数字信号处理英文术语

数字信号处理英文术语
数字信号处理英文术语

DIGITAL SIGNAL PROCESSING TERMINOLOGY

1/f noise: A type of random noise that increases in amplitude at lower frequencies. It is widely observable in physical systems, but not well understood. See white noise for comparison.

-3dB cutoff frequency: The division between a filter's passband and transition band. Defined as the frequency where the frequency response is reduced to -3dB (0.707 in amplitude).

"A" law: Companding standard used in Europe. Allows digital voice signals to be represented with only 8 bits instead of 12 bits by making the quantization levels unequal. See mu law for comparison.

AC: Alternating Current. Electrical term for the portion of a signal that fluctuates around the average (DC) value.

Accuracy: The error in a measurement (or a prediction) that is repeatable from trial to trial. Accuracy is limited by systematic (repeatable) errors. See precision for comparison. Additivity: A mathematical property that is necessary for linear systems. If input a produces output p, and if input b produces output q, then an input of a+b produces an output of p+q.

Aliasing: The process where a sinusoid changes from one frequency to another as a result of sampling or other nonlinear action. Usually results in a loss of the signal's information. Amplitude modulation: Method used in radio communication for combining an information carrying signal (such as audio) with a carrier wave. Usually carried out by multiplying the two signals.

Analysis: The forward Fourier transform; calculating the frequency domain from the time domain. See synthesis for comparison.

Antialias filter: Low-pass analog filter placed before an analog-to-digital converter. Removes frequencies above one-half the sampling rate that would alias during conversion.

ASCII: A method of representing letters and numbers in binary form. Each character is assigned a number between 0 and 127. Very widely used in computers and communication.

Aspect ratio: The ratio of an image's width to its height. Standard television has an aspect ratio of 4:3, while motion pictures have an aspect ratio of 16:9.

Assembly: Low-level programming language that directly manipulates the registers and internal hardware of a microprocessor. See high-level language for comparison. Associative property of convolution: Written as: . This is (a[n]t b[n] )t c[n] ’

a[n]t(b[n]t c[n]) important in signal processing because it describes how cascaded stages behave.

Autocorrelation: A signal correlated with itself. Useful because the Fourier transform of the autocorrelation is the power spectrum of the original signal.

Backprojection: A technique used in computed tomography for reconstructing an image from its views. Results in poor image quality unless used with a more advanced method. BASIC: A high-level programming language known for its simplicity, but also for its many weaknesses. Most of the programs in this book are in BASIC.

Basilar membrane: Small organ in the ear that acts as a spectrum analyzer. It allows different fibers in the cochlear nerve to be stimulated by different frequencies.

Basis functions: The set of waveforms that a decomposition uses. For instance, the basis functions for the Fourier decomposition are unity amplitude sine and cosine waves. The Scientist and Engineer's Guide to Digital Signal Processing 632

Bessel filter: Analog filter optimized for linear phase. It has almost no overshoot in the step response and similar rising and falling edges. Used to smooth time domain encoded signals.

Bidirectional filtering: Recursive method used to produce a zero phase filter. The signal is first filtered from left-to-right, then the intermediate signal is filtered from right-to-left. Bilinear transform: Technique used to map the s-plane into the z-plane. Allows analog filters to be converted into equivalent digital filters.

Binning: Method of forming a histogram when the data (or signal) has numerous quantization levels, such as in floating point numbers.

Biquad: An analog or digital system with two poles and up to two zeros. Often cascaded to create a more sophisticated filter design.

Bit reversal sorting: Algorithm used in the FFT to achieve an interlaced decomposition of the signal. Carried out by counting in binary with the bits flipped left-for-right. Blackman window: A smooth curve used in the design of filters and spectral analysis, calculated from : , 0.42& 0.5cos(2B n/M)% 0.08cos(4B n/M) where n runs from 0 to M. Brightness: The overall lightness or darkness of an image. See contrast for comparison. Butterfly: The basic computation used in the FFT. Changes two complex numbers into two other complex numbers.

Butterworth filter: Separates one band of frequencies from another; fastest roll-off while keeping the passband flat; can be analog or digital. Also called a maximally flat filter.

C: Common programming language used in science, engineering and DSP. Also comes in the more advanced C++.

Carrier wave: Term used in amplitude modulation of radio signals. Refers to the high frequency sine wave that is combined with a lower frequency information carrying signal.

Cascade: A combination of two or more stages where the output of one stage becomes the input for the next.

Causal signal: Any signal that has a value of zero for all negative numbered samples. Causal system: A system that has a zero output until a nonzero value has appeared on its input (i.e., the input causes the output). The impulse response of a causal system is a causal signal.

Central Limit Theorem: Important theorem in statistics. In one form: a sum of many random numbers will have a Gaussian pdf, regardless of the pdf of the individual random numbers.

Cepstrum: A rearrangement of "spectrum." Used in homomorphic processing to describe the spectrum when the time and frequency domains are switched.

Charge coupled device (CCD): The light sensor in electronic cameras. Formed from a

thin sheet of silicon containing a two-dimensional array of light sensitive regions called wells.

Chebyshev filter: Used for separating one band of frequencies from another. Achieves a faster roll-off than the Butterworth by allowing ripple in the passband. Can be analog or digital.

Chirp system: Used in radar and sonar. An impulse is converted into a longer duration signal before transmission, and compressed back into an impulse after reception. Circular buffer: Method of data storage used in real time processing; each newly acquired sample replaces the oldest sample in memory.

Circular convolution: Aliasing that can occur in the time domain when frequency domain signals are multiplied. Each period in the time domain overflows into adjacent periods.

Circularity: The appearance that the end of a signal is connected to its beginning. This arises when considering only a single period of a periodic signal.

Classifiers: A parameter extracted from and representing a larger data set. For example: size of a region, amplitude of a peak, sharpness of an edge, etc. Used in pattern recognition.

Closing: A morphological operation defined as an erosion operation followed by a dilation operation.

Cochlea: Organ in the ear where sound in converted into a neural signal.

Cochlear nerve: Nerve that transmits audio information from the ear to the brain. Coefficient-of-variation (CV): Common way of stating the variation (noise) in data. Defined as: 100% × standard deviation / mean.

Commutative property of convolution: Written as: . a[n]t b[n] ’ b[n]t a[n] Companding: An "s" shaped nonlinearity allows voice signals to be digitized using only 8 bits instead of 12 bits. Europe uses "A" law, while the United States uses the mu law version.

Complex conjugation: Changing the sign of the imaginary part of a complex number. Often denoted by a star placed next to the variable. Example: if , then . A ’ 3% 2j A( ’ 3& 2 j

Complex DFT: The discrete Fourier transform using complex numbers. A more complicated and powerful technique than the real DFT.

Complex exponential: A complex number of the form: . They are useful in engineering and e a % bj science because Euler's relation allows them to represent sinusoids. Complex Fourier transform: Any of the four members of the Fourier transform family written using complex numbers. See real Fourier transform for comparison.

Complex numbers: The real numbers (used in everyday math) plus the imaginary numbers (numbers containing the term j, where ). j ’ &1 Example: . 3% 2j

Complex plane: A graphical interpretation of complex numbers, with the real part on the x-axis and the imaginary part on the y-axis. This is analogous to the number line used with ordinary numbers.

Composite video: An analog television signal that contains synchronization pulses to separate the fields or frames.

Computed tomography (CT): A method used to reconstruct an image of the interior of an object from its x-ray projections. Widely used in medicine; one of the earliest applications of DSP. Old name: CAT scanner.

Continuous signal: A signal formed from continuous (as opposed to discrete) variables. Example: a voltage that varies with time. Often used interchangeably with analog signal. Contrast: The difference between the bright-ness of an object and the brightness of the background. See brightness for comparison.

Converge: Term used in iterative methods to indicate that progress is being made toward a solution ("The algorithm is converging") or that a solution has been reached ("The algorithm has converged").

Convolution integral: Mathematical equation that defines convolution in continuous systems; analogous to the convolution sum for discrete systems.

Convolution kernel: The impulse response of a filter implemented by convolution. Also known as the filter kernel and the kernel.

Convolution sum: Mathematical equation defining convolution for discrete systems. Cooley and Tukey: J.W. Cooley and J.W. Tukey, given credit for bringing the FFT to the world in a paper they published in 1965.

