matlab实现多元逐步回归算法

matlab实现多元逐步回归算法
matlab实现多元逐步回归算法

特别说明

此资料来自豆丁网(https://www.360docs.net/doc/b114509557.html,/)

您现在所看到的文档是使用下载器所生成的文档

此文档的原件位于

https://www.360docs.net/doc/b114509557.html,/p-83936384.html

感谢您的支持

抱米花

https://www.360docs.net/doc/b114509557.html,/lotusbaob

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

Matlab与统计分析

Matlab 与统计分析 一、 回归分析 1、多元线性回归 1.1 命令 regress( ), 实现多元线性回归,调用格式为 [b,bint,r,rint,stats]=regress(y,x,alpha) 其中因变量数据向量Y 和自变量数据矩阵x 按以下排列方式输人 ????? ???????=????????????=n nk n n k k y y y y x x x x x x x x x x 21212222111211,111 对一元线性回归,取k=1即可。alpha 为显著性水平(缺省时设定为0.05),输出向量b ,bint 为回归系数估计值和它们的置信区间,r ,rint 为残差及其置信区间,stats 是用于检验回归模型的统计量,有三个数值,第一个是2 R , 其中R 是相关系数,第二个是F 统计量值,第三个是与统计量F 对应的概率P ,当α

Floyd算法Matlab程序

Floyd算法Matlab程序第一种: %floyd.m %采用floyd算法计算图a中每对顶点最短路 %d是矩离矩阵 %r是路由矩阵 function ,d,r,=floyd(a) n=size(a,1); d=a; for i=1:n for j=1:n r(i,j)=j; end end r for k=1:n for i=1:n for j=1:n if d(i,k)+d(k,j)

end k d r end 第二种: %Floyd算法 %解决最短路径问题,是用来调用的函数头文件 %[D,path]=floyd(a) %输入参数a是求图的带权邻接矩阵,D(i,j)表示i到j的最短距 离,path(i,j)i,j之间最短路径上顶点i的后继点 %[D,path,min1,path1]=floyd(a,i,j) %输入参数a是所求图的带权邻接矩阵,i,j起点终点,min1表示i与j最短距离,path1为最短路径function [D,path,min1,path1]=floyd(a,start,terminal) D=a;n=size(D,1);path=zeros(n,n); for i=1:n for j=1:n if D(i,j)~=inf path(i,j)=j; end end end for k=1:n for i=1:n

for j=1:n if D(i,k)+D(k,j)

matlab多元线性回归模型

云南大学数学与统计学实验教学中心 实验报告 一、实验目的 1.熟悉MATLAB的运行环境. 2.学会初步建立数学模型的方法 3.运用回归分析方法来解决问题 二、实验内容 实验一:某公司出口换回成本分析 对经营同一类产品出口业务的公司进行抽样调查,被调查的13家公司,其出口换汇成本与商品流转费用率资料如下表。试分析两个变量之间的关系,并估计某家公司商品流转费用率是6.5%的出口换汇成本. 实验二:某建筑材料公司的销售量因素分析 下表数据是某建筑材料公司去年20个地区的销售量(Y,千方),推销开支、实际帐目数、同类商品

竞争数和地区销售潜力分别是影响建筑材料销售量的因素。1)试建立回归模型,且分析哪些是主要的影响因素。2)建立最优回归模型。 提示:建立一个多元线性回归模型。

三、实验环境 Windows 操作系统; MATLAB 7.0. 四、实验过程 实验一:运用回归分析在MATLAB 里实现 输入:x=[4.20 5.30 7.10 3.70 6.20 3.50 4.80 5.50 4.10 5.00 4.00 3.40 6.90]'; X=[ones(13,1) x]; Y=[1.40 1.20 1.00 1.90 1.30 2.40 1.40 1.60 2.00 1.00 1.60 1.80 1.40]'; plot(x,Y,'*'); [b,bint,r,rint,stats]=regress(Y,X,0.05); 输出: b = 2.6597 -0.2288 bint = 1.8873 3.4322 -0.3820 -0.0757 stats = 0.4958 10.8168 0.0072 0.0903 即==1,0?6597.2?ββ,-0.2288,0?β的置信区间为[1.8873 3.4322],1,?β的置信区间为[-0.3820 -0.0757]; 2r =0.4958, F=10.8168, p=0.0072 因P<0.05, 可知回归模型 y=2.6597-0.2288x 成立. 1 1.5 2 2.5 散点图 估计某家公司商品流转费用率是6.5%的出口换汇成本。将x=6.5代入回归模型中,得到 >> x=6.5; >> y=2.6597-0.2288*x y = 1.1725

