ω ∞ 单出 -45.5 15k Ω 5k Ω 189.4

低噪声放大器的设计制作与调试

微波电路 CAD 射频实验报告 姓名 班级 学号

实验一低噪声放大器的设计制作与调试 一、实验目的 (一)了解低噪声放大器的工作原理及设计方法。 (二)学习使用ADS软件进行微波有源电路的设计,优化,仿真。 (三)掌握低噪声放大器的制作及调试方法。 二、实验内容 (一)了解微波低噪声放大器的工作原理。 (二)使用ADS软件设计一个低噪声放大器,并对其参数进行优化、仿真。 (三)根据软件设计的结果绘制电路版图,并加工成电路板。 (四)对加工好的电路进行调试,使其满足设计要求。 三、实验步骤及实验结果 (一)晶体管直流工作点扫描 1、启动软件后建立新的工程文件并打开原理图设计窗口。 2、选择File——New Design…进入下面的对话框; 3、在下面选择BJT_curve_tracer,在上面给新建的Design命名,这里命名为BJT Curve; 4、在新的Design中,会有系统预先设置好的组件和控件; 5、如何在Design中加入晶体管;点击,打开元件库; 6、选择需要的晶体管,可以点击查询; 7、对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型; 8、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描; 9、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 10对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型 11、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描 12、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。

图1 BJT Curve仿真原理图 13、按Simulate键,开始仿真,这时会弹出一个窗口,该窗口会现实仿真或者优化的过程信息。如果出现错误,里面会给出出错信息,应该注意查看。 14、仿真结束,弹出结果窗口,如下页图。注意关闭的时候要保存为适宜的名字。另外图中的Marker是可以用鼠标拖动的。由于采用的是ADS的设计模板,所以这里的数据显示都已经设置好了。一般情况下,数据的显示需要人为自行设置。

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 双出 A m 100.43-? 单出 A m 100.43-? 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 双出 A m 109.83-? 单出 A m 100.93-? 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω 分析内容 u A i R o R CMR K 空载 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

ADS报告_第三讲_低噪声放大器设计与仿真8

微波电路与系统仿真实验报告 姓名:学号:院系: 一、实验名称:低噪声放大器设计与仿真 二、实验技术指标: 1.建立仿真原理图 2.仿真结果 三、报告日期:2012年10月9日 四、报告页数:共8页 五、报告内容: 5.1、晶体管直流工作点的扫描 1.电路原理图 建立工程、晶体管直流工作点扫描(目的:进行直流工作点扫描和分析;检查电路的静态工作点)。 2.电路图 3.仿真结果

5.2、偏置电路的设计 2.1 bjt_bias设计 1.电路原理图 设计偏置电路。 2.电路图 3.仿真结果 1)、在Design Guide中设置相关参数后,生成直流偏置电路 2.2 bjt_biascircuit的设计 1.电路原理图 设计偏置电路。 2.电路图(点击【Simulation】→【Annotate DC Solution】可看到各节点电压电流) 5.3、稳定性分析 1.电路原理图

2.电路图 3.ADS仿真图 稳定系数K(稳定性判别系数):此处K<1,放大器电路不稳定。需加入负反馈电路。加入负反馈电路后的ADS电路图为: 其相应的ADS仿真图为:

1.电路原理图为: 2.ADS仿真结果图为: 修改S参数仿真器,加入噪声系数的仿真,用列表形式显示数据,结果为:

5.5、输入匹配的设计 1.电路原理图为: 2.仿真结果为: S11、S22的仿真结果

S11、S22、S21和S12、Zin、nfmin、nf(2)的仿真结果5.6、输出匹配设计1 1.ADS原理图 2.ADS仿真结果 S11、S22的仿真结果 S11、S22、S21和S12、Zin、nfmin、nf(2)的仿真结果5.7、输出匹配设计2 1.初始电路图(未加入直流偏置网络)

单管放大器实验报告实验总结

竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结 篇一:单管放大电路实验报告 单管放大电路 一、实验目的 1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻Rw是为调节晶体管静态工作点而设置的。 三、实验原理1.静态工作点的估算 将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。 开路电压Vbb? Rb2 Vcc,内阻