Correlation: Mathematical operation carried out the same as convolution, except a

left-for-right flip of one signal. This is an optimal way to detect a known waveform in a signal.

Cross-correlation: The signal formed when one signal is correlated with another signal. Peaks in this signal indicate a similarity between the original signals. See also autocorrelation.

Cutoff frequency: In analog and digital filters, the frequency separating the passband from the transition band. Often measured where the amplitude is reduced to 0.707 (-3dB). CVSD: Continuously Variable Slope Delta modulation, a technique used to convert a voice signal into a continuous binary stream.

DC: Direct Current. Electrical term for the portion of the signal that does not change with time; the average value or mean. See AC for comparison.

Decibel SPL: Sound Pressure Level. Log scale used to express the intensity of a sound wave: 0 dB SPL is barely detectable; 60 dB SPL is normal speech, and 140 dB SPL causes ear damage.

Decimation: Reducing the sampling rate of a digitized signal. Generally involves

low-pass filtering followed by discarding samples. See interpolation for comparison. Decomposition: The process of breaking a signal into two or more additive components. Often refers specifically to the forward Fourier transform, The Scientist and Engineer's Guide to Digital Signal Processing 634 breaking a signal into sinusoids. Deconvolution: The inverse operation of convolution: if , find given x[n]t h[n] ’ y[n] x[n] only . Deconvolution is usually h[n] and y[n] carried out by dividing the frequency spectra.

Delta encoding: A broad term referring to techniques that store data as the difference between adjacent samples. Used in ADC, data compression and many other applications.

Delta function: A normalized impulse. The discrete delta function is a signal composed of all zeros, except the sample at zero that has a value of one. The continuous delta function is similar, but more abstract.

Delta-sigma: Analog-to-digital conversion method popular in voice and music processing. Uses a very high sampling rate with only a single bit per sample, followed by decimation.

Dependent variable: In a signal, the dependent variable depends on the value of the independent variable. Example: when a voltage changes over time, time is the independent variable and voltage is the dependent variable.

Difference equation: Equation relating the past and present samples of the output signal with past and present samples of the input signal. Also called a recursion equation. Dilation: A morphological operation. When applied to binary images, dilation makes the objects larger and can combine disconnected objects into a single object.

Discrete cosine transform (DCT): A relative of the Fourier transform. Decomposes a signal into cosine waves. Used in data compression.

Discrete derivative: An operation for discrete signals that is analogous to the derivative for continuous signals. A better name is the first difference.

Discrete Fourier transform (DFT): Member of the Fourier transform family dealing with time domain signals that are discrete and periodic.

Discrete integral: Operation on discrete signals that is analogous to the integral for continuous signals. A better name is the running sum.

Discrete signal: A signal that uses quantized variables, such as a digitized signal residing in a computer.

Discrete time Fourier transform (DTFT): Member of the Fourier transform family dealing with time domain signals that are discrete and aperiodic

Dithering: Adding noise to an analog signal before analog-to-digital conversion to prevent the digitized signal from becoming "stuck" on one value.

Domain: The independent variable of a signal. For example, a voltage that varies with time is in the time domain. Other common domains are the spatial domain (such as images) and the frequency domain (the output of the Fourier transform).

Double precision: A standard for floating point notation that used 64 bits to represent each number. See single precision for comparison.

DSP microprocessor: A type of microprocessor designed for rapid math calculations. Often has a pipeline and/or Harvard architecture. Also called a RISC.

Dynamic range: The largest amplitude a system can deal with divided by the inherent noise of the system. Also used to indicate the number of bits used in an ADC. Can also be used with parameters other than amplitude; see frequency dynamic range.

Edge enhancement: Any image processing algorithm that makes the edges more obvious. Also called a sharpening operation.

Edge response: In image processing, the output of a system when the input is an edge. The sharpness of the edge response is often used as a measure of the resolution of the system.

Elliptic filter: Used to separate one band of frequencies from another. Achieves a fast

roll-off by allowing ripple in the passband and the stopband. Can be used in both analog and digital designs.

End effects: The poorly behaved ends of a filtered signal resulting from the filter kernel not being completely immersed in the input signal.

Erosion: A morphological operation. When applied to binary images, erosion makes the objects smaller and can break objects into two or more pieces.

Euler's relation: The most important equation in complex math, relating sine and cosine waves with complex exponentials.

Even/odd decomposition: A way of breaking a signal into two other signals, one having even symmetry, and the other having odd symmetry.

Even order filter: An analog or digital filter having an even number of poles.

False-negative: One of four possible outcomes of a target detection trial. The target is present, but incorrectly indicated to be not present.

False-positive: One of four possible outcomes of a target detection trial. The target is not present, but incorrectly indicated to be present.

Fast Fourier transform (FFT): An efficient algorithm for calculating the discrete Fourier transform (DFT). Reduces the execution time by hundreds in some cases.

FFT convolution: A method of convolving signals by multiplying their frequency spectra. So named because the FFT is used to efficiently move between the time and frequency domains.

Field: Interlaced television displays the even lines of each frame (image) followed by the odd lines. The even lines are called the even field, and the odd lines the odd field.

Filter kernel: The impulse response of a filter implemented by convolution. Also known as the convolution kernel and the kernel.

Filtered backprojection: A technique used in computed tomography for reconstructing an image from its views. The views are filtered and then backprojected.

Finite impulse response (FIR): An impulse response that has a finite number of nonzero values. Often used to indicate that a filter is carried out by using convolution, rather than recursion.

First difference: An operation for discrete signals that mimics the first derivative for continuous signals; also called the discrete derivative.

Fixed point: One of two common ways that computers store numbers; usually used to store integers. See floating point for comparison.

Flat-top window: A window used in spectral analysis; provides an accurate measurement of the amplitudes of the spectral components. The windowed-sinc filter kernel can be used.

Floating point: One of the two common ways that computers store numbers. Floating point uses a form of scientific notation, where a mantissa is raised to an exponent. See fixed point for comparison.

Forward transform: The analysis equation of the Fourier transform, calculating the frequency domain from the time domain. See inverse transform for comparison.

Fourier reconstruction: One of the methods used in computed tomography to calculate

an image from its views.

Fourier series: The member of the Fourier transform family that deals with time domain signals that are continuous and periodic.

Fourier transform: A family of mathematical techniques based on decomposing signals into sinusoids. In the complex version, signals are decomposed into complex exponentials.

Fourier transform pair: Waveforms in the time and frequency domains that correspond to each other. For example, the rectangular pulse and the sinc function.

Fovea: A small region in the retina of the eye that is optimized for high-resolution vision. Frame: An individual image in a television signal. The NTSC television standard uses 30 frames per second.

Frame grabber: A analog-to-digital converter used to digitize and store a frame (image) from a television signal.

Frequency domain: A signal having frequency as the independent variable. The output of the Fourier transform.

Frequency domain aliasing: Aliasing that occurs occurring in the frequency domain in response to an action taken in the time domain. Aliasing during sampling is an example. Frequency domain convolution: Convolution carried out by multiplying the frequency spectra of the signals.

Frequency domain encoding: One of two main ways that information can be encoded in a signal. The information is contained in the amplitude, frequency, and phase of the signal's component sinusoids. Audio signals are the best example. See time domain encoding for comparison.

Frequency domain multiplexing: A method of combining signals for simultaneous transmission by shifting them to different parts of the frequency spectrum.

Frequency dynamic range: The ratio of the largest to the lowest frequency a system can deal with. Analog systems usually have a much larger frequency dynamic range than digital systems.

Frequency resolution: The ability to distinguish or separate closely spaced frequencies. Frequency response: The magnitude and phase changes that sinusoids experience when passing through a linear system. Usually expressed as a function of frequency. Often found by taking the Fourier transform of the impulse response.

Fricative: Human speech sound that originates as random noise from air turbulence, such as: s, f, sh, z, v and th. See voiced for comparison.

Full-width-at-half-maximum (FWHM): A common way of measuring the width of a peak in a signal. The width of the peak is measured at one-half of the peak's maximum amplitude.

Fundamental frequency: The frequency that a periodic waveform repeats itself. See harmonic for comparison.

Gamma curve: The mathematical function or look-up table relating a stored pixel value and the brightness it appears in a displayed image. Also called a grayscale transform. Gaussian: A bell shaped curve of the general form: The Gaussian has many unique e x 2 properties. Also called the normal distribution.