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

Matlab多变量回归分析报告材料教程

本次教程的主要内容包含: 一、多元线性回归 2# 多元线性回归:regress 二、多项式回归 3# 一元多项式:polyfit或者polytool 多元二项式:rstool或者rsmdemo 三、非线性回归 4# 非线性回归:nlinfit 四、逐步回归 5# 逐步回归:stepwise 一、多元线性回归 多元线性回归: 1、b=regress(Y, X ) 确定回归系数的点估计值

2、[b, bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检验回归模型 ①bint表示回归系数的区间估计. ②r表示残差 ③rint表示置信区间 ④stats表示用于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对应的概率p 说明:相关系数r2越接近1,说明回归方程越显著;时拒绝H0,F越大,说明回归方程越显著;与F对应的概率p<α时拒绝H0 ⑤alpha表示显著性水平(缺省时为0.05) 3、rcoplot(r,rint)画出残差及其置信区间 具体参见下面的实例演示 4、实例演示,函数使用说明 (1)输入数据 1.>>x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; 2.>>X=[ones(16,1) x]; 3.>>Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; 复制代码 (2)回归分析及检验 1. >> [b,bint,r,rint,stats]=regress(Y,X) 2. 3. b = 4. 5. -1 6.0730 6.0.7194 7. 8. 9.bint =

多元线性回归 matlab中求解

多元线性回归matlab中求解 源代码: y=data(:,1); >> x=data(:,2:3); >> [b,bint,r,rint,stats]=regress(y,x) 结果: b =1.6031 21.0280 bint =0.6449 2.5612 14.4526 27.6034 r =-16.2442 8.8754 17.5828 8.3155 7.6692 -20.7990 0.1578 9.1298 21.1145 -28.9567 rint =-54.5200 22.0316 -28.0267 45.7775 -15.2745 50.4401 -29.9540 46.5850 -30.7374 46.0758 -57.6551 16.0572 -40.7942 41.1098 -30.8252 49.0848 -15.2155 57.4446 -59.3228 1.4095 stats =1.0148 742.1191 0.0000 322.5068 分析结果: stats四个值说明:判决系数r^2,,F统计值,p值,误差方差 y=a1*x(1)+a2*x(2);其中a1=1.6031,a2=21.0280, a1的置信区间【0.6449,2.5612】,a2的置信区间【14.45426,27.6043】,p小于0.05,说明显著效果很好,越小越好 在spss中求解:

线性规划matlab求解 例1:c=[2;3;1]; mix z=2*x1+3*x2+x3 >> a=[1 4 2;3 2 0]; s.t 1.x1+4*x2+2*x3>=8; >> b=[8;6]; 2.3*x1+2*x2>=6; >> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1) ) 3.x1>=0,x2>=0,x3>=0结果:x =0.8066

Floyd算法_计算最短距离矩阵和路由矩阵_查询最短距离和路由_matlab实验报告

实验四:Floyd 算法 一、实验目的 利用MATLAB 实现Floyd 算法,可对输入的邻接距离矩阵计算图中任意两点间的最短距离矩阵和路由矩阵,且能查询任意两点间的最短距离和路由。 二、实验原理 Floyd 算法适用于求解网络中的任意两点间的最短路径:通过图的权值矩阵求出任意两点间的最短距离矩阵和路由矩阵。优点是容易理解,可以算出任意两个节点之间最短距离的算法,且程序容易实现,缺点是复杂度达到,不适合计算大量数据。 Floyd 算法可描述如下: 给定图G 及其边(i , j )的权w i, j (1≤i≤n ,1≤j≤n) F0:初始化距离矩阵W(0)和路由矩阵R(0)。其中: F1:已求得W(k-1)和R(k-1),依据下面的迭代求W(k)和R(k) F2:若k≤n,重复F1;若k>n,终止。 三、实验内容 1、用MATLAB 仿真工具实现Floyd 算法:给定图G 及其边(i , j )的权 w i , j (1≤i≤n ,1≤j≤n) ,求出其各个端点之间的最小距离以及路由。 (1)尽可能用M 函数分别实现算法的关键部分,用M 脚本来进行算法结 果验证; (2)分别用以下两个初始距离矩阵表示的图进行算法验证:

分别求出W(7)和R(7)。 2、根据最短路由矩阵查询任意两点间的最短距离和路由 (1)最短距离可以从最短距离矩阵的ω(i,j)中直接得出; (2)相应的路由则可以通过在路由矩阵中查找得出。由于该程序中使用的是前向矩阵,因此在查找的过程中,路由矩阵中r(i,j)对应的值为Vi 到Vj 路由上的下一个端点,这样再代入r(r(i,j),j),可得到下下个端点,由此不断循环下去,即可找到最终的路由。 (3)对图1,分别以端点对V4 和V6, V3 和V4 为例,求其最短距离和路由;对图2,分别以端点对V1 和V7,V3 和V5,V1 和V6 为例,求其最短距离和路由。 3、输入一邻接权值矩阵,求解最短距离和路由矩阵,及某些点间的最短路径。 四、采用的语言 MatLab 源代码: 【func1.m】 function [w r] = func1(w) n=length(w); x = w; r = zeros(n,1);%路由矩阵的初始化 for i=1:1:n for j=1:1:n if x(i,j)==inf r(i,j)=0; else r(i,j)=j; end, end end; %迭代求出k次w值 for k=1:n a=w; s = w; for i=1:n

MATLAB回归预测模型

MATLAB---回归预测模型 Matlab统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,用法是:b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha) Y,X为提供的X和Y数组,alpha为显着性水平(缺省时设定为0.05),b,bint为回归系数估计值和它们的置信区间,r,rint为残差(向量)及其置信区间,stats是用于检验回归模型的统计量,有四个数值,第一个是R2,第二个是F,第三个是与F对应的概率 p ,p <α拒绝 H0,回归模型成立,第四个是残差的方差 s2 。 残差及其置信区间可以用 rcoplot(r,rint)画图。 例1合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如下表 1。 先画出散点图如下: x=0.1:0.01:0.18; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]; plot(x,y,'+') 可知 y 与 x 大致上为线性关系。 设回归模型为y =β 0+β 1 x

用regress 和rcoplot 编程如下: clc,clear x1=[0.1:0.01:0.18]'; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]'; x=[ones(9,1),x1]; [b,bint,r,rint,stats]=regress(y,x); b,bint,stats,rcoplot(r,rint) 得到 b =27.4722 137.5000 bint =18.6851 36.2594 75.7755 199.2245 stats =0.7985 27.7469 0.0012 4.0883 即β 0=27.4722 β 1 =137.5000 β 的置信区间是[18.6851,36.2594], β 1 的置信区间是[75.7755,199.2245]; R2= 0.7985 , F = 27.7469 , p = 0.0012 , s2 =4.0883 。可知模型(41)成立。

多元回归分析matlab剖析

回归分析MATLAB 工具箱 一、多元线性回归 多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示???? ?? ????????=p b βββ?...??10 ②Y 表示????????????=n Y Y Y Y (2) 1 ③X 表示??? ??? ????? ???=np n n p p x x x x x x x x x X ...1......... .........1 (12) 1 22221 11211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间. ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p. 说明:相关系数2 r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据. x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验. [b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats 得结果:b = bint =

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检 验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回 归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 % % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显著 % fV:F分布值,越大越好,线性回归方程 越显著 % fH:0或1,0不显著;1显著(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是 否与Y有显著线性关系 % tV:T分布值,beta_hat(i)绝对值越大, 表示Xi对Y显著的线性作用 % tH:0或1,0不显著;1显著 % tW:区间估计拒绝域,如果beta(i)在对 应拒绝区间内,那么否认Xi对Y显著的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总 离差的百分比,越大越好 % 举例说明 % 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程 线化 % x1=rand(10,1)*10;