Rb1?Rb2 Rb?Rb1//Rb2 则IbQ? Vbb?VbeQ Rb?(??1)(Re1?Re2) ,IcQ??IbQ VceQ?Vcc?(Rc?Re1?Re2)IcQ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。 一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。 2.放大电路的电压增益与输入、输出电阻 ?u? ??(Rc//RL) Ri?Rb1//Rb2//rbeRo?Rc rbe 式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信

号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。 三、预习计算1.当??????=??????时 由实验原理知计算结果如下: IeQ=IbQ= β+1β1β IcQ=1mA IcQ=4.878μA ucQ=Vcc?IcQ×Rc=8.7VueQ=IeQ×Re=1× 1.2=1.2VuceQ=ucQ?ueQ=8.7?1.2=7.5V rbe=rbb′+1+β uT26 =650+206×=6.006kΩeQubQ=ueQ+0.7=1.9VVcc?ubQubQ =IbQ+wb1b2 可以解出Rw=40.78kΩ

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

3 简单差动放大器的仿真实验

国家集成电路人才培养基地 培训资料(3) 简单差动放大器实验 2006-X-XX

西安交通大学国家集成电路人才培养基地 简单差动放大器实验 本实验包括对简单差动放大器进行DC扫描、AC分析,并学习根据输出波形确定相位裕度、输入输出共模范围、共模增益、共模抑制比(CMRR)以及电源抑制比(PSRR)。 1. 启动cadence 启动电脑,进入solaris9系统,打开终端Teminal,输入cds.setup后按回车,再输入icfb&按回车,candence启动成功。在自己的Library中新建一个cellview,命名为amp。 2. 电路图输入 按下图输入简单差动放大器电路图,其中的元件参数我们在下一步中设置,图中用到的元件(vdc, pmos4,nmos4,vdd,gnd,cap)都在analogLib库中能找到。 图2.1 简单差动放大器电路图 第1页,共14页

简单差动放大器实验 3. 计算、设置元件参数 根据放大倍数,功耗,输出摆幅等要求确定各个mos管的宽长比(W/L)和栅压。由于我们实验时间有限,请同学们直接按下面的步骤设置好元件值(选中元件后按q键调出如下的元件属性设置框): M0,M1,M2:于Model name 栏输入n18,于Width栏输入4u,于Lenth栏输入700n,最后点击ok。 图3.1 M0、M1、M2管的参数设置 M3,M4:于Model name 栏输入p18,于Width栏输入10u,于Lenth栏输入3u,最后点击ok。 图3.2 M3、M4管参数设置 第2页,共14页

西安交通大学国家集成电路人才培养基地 第3页,共14页 直流电压源V0,V1的值分别设为1.8,0.6。设置完毕后点击工具栏上的进行保存。 4. 仿真 4.1 DC 扫描及输入输出共模范围 在菜单栏依次选择Tools →Analog Environment ,弹出如图4.1所示的Simulation 窗口: 点击Setup →Model Libraries 在弹出的对话框中设好Model Library 。点击 Browse …按钮,选择/cad/smic018_tech/Process_technology/Mixed-Signal/SPICE_Model/ms018_v1p6_spe.lib ,在Section(opt.)中填入tt ,点Add ,再点ok 退出。 图4.1 Simulation 窗口 图4.2 添加Model Library

低噪声放大器的设计制作与调试报告

微波电路CAD 射频实验报告 姓名 班级 学号 声放大器的设计制作与调试低噪实验一的验目一、实 的工作原理及设计方法。(一)了解低噪声放大器 进行微波有源电路的设计,优化,仿真。件ADS 软(二)学习使用的制作及调试方法。器(三)掌握低噪声放大 二、实验内容 (一)了解微波低噪声放大器的工作原理。 (二)使用 ADS 软件设计一个低噪声放大器,并对其参数进行优化、仿真。 (三)根据软件设计的结果绘制电路版图,并加工成电路板。