Gibbs effect: When a signal is truncated in one domain, ringing and overshoot appear at edges and corners in the other domain.

GIF: A common image file format using LZW (lossless) compression. Widely used on the world wide web for graphics. See TIFF and JPEG for comparison.

Grayscale: image A digital image where each pixel is displayed in shades of gray between black and white; also called a black and white image.

Grayscale stretch: Greatly increasing the contrast of a digital image to allow the detailed examination of a small range of quantization levels. Quantization levels outside of this range are displayed as saturated black or white.

Grayscale transform: The conversion function between a stored pixel value and the brightness that appears in a displayed image. Also called a gamma curve.

Halftone: A common method of printing images on paper. Shades of gray are created by various patterns of small black dots. Color halftones use dots of red, green and blue. Hamming window: A smooth curve used in the design of filters and spectral analysis, calculated from: , where n runs from 0.54 & 0.46cos(2B n/M) 0 to M.

Harmonics: The frequency components of a periodic signal, always consisting of integer multiples of the fundamental frequency. The fundamental is the first harmonic, twice this frequency is the second harmonic, etc.

Harvard Architecture: Internal computer layout where the program and data reside in separate memories accessed through separate busses; common in microprocessors used for DSP. See Von Neumann Architecture for comparison.

High fidelity: High quality music reproduction, such as provided by CD players.

High-level language: Programming languages such as C, BASIC and FORTRAN.

High-speed convolution: Another name for FFT convolution.

Hilbert transformer: A system having the frequency response: Mag = 1, Phase = 90E, for all frequencies. Used in communications systems for modulation. Can be analog or digital.

Histogram equalization: Processing an image by using the integrated histogram of the image as the grayscale transform. Works by giving large areas of the image higher contrast than the small areas.

Histogram: Displays the distribution of values in a signal. The x-axis show the possible values the samples can take on; the y-axis indicates the number of samples having each value.

Homogeneity: A mathematical property of all linear systems. If an input produces an x[n] output of , then an input produces an y[n] kx[n] output of , for any constant k. ky[n] Homomorphic: DSP technique for separating signals combined in a nonlinear way, such as by multiplication or convolution. The nonlinear problem is converted to a linear one

by an appropriate transform.

Huffman encoding: Data compression method that assigns frequently encountered characters fewer bits than seldom used characters.

Hyperspace: Term used in target detection and neural network analysis. One parameter can be graphically interpreted as a line, two parameters a plane, three parameters a space, and more than three parameters a hyperspace.

Imaginary part: The portion of a complex number that has a j term, such as 2 in . In 3% 2j the real Fourier transform, the imaginary part also refers to the portion of the frequency domain that holds the amplitudes of the sine waves, even though j terms are not used.

Impulse: A signal composed of all zeros except for a very brief pulse. For discrete signals, the pulse consists of a single nonzero sample. For continuous signals, the width of the pulse must be much shorter than the inherent response of any system the signal is used with.

Impulse decomposition: Breaking an N point signal into N signals, each containing a single sample from the original signal, with all the other samples being zero. This is the basis of convolution.

Impulse response: The output of a system when the input is a normalized impulse (a delta function).

Impulse train: A signal consisting of a series of equally spaced impulses. Independent variable: In a signal, the dependent variable depends on the value of the independent variable. Example: when a voltage changes over time, time is the independent variable and voltage is the dependent variable.

Infinite impulse response (IIR): An impulse response that has an infinite number of nonzero values, such as a decaying exponential. Often used to indicate that a filter is carried out by using recursion, rather than convolution.

Integers: Whole numbers: 0, 1, 2,Also refers to numbers stored in fixed point notation. See floating point for comparison.

Interlaced decomposition: Breaking a signal into its even numbered and odd numbered samples. Used in the FFT.

Interlaced video: A video signal that displays the even lines of each image followed by the odd lines. Used in television; developed to reduce flicker.

Interpolation: Increasing the sampling rate of a digitized signal. Generally done by placing zeros between the original samples and using a low-pass filter. See decimation for comparison.

Inverse transform: The synthesis equation of the Fourier transform, calculating the time domain from the frequency domain. See forward transform for comparison.

Iterative: Method of finding a solution by gradually adjusting the variables in the right direction until convergence is achieved. Used in CT reconstruction and neural networks. JPEG: A common image file format using transform (lossy) compression. Widely used on the world wide web for graphics. See GIF and TIFF for comparison.

Kernel: The impulse response of a filter implemented by convolution. Also known as the convolution kernel and the filter kernel.

Laplace transform: Mathematical method of analyzing systems controlled by differential equations. A main tool in the design of electric circuits, such as analog filters. Changes a signal in the time domain into the s-domain

Learning algorithm: The procedure used to find a set of neural network weights based on examples of how the network should operate.

Line pair: Imaging term for cycle. For example, 5 cycles per mm is the same as 5 line

pairs per mm.

Line pair gauge: A device used to measure the resolution of an imaging system. Contains a series of light and dark lines that move closer together at one end.

Line spread function (LSF): The response of an imaging system to a thin line in the input image.

Linear phase: A system with a phase that is a straight line. Usually important because it means the impulse response has left-to-right symmetry, making rising edges in the output signal look the same as falling edges. See also zero phase.

Linear system: By definition, a system that has the properties of additivity and homogeneity.

Lossless compression: Data compression technique that exactly reconstructs the original data, such as LZW compression.

Lossy compression: Data compression methods that only reconstruct an approximation to the original data. This allows higher compression ratios to be achieved. JPEG is an example.

Matched filtering: Method used to determine where, or if, a know pattern occurs in a signal. Matched filtering is based on correlation, but implemented by convolution. Mathematical equivalence: A way of using complex numbers to represent real problems. Based on Euler's relation equating sinusoids with complex exponentials. See substitution for comparison.

Mean: The average value of a signal or other group of data.

Memoryless: Systems where the current value of the output depends only on the current value of the input, and not past values.

MFLOPS: Million-Floating-Point-Operations- Per-Second; a common way of expressing computer speed. See MIPS for comparison.

MIPS: Million-Instructions-Per-Second; a common way of expressing computer speed. See MFLOPS for comparison.

Mixed signal: Integrated circuits that contain both analog and digital electronics, such as an ADC placed on a Digital Signal Processor.

Modulation transfer function (MTF): Imaging jargon for the frequency response. Morphing: Gradually warping an image from one form to another. Used for special effects, such as a man turning into a werewolf.

Morphological: Usually refers to simple nonlinear operations performed on binary images, such as erosion and dilation.

Moving average filter: Each sample in the output signal is the average of many adjacent samples in the input signal. Can be carried out by convolution or recursion.

MPEG: Compression standard for video, such as digital television.

Mu law: Companding standard used in the United States. Allows digital voice signals to be represented with only 8 bits instead of 12 bits by making the quantization levels unequal. See "A" law for comparison.

Multiplexing: Combining two or move signals together for transmission. This can be carried out in many different ways.

Multirate: Systems that use more than one sampling rate. Often used in ADC and DAC to obtain better performance, while using less electronics.

Natural frequency: A frequency expressed in radians per second, as compared to cycles per second (hertz). To convert frequency (in hertz) to natural frequency, multiply by 2B. Negative frequencies: Sinusoids can be written as a positive frequency: , or a negative cos(T t ) frequency: . Negative frequencies are cos(&T t ) included in the complex Fourier transform, making it more powerful.

Normal distribution: A bell shaped curve of the form: Also called a Gaussian. e x 2 NTSC: Television standard used in the United States, Japan, and other countries. See PAL and SECAM for comparison.

Nyquist frequency, Nyquist rate: These terms refer to the sampling theorem, but are used in different ways by different authors. They can be used to mean four different things: the highest frequency contained in a signal, twice this frequency, the sampling rate, or one-half the sampling rate.

Octave: A factor of two in frequency.

Odd order filter: An analog or digital filter having an odd number of poles. Opening: A morphological operation defined as a dilation operation followed by an erosion operation.

Optimal filter: A filter that is "best" in some specific way. For example, Wiener filters produce an optimal signal-to-noise ratio and matched filters are optimal for target detection.

Overlap add: Method used to break long signals into segments for processing.

PAL: Television standard used in Europe. See NTSC for comparison.

Parallel stages: A combination of two or more stages with the same input and added outputs.

Parameter space: Target detection jargon. One parameter can be graphically interpreted as a line, two parameters a plane, three parameters a space, and more than three parameters a hyperspace.