Matlab回归分析

1、 考察温度x 对产量y 的影响,测得下列10组数据: 区间(置信度95%). x=[20:5:65]'; Y=[13.2 15.1 16.4 17.1 17.9 18.7 19.6 21.2 22.5 24.3]'; X=[ones(10,1) x]; plot(x,Y,'r*'); [b,bint,r,rint,stats]=regress(Y,X); b,bint,stats; rcoplot(r,rint) %残差分析,作残差图 结果: b = 9.1212 0.2230 bint = 8.0211 10.2214 0.1985 0.2476 stats = 0.9821 439.8311 0.0000 0.2333 即01 ??9.1212,0.2230ββ==;0?β的置信区间为[8.0211,10.2214]1?β的置信区间为[0.1985,0.2476]; 2r =0.9821 , F=439.831, p=0.0000 ,p<0.05, 可知回归模型 y=9.1212+0.2230x 成立. 将x=42带入得到18.4872.

从残差图可以看出,所有数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型y=9.1212+0.2230x能较好的符合原始数据。 2 某零件上有一段曲线,为了在程序控制机床上加工这一零件,需要求这段曲线的解析表达式,在曲线横坐标xi处测得纵坐标yi共11对数据如下: 求这段曲线的纵坐标y关于横坐标x的二次多项式回归方程。 t=0:2:20; s=[0.6 2.0 4.4 7.5 11.8 17.1 23.3 31.2 39.6 49.7 61.7]; T=[ones(11,1) ,t',(t.^2)']; [b,bint,r,rint,stats]=regress(s',T); b,stats; Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r') %预测及作图 b = 1.0105 0.1971 0.1403

matlab图论程序算法大全

精心整理 图论算法matlab实现 求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 for while for for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路

for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end;end if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 while if elseif if if pd=0; 值 t=n; if elseif if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程 t=s(t);end if(pd)break;end%如果最大流量达到预定的流量值 wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量 zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用

matlab与统计回归分析 (1)

一Matlab作方差分析 方差分析是分析试验(或观测)数据的一种统计方法。在工农业生产和科学研究中,经常要分析各种因素及因素之间的交互作用对研究对象某些指标值的影响。在方差分析中,把试验数据的总波动(总变差或总方差)分解为由所考虑因素引起的波动(各因素的变差)和随机因素引起的波动(误差的变差),然后通过分析比较这些变差来推断哪些因素对所考察指标的影响是显著的,哪些是不显著的。 【例1】(单因素方差分析)一位教师想要检查3种不同的教学方法的效果,为此随机地选取水平相当的15位学生。把他们分为3组,每组5人,每一组用一种方法教学,一段时间以后,这位教师给15位学生进行统考,成绩见下表1。问这3种教学方法的效果有没有显著差异。 表1 学生统考成绩表 方法成绩 甲75 62 71 58 73 乙71 85 68 92 90 丙73 79 60 75 81 Matlab中可用函数anova1(…)函数进行单因子方差分析。 调用格式:p=anova1(X) 含义:比较样本m×n的矩阵X中两列或多列数据的均值。其中,每一列表示一个具有m 个相互独立测量的独立样本。 返回:它返回X中所有样本取自同一总体(或者取自均值相等的不同总体)的零假设成立的概率p。

解释:若p值接近0(接近程度有解释这自己设定),则认为零假设可疑并认为至少有一个样本均值与其它样本均值存在显著差异。 Matlab程序: Score=[75 62 71 58 73;81 85 68 92 90;73 79 60 75 81]’; P=anova1(Score) 输出结果:方差分析表和箱形图 ANOVA Table Source SS df MS F Prob>F Columns 604.9333 2 302.4667 4.2561 0.040088 Error 852.8 12 71.0667 Total 1457.7333 14 由于p值小于0.05,拒绝零假设,认为3种教学方法存在显著差异。 例2(双因素方差分析)为了考察4种不同燃料与3种不同型号的推进器对火箭射程(单位:海里)的影响,做了12次试验,得数据如表2所示。 表2 燃料-推进器-射程数据表 推进器1 推进器2 推进器3 燃料1 58.2 56.2 65.3 燃料2 49.1 54.1 51.6 燃料3 60.1 70.9 39.2 燃料4 75.8 58.2 48.7 在Matlab中利用函数anova2函数进行双因素方差分析。 调用格式:p=anova2(X,reps)