(四)对加工好的电路进行调试,使其满足设计要求。 三、实验步骤及实验结果 (一)晶体管直流工作点扫描 1、启动软件后建立新的工程文件并打开原理图设计窗口。 2、选择 File——New Design…进入下面的对话框; 3、在下面选择 BJT_curve_tracer,在上面给新建的 Design 命名,这里命名为BJT Curve; 4、在新的 Design 中,会有系统预先设置好的组件和控件; 5、如何在 Design 中加入晶体管;点击,打开元件库; 6、选择需要的晶体管,可以点击查询; 7、对 41511 的查询结果如下,可以看到里面有这种晶体管的不同的模型; 8、以 sp 为开头的是 S 参数模型,这种模型不能用来做直流工作点的扫描; 9、选择 pb 开头的模型,切换到 Design 窗口,放入晶体管,按 Esc 键终止当前操作。 10 对 41511 的查询结果如下,可以看到里面有这种晶体管的不同的模型 11、以 sp 为开头的是 S 参数模型,这种模型不能用来做直流工作点的扫描 12、选择 pb 开头的模型,切换到 Design 窗口,放入晶体管,按 Esc 键终止当前操作。 仿真原理图BJT Curve 1 图

实验三 功率放大电路实验报告

集成功率放大电路 一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功 率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1) 测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值 mox O V ,则最大不失真输出功率为: 2max max O O L V P R = (2)测量功率放大器的效率 η: 在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为: ×E E CC P I V = 注:此处Vcc 应为正负电源之差。

功率放大器的效率为: max = O E P P 集成功率放大器的实验电路

三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC、-V EE) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E 3、将电流表换至较高档位,接入输入信号v i,按后面要求进行测量。负载电阻R L=8.2 时, 按表分别用示波器测量输出电压峰值为2V和4V时的电流I E,计算输出功率P O、电源供给功率P E和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax和电流I E,并计算此时的输出功率P O,电源供给功率P E和效率η,填表。 实验需要测量的数值有I E和V omax ,P O,P E ,η由实验数据计算得到,计算公式如下:

差动放大电路_实验报告

实验五差动放大电路 (本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~) 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 R P用来调节T1、T2管的静态工作点, V i=0时, V O=0。R E为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。 差分放大器实验电路图 三、实验设备与器件 1、±12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。 四、实验内容 1、典型差动放大器性能测试 开关K拨向左边构成典型差动放大器。 1) 测量静态工作点 ①调节放大器零点

信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压V O ,调节调零电位器R P ,使V O =0。 ②测量静态工作点 再记下下表。 2) 测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 3) 测量共模电压放大倍数 理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点: E3 BE EE CC 212 E3 C3R V )V (V R R R I I -++≈≈=1.153mA I c Q =I c 3/2=0.577mA, I b Q =I c /β=0.577/100=5.77uA U CEQ =V cc-I c R c+U BEQ =12-0.577*10+0.7=6.93V 双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨) P be B C i O d β)R (12 1 r R βR △V △V A +++- ===-33.71 A c 双 =0.

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

差动放大电路实验

差动放大电路实验报告 严宇杰141242069 匡亚明学院 1.实验目的 (1)进一步熟悉差动放大器的工作原理; (2)掌握测量差动放大器的方法。 2.实验仪器 双踪示波器、信号发生器、数字多用表、交流毫伏表。 3.预习内容 (1)差动放大器的工作原理性能。 (2)根据图3.1画出单端输入、双端输出的差动放大器电路图。 4.实验内容 实验电路如图3.1。它是具有恒流源的差动放大电路。在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。对于共模信号,若 Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。从而使差动放大器有较强的抑制共模干扰的能力。调零电位器 R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0. 差动放大器常被用作前置放大器。前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。于是人们希望只放大差模信号,不放大共模