Parseval's relation: Equation relating the energy in the time domain to the energy in the frequency domain.

Passband: The band of frequencies a filter is designed to pass unaltered.

Passive sonar: Detection of submarines and other undersea objects by the sounds they produce. Used for covert surveillance.

Phasor transform: Method of using complex numbers to find the frequency response of RLC circuits. Resistors, capacitors and inductors become R, , and , respectively. &j /T C j T L

Pillbox: Shape of a filter kernel used in image processing: circular region of a constant value surrounded by zeros.

Pitch: Human perception of the fundamental frequency of an continuous tone. See timbre for comparison.

Pixel: A contraction of "picture element." An individual sample in a digital image.

Point spread function (PSF): Imaging jargon for the impulse response.

Pointer: A variable whose value is the address of another variable.

Poisson statistics: Variations in a signal's value resulting from it being represented by a finite number of particles, such as: x-rays, light photons or electrons. Also called Poisson noise and statistical noise.

Polar form: Representing sinusoids by their magnitude and phase, where M is M cos(T t% N) the magnitude and N is the phase. See rectangular form for comparison.

Pole: Term used in the Laplace transform and z transform. When the s-domain or

z-domain transfer function is written as one polynomial divided by another polynomial, the roots of the denominator are the poles of the system, while the roots of the numerator are the zeros.

Pole-zero diagram: Term used in the Laplace and z-transforms. A graphical display of the location of the poles and zeros in the s-plane or z-plane.

Precision: The error in a measurement or prediction that is not repeatable from trial to trial. Precision is determined by random errors. See accuracy for comparison. Probability distribution function (pdf): Gives the probability that a continuous variable will take on a certain value.

Probability mass function (pmf): Gives the probability that a discrete variable will take on a certain value. See pdf for comparison.

Pulse response: The output of a system when the input is a pulse.

Quantization error: The error introduced when a signal is quantized. In most cases, this results in a maximum error of ±? LSB, and an rms error of LSB. Also called quantization noise. 1/ 12

Random error: Errors in a measurement or prediction that are not repeatable from trial to trial. Determines precision. See systematic error for comparison.

Radar: Radio Detection And Ranging. Echo location technique using radio waves to detect aircraft.

Real DFT: The discrete Fourier transform using only real (ordinary) numbers. A less powerful technique than the complex DFT, but simpler. See complex DFT for comparison.

Real FFT: A modified version of the FFT. About 30% faster than the standard FFT when the time domain is completely real (i.e., the imaginary part of the time domain is zero). Real Fourier transform: Any of the members of the Fourier transform family using only real (as opposed to imaginary or complex) numbers. See complex Fourier transform for comparison.

Real part: The portion of a complex number that does not have the j term, such as 3 in . In 3% 2j the real Fourier transform, the real part refers to the part of the frequency domain that holds the amplitudes of the cosine waves, even though no j

terms are present.

Real time processing: Processing data as it is acquired, rather than storing it for later use. Example: DSP algorithms for controlling echoes in long distance telephone calls. Reconstruction filter: A low-pass analog filter placed after a digital-to-analog converter. Smoothes the stepped waveform by removing frequencies above one-half the sampling rate.

Rectangular form: Representing a sinusoid by the form: , where A is called A cos(T t ) % B sin (T t ) the real part and B is called the imaginary part (even though these are not imaginary numbers).

Rectangular window: A signal with a group of adjacent points having unity value, and zero elsewhere. Usually multiplied by another signal to select a section of the signal to be processed.

Recursion coefficients: The weighing values used in a recursion equation. The recursion coefficients determine the characteristics of a recursive (IIR) filter.

Recursion equation: Equation relating the past and present samples of the output signal with the past and present values of the input signal. Also called a difference equation. Region-of-convergence: The term used in the Laplace and z-transforms. Those regions in the s-plane and z-planes that have a defined value.

RGB encoding: Representing a color image by specifying the amount of red, green, and blue for each pixel.

RISC: Reduced Instruction Set Computer, also called a DSP microprocessor. A fewer number of programming commands allows much higher speed math calculations. The opposite is the Complex Instruction Set Computer, such as the Pentium.

ROC curve: A graphical display showing how threshold selection affects the performance of a target detection problem.

Roll-off: Jargon used to describe the sharpness of the transition between a filter's passband and stopband. A fast roll-off means the transition is sharp; a slow roll-off means it is gradual.

Root-mean-square (rms): Used to express the fluctuation of a signal around zero. Often used in electronics. Defined as the square-root of the mean of the squares. See standard deviation for comparison.

Round-off noise: The error caused by rounding the result of a math calculation to the nearest quantization level.

Row major order: A pattern for converting an image to serial form. Operates the same as English writing: left-to-right on the first line, left-to-right on the second line, etc.

Run-length encoding: Simple data compression technique with many variations. Characters that are repeated many times in succession are replaced by codes indicating the character and the length of the run.

Running sum: An operation used with discrete signals that mimics integration of continuous signals. Also called the discrete integral.

s-domain: The domain defined by the Laplace transform. Also called the s-plane. Sample spacing: The spacing between samples when a continuous image is digitized. Defined as the center-to-center distance between pixels.

Sampling aperture: The region in a continuous image that contributes to an individual pixel during digitization. Generally about the same size as the sample spacing. Sampling theorem: If a continuous signal composed of frequencies less than f is sampled at 2f , all of the information contained in the continuous signal will be present in the sampled signal. Frequently called the Shannon sampling theorem or the Nyquist sampling theorem.

SECAM: Television standard used in Europe. See NTSC for comparison. Seismology: Branch of geophysics dealing with the mechanical properties of the earth. Separable: An image that can be represented as the product of its vertical and horizontal profiles. Used to improve the speed of image convolution.

Sharpening: Image processing operation that makes edges more abrupt.

Shift and subtract: Image processing operation that creates a 3D or embossed effect. Shift invariance: A property of many systems. A shift in the input signal produces nothing more than a shift in the output signal. Means that the characteristics of the system do not changing with time (or other independent variable).

Sigmoid: An "s" shaped curve used in neural networks.

Signal: A description of how one parameter varies with another parameter. Example: a voltage that varies with time.

Signal restoration: Returning a signal to its original form after it has been changed or degraded in some way. One of the main uses of filtering.

Sinc function: Formally defined by the relation The B terms are often sinc (a) ’ sin(B a) /B a hidden in other variables, making it in the general form. Important because it is the sin(x) /x Fourier transform of the rectangular pulse.

Single precision: A floating point notation that used 32 bits to represent each number. See double precision for comparison.

Single-pole digital filters: Simple recursive filters that mimic RC high-pass and

low-pass filters in electronics.

Sinusoidal fidelity: An important property of linear systems. A sinusoidal input can only produce a sinusoidal output; the amplitude and phase may change, but the frequency will remain the same.

Sonar: Sound Navigation And Ranging. The use of sound to detect submarines and other underwater objects. Active sonar uses echo location, while passive sonar only listens. Source code: A computer program in the form written by the programmer; distinguished from executable code, a form that can be directly run on a computer.

Spatial domain: A signal having distance (space) as the independent variable. Images are signals in the spatial domain.

Spectral analysis: Understanding a signal by examining the amplitude, frequency, and phase of its component sinusoids. The primary tool of spectral analysis is the Fourier transform.

Spectral inversion: Method of changing a filter kernel such that the corresponding frequency response is flipped top-for-bottom. This can change low-pass filters to

high-pass, band-pass to band-reject, etc.

Spectral leakage: Term used in spectral analysis. Since the DFT can only be taken of a finite length signal, the frequency spectrum of a sinusoid is a peak with tails. These tails are referred to as leakage from the main peak.

Spectral reversal: Technique for changing a filter kernel such that the corresponding frequency response is flipped left-for-right. This changes low-pass filters into high-pass filters.

Spectrogram: Measurement of how an audio frequency spectrum changes over time. Usually displayed as an image. Also called a voiceprint.

Standard deviation: A way of expressing the fluctuation of a signal around its average value. Defined as the square-root of the average of the deviations squared, where the deviation is the difference between a sample and the mean. See root-mean-square for comparison.

Static linearity: Refers to how a linear system acts when the signals are not changing (i.e., they are DC or static). In this case, the output is equal to the input multiplied by a constant.