matlab中回归分析实例分析

1.研究科研人员的年工资与他的论文质量、工作年限、获得资助指标之间的关系.24位科研人员的调查数据(ex81.txt): 设误差ε~(0,σ 2 ), 建立回归方程; 假定某位人员的观测值 , 预测年工资及置信度为 95%的置信区间. 程序为:A=load('ex81.txt') Y=A(:,1) X=A(1:24,2:4) xx=[ones(24,1) X] b = regress(Y,X) Y1=xx(:,1:4)*b x=[1 5.1 20 7.2] s=sum(x*b) 调出Y 和X 后,运行可得: b = 17.8469 1.1031 0.3215 1.2889 010203(,,)(5.1,20,7.2)x x x =

x = 1.0000 5.1000 20.0000 7.2000 s = 39.1837 所以,回归方程为:Y= 17.8469+1.1031X1+0.3215X2+1.2889X3+ε 当 时,Y=39.1837 2、 54位肝病人术前数据与术后生存时间(ex82.txt,指标依次为凝血值,预后指数,酵素化验值,肝功能化验值,生存时间). (1) 若用线性回归模型拟合, 考察其各假设合理性; (2) 对生存是时间做对数变换,用线性回归模型拟合, 考察其各假设合理性; (3) 做变换 用线性回归模型拟合, 考察其各假设合理性; (4) 用变量的选择准则,选择最优回归方程 010203 (,,)(5.1,20,7.2)x x x =0.0710.07 Y Z -=

(5)用逐步回归法构建回归方程 程序为:A=load('ex82.txt') Y=A(:,5) X=A(1:54,1:4) xx=[ones(54,1) X] [b,bint,r,rint,stats]=regress(Y,xx) 运行结果为: b = -621.5976 33.1638 4.2719 4.1257 14.0916 bint = -751.8189 -491.3762 19.0621 47.2656 3.1397 5.4040 3.0985 5.1530 -11.0790 39.2622

Floyd算法_计算最短距离矩阵和路由矩阵_查询最短距离和路由_matlab实验报告

一、实验目的 利用MATLAB实现Floyd算法,可对输入的邻接距离矩阵计算图中任意两点间的最短距离矩阵和路由矩阵,且能查询任意两点间的最短距离和路由。 二、实验原理 Floyd 算法适用于求解网络中的任意两点间的最短路径:通过图的权值矩阵求出任意两点间的最短距离矩阵和路由矩阵。优点是容易理解,可以算出任意两个 节点之间最短距离的算法,且程序容易实现,缺点是复杂度达到,不适合计算大量数据。 Floyd 算法可描述如下: 给定图G及其边(i , j ) 的权w, j (1 < i < n ,1 n,终止。?? 三、实验内容 1、用MATLAB仿真工具实现Floyd算法:给定图G及其边(i , j ) 的权 w, j (1 < i < n ,1 < j < n),求出其各个端点之间的最小距离以及路由。 (1)尽可能用 M 函数分别实现算法的关键部分,用 M 脚本来进行算法结果验证; (2)分别用以下两个初始距离矩阵表示的图进行算法验证: 分别求出WT和R7)。 2、根据最短路由矩阵查询任意两点间的最短距离和路由 (1)最短距离可以从最短距离矩阵的3 (i,j)中直接得出; (2)相应的路由则可以通过在路由矩阵中查找得出。由于该程序中使用的是前向矩阵,因此在查找的过程中,路由矩阵中r(i,j) 对应的值为Vi到Vj路由上的下一个端点,这样再代入r(r(i,j),j) ,可得到下下个端点,由此不断循环下去,即可找到最终的路由。 (3)对图1,分别以端点对V4 和V6, V3 和V4 为例,求其最短距离和路由;对图2,分别以端点对V1和V7, V3和V5, V1和V6为例,求其最短距离和路由。 3、输入一邻接权值矩阵,求解最短距离和路由矩阵,及某些点间的最短路径。