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

浅谈低噪声放大器的设计

浅谈低噪声放大器的设计 摘要为提高低噪声放大器的增益,降低接收机系统的噪声系数,宜采用多级低噪声放大器。本文介绍了低噪声放大器的设计方法及单级低噪声放大器间的级连方式,详述了采用传输短接线方式进行级间匹配级连的过程,通过比较传输短接线和匹配网络两种级连方式的效果,建议电子设备应根据接收机系统对噪声和增益指标的要求来合理选择低噪声放大器间的级间方式,以达到经济实用设计功效。 关键词低噪声放大器;级连;匹配;S参数;增益平坦度 前言 随着电子科技工业的飞速发展,对雷达、通信、电子对抗、遥感测控等系统技术的要求也越来越高,功率辐射小,稳定性好,频带宽,作用距离远等技术已成为电子装备科研生产单位的普遍追求,这对系统的接收灵敏度也提出了更高的要求。 1 接收机系统灵敏度 接收机系统灵敏度即接收机系统可以接收到的并仍能正常工作的最低信号强度,为保持接收机正常工作的最小可接收信号强度,灵敏度可用功率来表示。我们知道,如果没有噪声,那无论多么微弱的信号,只要充分地加以放大,信號总是可以被检测出来的。但在实际应用中,噪声是不可避免存在的,它与微弱信号一起被放大或被衰减,影响着接收机对信号的辨别,噪声成为限制接收机灵敏度的主要因素,因此,接收机的低噪声设计就显得尤其重要。接收系统灵敏度的计算公式如下: P=kTOBNF(W)(1) 式中,k为波尔兹曼常数,K=1.38×10-23J/K,TO为接收机工作环境的绝对温度,TO=290k,B为系统带宽,NF为接收机噪声系数,P为最小可检测功率。 由公式(1)可知,在系统带宽确定、工作环境相对稳定的通信系统中,要提高系统灵敏度(最小可检测功率越小),关键就是降低接收机的噪声系数NF。接收机的噪声系数是由位于接收机最前端的放大器决定的,也即我们通常所说的低噪声放大器,低噪声放大器的主要作用是放大天线从空中接收来的微弱信号,降低噪声的干扰,使系统能解调出所需的信息数据[1]。 单级放大器的增益一般不能满足系统接收机的要求,通常需要采用多级放大器来达到系统接收机对增益要求。 对多级放大器而言,其噪声系数的计算公式为:

晶体管放大电路实验报告doc

晶体管放大电路实验报告 篇一:晶体管单级放大器实验报告 晶体管单级放大器 一. 试验目的 (1)掌握Multisium11.0仿真软件分析单级放大器主要性能指标的方法。 (2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输 出波形的影响。 (3)测量放大器的放大倍数,输入电阻和输出电阻。 二. 试验原理及电路 VBQ=RB2VCC/(RB1+RB2) ICQ=IEQ=(VBQ-VBEQ)/RE IBQ=ICQ/β; VCEQ=VCC-ICQ(RC+RE) 晶体管单级放大器 1. 静态工作点的选择和测量 放大器的基本任务是不失真的放大信号。为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。若工作点选的太高会饱和失真;选的太低会截止失真。静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流ICQ和管压降VCEQ。 本试验中,静态工作点的调整就是用示波器观察输出波

形,让信号达到最大限度的不失真。当搭接好电路,在输入端引入正弦信号,用示波器输出。静态工作点具体调整步骤如下: 具有最大动态范围的静态工作点图 根据示波器观察到的 现象,做出不同的调 整,反复进行。当加大输入信号,两种失真同时出现,减小输入信号,两种(本文来自:https://www.360docs.net/doc/b113849969.html, 小草范文网:晶体管放大电路实验报告)失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。去点信号源,测量此时的VCQ,就得到了静态工作点。 2. 电压放大倍数的测量 电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi 3、输入电阻和输出电阻的测量 (1)输入电阻。放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图 2.1-3(a)所示。在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为 (a) (b) o VO

实验八_差分放大器实验报告

差分放大电路 实验报告 姓名:黄宝玲 班级:计科1403 学号:201408010320 实验摘要(关键信息) 实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。 实验内容与规划: 1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。 2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2) 3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。 4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。 5、计算共模抑制比Kcm R 。 最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。 实验环境(仪器用品等) 1.仪器:示波器(DPO 2012B 100MHZ 1GS/s) 直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A) 台式万用表(UT805A) 模拟电路实验箱(LTE-AC-03B)。 2、所用功能区:单管、多管、负反馈放大电路。 实验原理和实验电路 1、实验原理: 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。 概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。 A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。 差模信号Vid :即差模输入的两个输入信号之差。 B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。 共模信号Vic :即共模输入的两个输入信号的算数平均值。 C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 = D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 = E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。 =20lg| |(dB ) =| | 2、实验电路: SW1 SW-SPDT Q1 NPN Q2 NPN Q3 NPN R1 510 R2 510 R3 10k R4 10k R5 10k R6 10k R7 10k R8 5.1K R9 68K R10 36K RV1 100 R9(1) R10(2) A B C D AM FM + -

相关文档
最新文档