Statistical noise: Variations in a signal's value resulting from it being represented by a finite number of particles, such as: x-rays, electrons, or light photons. Also called Poisson statistics and Poisson noise.

Steepest descent: Strategy used in designing iterative algorithms. Analogous to finding the bottom of a valley by always moving in the downhill direction.

Step response: The output of a system when the input is a step function.

Stopband: The band of frequencies that a filter is designed to block.

Stopband attenuation: The amount by which frequencies in the stopband are reduced in amplitude, usually expressed in decibels. Used to describe a filter's performance. Substitution: A way of using complex numbers to represent a physical problem, such as electric circuit design. In this method, j terms are added to change the physical problem to a complex form, and then removed to move back again. See mathematical equivalence for comparison.

Switched capacitor filter: Analog filter that uses rapid switching to replace resistors. Made as easy-to-use integrated circuits. Often used as antialias filters for ADC and reconstruction filters for DAC.

Synthesis: The inverse Fourier transform, calculating the time domain from the frequency domain. See analysis for comparison.

System: Any process that produces an output signal in response to an input signal. Systematic error: Errors in a measurement or prediction that are repeatable from trial to trial. Systematic errors determines accuracy. See random error for comparison.

Target detection: Deciding if an object or condition is present based on measured values.

TIFF: A common image file format used in word processing and similar programs. Usually not compressed, although LZW compression is an option. See GIF and JPEG for comparison.

Timbre: The human perception of harmonics in sound. See pitch for comparison.

Time domain: A signal having time as the independent variable. Also used as a general reference to any domain the data is acquired in.

Time domain aliasing: Aliasing occurring in the time domain when an action is taken in the frequency domain. Circular convolution is an example.

Time domain encoding: Signal information contained in the shape of the waveform. See frequency domain encoding for comparison.

Transfer function: The output signal divided by the input signal. This comes in several different forms, depending on how the signals are represented. For instance, in the

s-domain and z-domain, this will be one polynomial divided by another polynomial, and can be expressed as poles and zeros.

Transform: A procedure, equation or algorithm that changes one group of data into another group of data.

Transform compression: Data compression technique based on assigning fewer bits to the high frequencies. JPEG is the best example.

Transition band: Filter jargon; the band of frequencies between the passband and stopband where the roll-off occurs.

True-negative: One of four possible outcomes of a target detection trial. The target is not present, and is correctly indicated to be not present.

True-positive: One of four possible outcomes of a target detection trial. The target is present, and correctly indicated to be present.

Unit circle: The circle in the z-plane at . r ’ 1 The values along this circle are the frequency response of the system.

Unit impulse: Another name for delta function.

Von Neumann Architecture: Internal computer layout where both the program and data reside in a single memory; very common. See Harvard Architecture for comparison. Voiced: Human speech sound that originates as pulses of air passing the vocal cords. Vowels are an example of voiced sounds. See fricative for comparison.

Well: Short for potential well; the region in a CCD that is sensitive to light.

White noise: Random noise that has a flat frequency spectrum. Occurs when each sample in the time domain contains no information about the other samples. See 1/f noise for comparison.

Wiener filter: Optimal filter for increasing the signal-to-noise ratio based on the frequency spectra of the signal and noise.

Windowed-sinc: Digital filter used to separate one band of frequencies from another.

z-domain: The domain defined by the z-transform. Also called the z-plane.

z-transform: Mathematical method used to analyze discrete systems that are controlled by difference equations, such as recursive (IIR) filters. Changes a signal in the time domain into a signal in the z-domain.

Zero: A term used in the Laplace & z-transforms. When the s-domain or z-domain transfer function is written as one polynomial divided by another polynomial, the roots of the numerator are the zeros of the system. See also pole.

Zero phase: A system with a phase that is entirely zero. Occurs only when the impulse response has left-to-right symmetry around the origin. See also linear phase.

Zeroth-order hold: A term used in DAC to describe that the analog signal is maintained at a constant value between conversions, resulting in a staircase appearance.

数字信号处理翻译

吴楠电子与通信工程2014309013 Signal processing Signal processing is an area of electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time, to perform useful operations on those signals. Signals of interest can include sound, images, time-varying measurement values and sensor data, for example biological data such as electrocardiograms, control system signals, telecommunication transmission signals such as radio signals, and many others. Signals are analog or digital electrical representations of time-varying or spatial-varying physical quantities. In the context of signal processing, arbitrary binary data streams and on-off signalling are not considered as signals, but only analog and digital signals that are representations of analog physical quantities. History According to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the "digitalization" or digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s.[2]

数字信号处理论文-带通滤波器

本文分析了国内外数字滤波技术的应用现状与发展趋势,介绍了数字滤波器的基本结构,在分别讨论了IIR与FIR数字滤波器的设计方法的基础上,指出了传统的数字滤波器设计方法过程复杂、计算工作量大、滤波特性调整困难的不足,提出了一种利用MATLAB信号处理工具箱(Signal Processing Toolbox)快速有效的设计由软件组成的常规数字滤波器的设计方法。给出了使用MATLAB语言进行程序设计和利用信号处理工具箱的FDATool工具进行界面设计的详细步骤。利用MATLAB设计滤波器,可以随时对比设计要求和滤波器特性调整参数,直观简便,极大的减轻了工作量,有利于滤波器设计的最优化。本文还介绍了如何利用MATLAB环境下的仿真软件Simulink对所设计的滤波器进行模拟仿真。 1.1数字滤波器的研究背景与意义 当今,数字信号处理[1] (DSP:Digtal Signal Processing)技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。 数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号、生物医学信号、控制信号、气象信号、地震勘探信号、机械振动信号、遥感遥测信号,等等。上述这些信号大部分是模拟信号,也有小部分是数字信号。模拟信号是自变量的连续函数,自变量可以是一维的,也可以是二维或多维的。大多数情况下一维模拟信号的自变量是时间,经过时间上的离散化(采样)和幅度上的离散化(量化),这类模拟信号便成为一维数字信号。因此,数字信号实际上是用数字序列表示的信号,语音信号经采样和量化后,得到的数字信号是一个一维离散时间序列;而图像信号经采样和量化后,得到的数字信号是一个二维离散空间序列。数字信号处理,就是用数值计算的方法对数字序列进行各种处理,把信号变换成符合需要的某种形式。例如,对数字信号经行滤波以限制他的频带或滤除噪音和干扰,或将他们与其他信号进行分离;对信号进行频谱分析或功率谱分析以了解信号的频谱组成,进而对信号进行识别;对信号进行某种变换,使之更适合于传输,存储和应用;对信号进行编码以达到数据压缩的目的,等等。 数字滤波技术是数字信号分析、处理技术的重要分支[2-3]。无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传输是至关重要的。在所有的电子系统中,使用最多技术最复杂的要算数字滤波器了。数字滤波器的优劣直接决定产品的优劣。 1.2数字滤波器的应用现状与发展趋势 在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。 (1) 语音处理

英文文献

英文文献 1 Introduction Following the immensely successful first-generation Cyclone device family, Altera Cyclone II FPGAs extend the low-cost FPGA density range to 68,416 logic elements (LEs) and provide up to 622 usable I/O pins and up to 1.1 Mbits of embedded memory. Cyclone II FPGAs are manufactured on 300-mm wafers using TSMC's 90-nm low-k dielectric process to ensure rapid availability and low cost. By minimizing silicon area, Cyclone II devices can support complex digital systems on a single chip at a cost that rivals that of ASICs. Unlike other FPGA vendors who compromise power consumption and performance for low-cost, Altera’s latest generation of low-cost FPGAs—Cyclone II FPGAs, offer 60% higher performance and half the power consumption of competing 90-nm FPGAs. The low cost and optimized feature set of Cyclone II FPGAs make them ideal solutions for a wide array of automotive, consumer, communications, video processing, test and measurement, and other end-market solutions. Reference designs, system diagrams, and IP, found at https://www.360docs.net/doc/b115304434.html,, are available to help you rapidly develop complete end-market solutions using Cyclone II FPGAs. Low-Cost Embedded Processing Solutions Cyclone II devices support the Nios II embedded processor which allows you to implement custom-fit embedded processing solutions. Cyclone II devices can also expand the peripheralset, memory, I/O, or performance of embedded processors. Single or multiple Nios II embedded processors can be designed into a Cyclone IIdevice to provide additional co-processing power or even replace existing embedded processors in your system. Using Cyclone II and Nios II together allow for low-cost, high-performance embedded processing solutions, which allow you to extend your product's life cycle and improve time to market over standard product solutions Low-Cost DSP Solutions Use Cyclone II FPGAs alone or as DSP co-processors to improve price-to-performance ratios for digital signal processing (DSP) applications. You can implement high-performance yet low-cost DSP systems with the following Cyclone II features and design support: ■ Up to 150 18 × 18 multipliers ■ Up to 1.1 Mb it of on-chip embedded memory ■ High-speed interfaces to external memory