图论算法及其MATLAB程序代码

图论算法及其MATLAB程序代码 求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd算法: 设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号. ①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向② ②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③. ③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②. 最短路线可由r ij得到. 例1求图6-4中任意两点间的最短路. 图6-4 解:用Warshall-Floyd算法, MA TLAB程序代码如下: n=8;A=[0 2 8 1 Inf Inf Inf Inf 2 0 6 Inf 1 Inf Inf Inf 8 6 0 7 5 1 2 Inf 1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6 Inf Inf 2 9 Inf 4 0 3 Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞ D=A; %赋初值 for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值 for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)

最新Matlab与统计分析

M a t l a b与统计分析

Matlab 与统计分析 一、 回归分析 1、多元线性回归 1.1 命令 regress( ), 实现多元线性回归,调用格式为 [b,bint,r,rint,stats]=regress(y,x,alpha) 其中因变量数据向量Y 和自变量数据矩阵x 按以下排列方式输人 ????? ???????=????????????=n nk n n k k y y y y x x x x x x x x x x 21212222111211,1 11 对一元线性回归,取k=1即可。alpha 为显著性水平(缺省时设定为0.05),输出向量b ,bint 为回归系数估计值和它们的置信区间,r ,rint 为残差及其置信区间,stats 是用于检验回归模型的统计量,有三个数值,第一个是2 R , 其中R 是相关系数,第二个是F 统计量值,第三个是与统计量F 对应的概率P ,当α

matlab多元非线性回归教程

matlab 回归(多元拟合)教程 前言 1、学三条命令 polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元, nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的) 2、同一个问题,这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。相当于咨询多个专家。 3、回归的操作步骤: 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。(并写出该函数表达式的一般形式,含待定系数)------选用某条回归命令求出所有的待定系数。所以可以说,回归就是求待定系数的过程(需确定函数的形式) 一、回归命令 一元多次拟合polyfit(x,y,n);一元回归polyfit;多元回归regress---nlinfit(非线性) 二、多元回归分析 对于多元线性回归模型(其实可以是非线性,它通用性极高): e x x y p p ++ ++ = βββ 1 10 设变量12,,,p x x x y 的n 组观测值为12(,, ,)1,2, ,i i ip i x x x y i n = 记 ??????? ??=np n n p p x x x x x x x x x x 2 1 22221 1121111 1,?? ?? ? ?? ??=n y y y y 21,则?????? ? ??=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同(),拟合成多元函数---regress 使用格式:左边用b=[b, bint, r, rint, stats]右边用=regress(y, x)或regress(y, x, alpha) ---命令中是先y 后x, ---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项

Dijkstra、Floyd算法Matlab_Lingo实现

Dijkstra 算法Matlab 实现。 %求一个点到其他各点的最短路径 function [min,path]=dijkstra(w,start,terminal) %W 是邻接矩阵 %start 是起始点 %terminal 是终止点 %min 是最短路径长度 %path 是最短路径 n=size(w,1); label(start)=0; f(start)=start; for i=1:n if i~=start label(i)=inf; end end s(1)=start; u=start; while length(s)(label(u)+w(u,v)) label(v)=(label(u)+w(u,v)); f(v)=u; end end end v1=0; k=inf; for i=1:n ins=0; for j=1:length(s) if i==s(j) ins=1; end end 应用举例: edge=[ 2,3,1,3,3,5,4,4,1,7,6,6,5,5,11,1,8,6,9,10,8,9, 9,10;... 3,4,2,7,5,3,5,11,7,6,7,5,6,11,5,8,1,9,5,11,9,8,10,9;... 3,5,8,5,6,6,1,12,7,9,9,2,2,10,10,8,8,3,7,2,9,9,2,2]; n=11; weight=inf*ones(n,n); for i=1:n weight(i,i)=0; end for i=1:size(edge,2) weight(edge(1,i),edge(2,i))=edge(3,i); end [dis,path]=dijkstra(weight,1,11)

相关文档
最新文档