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理英语词汇

A Absolutely integrable 绝对可积 Absolutely integrable impulse response 绝对可积冲激响应Absolutely summable 绝对可和 Absolutely summable impulse response 绝对可和冲激响应Accumulator 累加器 Acoustic 声学 Adder 加法器 Additivity property 可加性 Aliasing 混叠现象 All-pass systems 全通系统 AM (Amplitude modulation ) 幅度调制 Amplifier 放大器 Amplitude modulation (AM) 幅度调制 Amplitude-scaling factor 幅度放大因子 Analog-to-digital (A-to-D) converter 模数转换器 Analysis equation 分析公式(方程)Angel (phase) of complex number 复数的角度(相位)Angle criterion 角判据 Angle modulation 角度调制Anticausality 反因果 Aperiodic 非周期 Aperiodic convolution 非周期卷积Aperiodic signal 非周期信号Asynchronous 异步的 Audio systems 音频(声音)系统Autocorrelation functions 自相关函数Automobile suspension system 汽车减震系统Averaging system 平滑系统 B Band-limited 带(宽)限的 Band-limited input signals 带限输入信号 Band-limited interpolation 带限内插 Bandpass filters 带通滤波器Bandpass signal 带通信号 Bandpass-sampling techniques 带通采样技术Bandwidth 带宽 Bartlett (triangular) window 巴特利特(三角形)窗Bilateral Laplace transform 双边拉普拉斯变换Bilinear 双线性的

数字信号处理期末论文

题目:基于DSP的FFT程序设计的研究 作者届别 系别专业 指导老师职称 完成时间2013.06

内容摘要 快速傅里叶变(Fas Fourier Tranformation,FFT)是将一个大点数N的DFT分解为若干小点的D F T的组合。将用运算工作量明显降低,从而大大提高离散傅里叶变换(D F T) 的计算速度。因各个科学技术领域广泛的使用了FFT 技术它大大推动了信号处理技术的进步,现已成为数字信号处理强有力的工具,本论文将比较全面的叙述各种快速傅里叶变换算法原理、特点,并完成了基于MATLAB的实现。 关键词:频谱分析;数字信号处理;MATLAB;DSP281x

引言: 1965年,库利(J.W.Cooley)和图基(J.W.Tukey)在《计算数学》杂志上发表了“机器计算傅立叶级数的一种算法”的文章,这是一篇关于计算DFT的一种快速有效的计算方法的文章。它的思路建立在对DFT运算内在规律的认识之上。这篇文章的发表使DFT的计算量大大减少,并导致了许多计算方法的发现。这些算法统称为快速傅立叶变换(Fast Fourier Transform),简称FFT,1984年,法国的杜哈梅尔(P.Dohamel)和霍尔曼(H.Hollmann)提出的分裂基快速算法,使运算效率进一步提高。FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 随着科学的进步,FFT算法的重要意义已经远远超过傅里叶分析本身的应用。FFT算法之所以快速,其根本原因在于原始变化矩阵的多余行,此特性也适用于傅里叶变换外的其他一些正交变换,例如,快速沃尔什变换、数论变换等等。在FFT的影响下,人们对于广义的快速正交变换进行了深入研究,使各种快速变换在数字信号处理中占据了重要地位。因此说FFT对数字信号处理技术的发展起了重大推动作用。 信号处理中和频谱分析最为密切的理论基础是傅立叶变换(Fouriertransform,FT)。快速傅立叶变换(FFT)和数字滤波是数字信号处理的基本内容。信号时域采样理论实现了信号时域的离散化,而离散傅里叶变换理论实现了频域离散化,因而开辟了数字技术在频域处理信号的新途径,推进了信号的频谱分析技术向更广的领域发展。 1.信号的频谱分析 如果信号频域是离散的,则信号在时域就表现为周期性的时间函数;相反信号在时域上是离散的,则该信号在频域必然表现为周期的频率函数。不难设想,一个离散周期序列,它一定具有既是周期又是离散的频谱。有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。因而有限长序列的离散傅里叶变换的定义为:x(n)和X(k)是一个有限长序列的离散傅里叶变换对。

fpga英文文献翻译

Field-programmable gate array (现场可编程门阵列) 1、History ——历史 FPGA业界的可编程只读存储器(PROM)和可编程逻辑器件(PLD)萌芽。可编程只读存储器(PROM)和可编程逻辑器件(PLD)都可以分批在工厂或在现场(现场可编程)编程,然而,可编程逻辑被硬线连接在逻辑门之间。 在80年代末期,为海军水面作战部提供经费的的史蒂夫·卡斯尔曼提出要开发将实现60万可再编程门计算机实验。卡斯尔曼是成功的,并且与系统有关的专利是在1992年发行的。 1985年,大卫·W·佩奇和卢文R.彼得森获得专利,一些行业的基本概念和可编程逻辑阵列,门,逻辑块技术公司开始成立。 同年,Xilinx共同创始人,Ross Freeman和Bernard Vonderschmitt发明了第一个商业上可行的现场可编程门阵列——XC2064。该XC2064可实现可编程门与其它门之间可编程互连,是一个新的技术和市场的开端。XC2064有一个64位可配置逻辑块(CLB),有两个三输入查找表(LUT)。20多年后,Ross Freeman进入全国发明家名人堂,名人堂对他的发明赞誉不绝。 Xilinx继续受到挑战,并从1985年到90年代中期迅速增长,当竞争对手如雨后春笋般成立,削弱了显著的市场份额。到1993年,Actel大约占市场的18%。

上世纪90年代是FPGA的爆炸性时期,无论是在复杂性和生产量。在90年代初期,FPGA的电信和网络进行了初步应用。到这个十年结束时,FPGA行业领袖们以他们的方式进入消费电子,汽车和工业应用。 1997年,一个在苏塞克斯大学工作的研究员阿德里安·汤普森,合并遗传算法技术和FPGA来创建一个声音识别装置,使得FPGA的名气可见一斑。汤姆逊的算法配置10×10的细胞在Xilinx的FPGA芯片阵列,以两个音区分,利用数字芯片的模拟功能。而今,该遗传算法应用到FPGA中设备的配置上被称为演化硬件。 2、Modern developments ——现代的发展 最近的趋势是通过组合逻辑块和嵌入式微处理器和相关外设传统的FPGA 互连,形成一个完整的“可编程片上系统”,采取粗粒度的架构方法实现了这一步。这项工作反映了由宝来先进系统集团的Ron Perlof 和Hana Potash在单一芯片SB24上结合可重构CPU架构的体系结构。这项工作是在1982年完成的,这种混合动力技术可以在Xilinx公司的Virtex-II Pro和Virtex-4设备中看到,包括嵌入式FPGA的逻辑结构中的一个或多个PowerPC处理器。Atmel 的FPSLIC是另一个这样的设备,它使用的是组合了Atmel可编程逻辑架构的AVR处理器。Actel的SmartFusion器件集成了配置有Cortex-M3硬处理器内核(最大闪存和512KB为64KB RAM)的ARM架构和模拟外设,如多通道ADC和DAC的基于闪存的FPGA架构。 使用硬宏处理器的另一种方法是利用在FPGA逻辑中实现的软核处理器。

数字信号处理教案

数字信号处理教案

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理应用论文

摘要:介绍了DSP技术(器件)的主要特点.总结了DSP在家电、办公设备、控制和通信领域的主要应用及其发展趋势。 关键词:数字信号处理;音频/视频;控制;通信 DSP数字信号处理技术(Digital Signal Processing)指理论上的技术;DSP数字信号处理器(Digital Sig—hal Processor)指芯片应用技术。因此,DSP既可以代表数字信号处理技术,也可以代表数字信号处理器,两者是不可分割的,前者要通过后者变成实际产品。两者结合起来就成为解决实际问题和实现方案的手段DsPs一数字信号处理解决方案。DSP运用专用或通用数字信号处理芯片,通过数字计算的方法对信号进行处理,具有精确、灵活、可靠性好、体积小、易于大规模集成等优点。DSP芯片自从1978年AMI公司推出到现在,其性能得到了极大的提高。 1 DSP的特点 1.1 修正的哈佛结构 DSP芯片采用修正的哈佛结构(Havardstructure),其特点是程序和数据具有独立的存储空间、程序总线和数据总线,非常适合实时的数字信号处理口]。同时,这种结构使指令存储在高速缓存器中(Cache),节约了从存储器中读取指令的时间,提高了运行速度。如美国德州仪器公司——TI(Texas Instruments)的DSP芯片结构是基本哈佛结构的改进类型。 1.2 专用的乘法器 一般的算术逻辑单元AI U(Arithmetic and Logic Unit)的乘法(或除法)运算由加法和移位实现,运算速度较慢。DSP设置了专用的硬件乘法器、多数能在半个指令周期内完成乘法运算,速度已达每秒数千万次乃至数十亿次定点运算或浮点运算,非常适用于高度密集、重复运算及大数据流量的信号处理。如MS320C3x系列DSP芯片中有一个硬件乘法器:TMS320C6000系列中则有两个硬件乘法器。 1.3 特殊的指令设置 DSP在指令系统中设置了“循环寻址”(Circular addressing)及“位倒序”(bit—reversed)等特殊指令,使寻址、排序及运算速度大大提高引。另外,DSP指令系统的流水线操作与哈佛结构相配合,把指令周期减小到最小值,增加了处理器的处理能力。尽管如此,DSP芯片的单机处理能力还是有限的,多个DSP芯片的并行处理已成为研究的热点。 2 DSP在家电、办公设备中的应用 2.1高清晰度电视 传统电视采用线性扫描的信号处理方式,画面像素最高仅4O~5O万个,会带来画质的损失,而DSP数字超微点阵(Digital SuperMicro Pixe1)技术,超越传统的线性扫描,进入由“点”组成的微显示数字技术层面,从模拟的“线”飞跃到数字的“点”。DSP是逐点优化的。它运用全新的逐点扫描技术,修复并优化每一个点的质量,消降图像边缘模糊现象,细节部分的锐利度成倍提高。 2.2 A/V(Audio/Video)设备 家庭影院主要由数字化A/V(Audio/Video)设备组成,DSP不仅带来环绕声,而且提供虚拟各种现场效果。VCD(VideoCompact Disc)、DVD(Digital Video Disc)、MD(Minidiskette)、DAB(Digital Audio Brod—casting)、DVB(Digital Video Box)等数字音视频产品中,DSP的价值主要体现在音频的Hi—Fi(HighFideli—ty)处理上。目前,对MPEG(Moving Picture Expe Group)音频Layer2、I ayer3等用c语言仿真研究,在此基础上用C549实现了MP3解码器的采样;用’C6201和’C6701分别实现MP3编码器和MPEG一2AAC编解码器。MPEG 一2AAC重建的音质超过MP3和AC一3将成为直播卫星、地面DAB和SW、Mw、AM 广

数字信号处理英文文献及翻译

数字信号处理 一、导论 数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。 由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。 DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。 在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。 二、信号采样 随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。 奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。 数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。 三、时间域和空间域 在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如: 一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线性滤波器满足叠加条件,即如果一个输入不同的信号的加权线性组合,输出的是一个同样加权线性组合所对应的输出信号。

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 (10级) 编号:40023600 英文名称:Digital Signal Processing 适用专业:通信工程;电子信息工程 责任教学单位:电子工程系通信工程教研室 总学时:56 学分:3.5 考核形式:考试 课程类别:专业基础课 修读方式:必修 教学目的:数字信号处理是通信工程、电子信息工程专业的一门专业基础课,通过本课程的学习使学生建立数字信号处理的基本概念、掌握数字信号处理的基本理论、基本分析方法和数字滤波器的基本设计方法,具有初步的算法分析和运用MATLAB编程的能力,了解数字信号处理的新方法和新技术。为学习后续专业课程和从事数字信号处理方面的研究工作打下基础。 主要教学内容及要求: 1.绪论 了解数字信号处理的特点,应用领域,发展概况和发展局势。 2.时域离散信号和时域离散系统 了解连续信号、时域离散信号和数字信号的定义和相互关系;掌握序列的表示、典型序列、序列的基本运算;掌握时域离散系统及其性质,掌握时域离散系统的时域分析,掌握采样定理、连续信号与离散信号的频谱关系。 3.时域离散信号和系统的频域分析 掌握序列的傅里叶变换(FT)及其性质;掌握序列的Z变换(ZT) 、Z变换的主要性质;掌握离散系统的频域分析;了解梳状滤波器,最小相位系统。 4.离散傅里叶变换(DFT) 掌握离散傅里叶变换(DFT)的定义,掌握DFT、ZT、FT、DFS之间的关系;掌握DFT的性质;掌握频域采样;掌握DFT的应用、用DFT计算线性卷积、用DFT分析信号频谱。 5.快速傅里叶变换(FFT) 熟悉DFT的计算问题及改进途经;掌握DIT-FFT算法及其编程思想;掌握IDFT的高效算法。 6.数字滤波网络 了解滤波器结构的基本概念与分类;掌握IIR-DF网络结构(直接型,级联型,并联型);掌握FIR-DF网络结构(直接型,线性相位型,级联型,频率采样型,快速卷积型)。 7.无限冲激响应(IIR)数字滤波器设计 熟悉滤波的概念、滤波器的分类及模拟和数字滤波器的技术指标;熟悉模拟滤波器的设计;掌握用冲激响应不变法设计IIR数字滤波器;掌握用双线性变换法设计IIR数字滤波器。 8.有限冲激响应(FIR)数字滤波器设计 熟悉线性相位FIR数字滤波器的特点;掌握FIR数字滤波器的窗函数设计法;掌握FIR数字滤波器的频率抽样设计法;了解FIR数字滤波器的切比雪夫最佳一致逼近设计法。 本课程与其他课程的联系与分工:先修课程:信号与系统,复变函数与积分变换,数字电路;后续课程有:DSP原理及应用,语音信号处理,数字图像处理等。

数字信号处理GUI

西安工业大学北方信息工程学院毕业设计(论文)开题报告 题目:数字信号处理实验教学平台设计 系别光电信息系 专业光电信息工程 班级 B100106 姓名彭牡丹 学号 B10010638 导师稀华 2013年11月20日

1 毕业设计(论文)综述 1.1 题目背景和意义 自 20 世纪 60 年代以来,随着计算机和信息学科的飞速发展,数字信号处理技术应运而生并迅速发展,目前已经形成为一门独立且成熟重要的新兴学科。如今已广泛地应用于通信、语音、图像、遥感、雷达、航空航天、自动控制和生物医学[1]等多个领域。特别在教学方面,此课程已普遍成为大学本科电子通信专业必修的主干课和重要的专业基础课,已成为信息化建设不可缺少的环节。 “数字信号处理”课程主要包括离散时间信号及系统、离散傅立叶变换DFT、快速傅立叶变换FFT、数字滤波器设计及实现和数字信号系统的应用等内容,如何帮助学生理解与掌握课程中的基本概念、分析方法以及综合应用能力,是教学所要解决的关键问题,但是该课程理论性强,公式繁琐,需要实验辅助学生理解。因此研究数字信号处理虚拟实验技术能够有效地弥补数字信号处理理论教学的不足,所以本课题需要借助一些软件平台来完成数字信号处理课程中重要的实验内容的仿真分析。 1.2 国内外相关研究状况 对于教学平台设计,现在教学方面有很多研究方法,不同的的科研目标用的是不同的软件平台,国内外也提出了多种研究方法。 例如,在做交互式教学实验平台设计时,周强、张兰、张春明[2]等人运用的是Tornado 软件。此设计以 Tornado 专业课程为例,提出教学网络化的预期目标,结合课程内容的实践性特点,依据分层教学的指导理念,以先进的网站开发技术(Dreamweaver、B/S、ASP 等)为支撑手段,对面向 Tornado 的交互式教学实验平台进行设计与实现。通过小范围测试,基本实现了教师发布教学信息、上机实验、问题互助解答、学生在线自测、师生交互平台等教学功能,并在此基础上凸显出对学生进行分级以提供个性化教学的特色。在研究网络的教学实验平台设计,赵迎新、徐平平、夏桂斌[3]等人用的是无线传感器网络的研究方法。此设计研究并开发了一种应用MSP430微控制器芯片和CC2420无线收发模块架构的无线传感器网络的教学实验平台,设计并实现了系统的总体架构、硬件电路、软件接口与数据汇聚模式,根据实践教学要求,设计了基于该平台系统的基本实验要求与操作步骤,给出了对不同层次实践教学的目标要求,最后给出教学实践效果的评价。还有谢延红[4]提出的开放式 Linux 实验教学平台设计与实现。此研究针对 Linux 实验教学中存在的实验环境不够灵活、实验学习时间受限和无法实时沟通的问题,此研究提出了“个网络平台,条技术路线,

大屏幕显示系统的研究毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:大屏幕显示系统的研究 文献、资料英文题目:The research of the large screen display system's 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

译文: 大屏幕显示系统的研究 LED的发展 随着计算机技术的高速发展,LED屏幕显示系统作为继电视、广播、报纸、杂志之后的“第五大媒体”正快速步入社会生活的各个方面。它集微电子技术、计算机技术、信息处理技术于一体,可以将信息通过文字、图案、动画及视频四种形式显示出来。与电视墙、磁翻板等媒体相比,LED大屏幕显示系统具有图案美观、色彩亮丽;图案、色彩变化丰富、快速;低功耗、长寿命、使用成本低、工作稳定可靠等特点。它显示的图文视角大、视距远,因而已广泛应用于大型广场、商业广告、体育场馆、信息传播、新闻发布、证券交易;它还应用于工业控制和工业调动系统,便于把各种参数、报警点、工艺流程显示得更加清晰完美,可以满足不同环境的需要。LED显示屏是一种利用计算机和复杂数字信号处理的电子广告宣传屏。它的屏体部分由微处理器(主要是单片机)和驱动电路控制运行,显示的图像或文字由计算机编辑软件编辑获得。由于LED显示屏这种新一代信息显示设备具有显示图案稳定、功耗低、寿命长等特点,而且它综合了各种信息显示设备的长处,并且克服了自身的不足,特别是由于一幅显示屏可以显示不同的内容,显示方式丰富。所以在公共场合,它具有强烈的广告宣传和信息传递效果,日趋在固体显示中占主导地位。LED显示屏的发展前景极为广阔,目前正朝着更高亮度、更高耐气候性、更高的发光密度、更高的发光均匀性、可靠性、全色化方向发展。由不同材料的半导体组成能发出不同色彩的LED晶点。目前应用最广的是红色、绿色、黄色LED。而蓝色和纯绿色LED的开发已经达到了实用阶段。 LED显示屏的分类 LED显示屏是多种技术综合应用的产品,涉及光电子学、半导体器件、数字电子电路、大规模集成电路、单片机及微机等各个方面,既有硬件又有软件。LED 显示屏是作为广播、电视、报纸、杂志之后的又一新传播媒体。目前LED显示屏根据使用场所不同,可以分为室外屏和室内屏两种,其主要区别是发光管的发光亮度不同。而根据所显示的内容不同也可以分为图像屏和文字屏两种,图像屏可以显示图像以及多媒体,而文字屏则主要显示文字或简单的固定图像。显示图像的多媒体室外屏是投资巨大(高达数百万)的大型高档设备,主要应用在大型公共场所、形象工程和一些重要场所。LED显示屏的应用涉及到社会经济的许多领域,

《数字信号处理与应用》课程论文

《数字信号处理与应用》课程论文题目:基于DSP和FPGA的通用数字信号 处理系统设计 系部 专业 学号 姓名 2014年6月7日

基于DSP和FPGA的通用数字信号处理系统设计 摘要 随着电子设备结构和功能的日益复杂,对其内部使用的数字信号处理系统在体积和功耗方面提出了更高的要求?结合以上背景,设计了一种体积小?功耗低的通用数字信号处理系统?该系统利用DSP配合FPGA为硬件架构,以TMS320VC5509ADSP为数据处理核心,通过FPGA对USB?ADC和DAC等外围设备进行控制,并可实现频谱分析?数字滤波器等数字信号处理算法?硬件调试结果表明,该系统满足设计要求,可应用于实际工程和课堂教学等多个领域? 关键词:数字信号处理低功耗DSP FPGA

目录 一引言 (1) 二系统主要功能和技术指标 (2) 三硬件设计 (3) 3.2.1DSP最小系统设计 (3) 3.2.2程序存储器设计 (4) 3.3.1USB通信接口设计 (4) 3.3.2信号发生电路设计 (5) 3.3.3信号采集电路设计 (6) 3.3.4语音电路设计 (7) 四软件设计 (8) 五系统测试 (10) 六结论 (11) 参考文献 (12)

一引言 随着计算机技术和电子技术的高速发展,数字信号处理理论和方法已成为众多研究领域的重要研究基础,被广泛应用在航空航天?自动化控制?通信等领域?然而,数字信号处理系统功能日益齐全,结构也越来越复杂,导致其体积和功耗不断增加,对电子设备的运行造成了严重的影响?因此,减小数字信号处理系统的体积和功耗,对降低整个电子系统的运营成本?提高系统可靠性具有重要意义? TI公司5000系列的数字信号处理器TMS320VC5509A具有较快的数字信号处理能力,同时具有低功耗?封装小?价格低等优点,被广泛的应用于数字信号处理领域中?本文充分利用了TMS320VC5509A的以上优势,同时结合FPGA的并行控制能力,实现了体积小?功耗低的通用数字信号处理系统?

数据采集中英文文献

数据采集 数据采集是对现实世界抽样产生出可以由计算机操纵的数据,有时也把它缩写为DAS或者DAQ,数据采集和信号通常涉及到的信号波形采集和处理,以获得所需的信息。数据采集系统的组成部分包括的任何测量参数转换为电信号,然后调节电信号,然后再通过数据采集硬件获取相应数据的传感器。 使用厂商提供的软件,或自定义显示和控制,开发利用如BASIC,C,Fortran,Java,Lisp,Pascal各种通用编程语言把获得的数据显示,分析和存储在计算机中。为了构建大规模数据采集系统,使用了包括EPICS等专业的编程语言进行的数据采集。LabVIEW,内置了图形化工具和数据的采集和分析,它提供了图形化编程环境数据采集优化,并使用MATLAB作为其编程语言。 数据是如何取得 (1)来源 根据调查,数据采集是和物理现象或物体的物理性质一起开始的。这物理性质或现象,可能是根据温度或房间温度,强度或光源的强度变化而变化,内部的压力,迫使应用到一个对象,或许多其他事情。一个有效的数据采集系统可以测量这些不同性质或现象。 换能器是一种可以将电压,电流,电阻或电容值的变化等转换成相应的可测量的电信号的装置,数据采集系统衡量不同的物理现象的能力,取决于换能器把数据采集硬件采集到的可测量的物理现象转换成可测量信号。在DAQ系统中,传感器是感应器的代名词。不同的传感器有许多不同的应用,如测量温度,压力,或液体流动。数据采集还进行各种信号调理技术,将充分修改各种不同的电压,使之变为可以使用ADC测量的数字化电信号。 (2)信号 信号可能是数字信号(有时也称为逻辑信号)或使用不同的传感器进行模拟分析的结果。 如果从传感器得到的信号与数据采集硬件不兼容,信号调理就是非常必要的了。该信号可以被放大,或者可能需要过滤,或锁定放大器解调列入执行。 模拟信号容忍几乎没有串音等转换为数字数据,然后才接近一台PC或之前沿长电缆。对于模拟数据,具有很高的信噪比,信号需要非常高,同时派遣一个50欧姆的终端快速信号路径+ -10伏特,需要强大的驱动程序。 (3)数据采集硬件 数据采集硬件通常是与信号和PC接口。它可以从母板连接到计算机的端口(并行,串行,USB等..)或连接到插槽卡(PCI,ISA和PCI - E等..)。通常在一个PCI卡背面的空间太小,不能满足所有需要的连接的血药,所以外部的盒式是必需的。这之间的电缆盒和PC是昂贵的原因是许多的电线需屏蔽。 数据采集卡通常包含复用器,模数转换,数模转换,与TTL印务局,高速定时器,RAM等多个组件。这些都可以通过由一个可以运行小程序的总线的微控制器进行

相关文档
最新文档