热工学实验5

热工学实验5
热工学实验5

学生:

实验5 压气机性能实验

活塞式压气机是通用的机械设备之一,其工作原理是消耗机械能(或电能)而获得压缩气体。压气机的压缩指数和容积效率等都是衡量其性能先进与否的重要参数。本实验是利用微机对压气机的有关性能参数进行实时动态采集,经计算处理、得到展开的和封闭的示功图。从而获得压气机的平均压缩指数、容积效率、指示功、指示功率等性能参数。

一、实验目的

1.掌握指示功、压缩指数和容积效率的基本测试方法;

2.对使用微机采集、处理数据的全过程和方法有所了解。

二、实验装置及测量系统

本实验仪器装置主要由:压气机、电动机及测试系统所组成。

测试系统包括:压力传感器、动态应变仪、放大器、计算机及打印机,见图5—1。

压气机型号:Z—0.03/7

汽缸直径:D=50mm 活塞行程: L=20mm

连杆长度:H=70mm,转速:n=1400转/分

图5—1 压气机实验装置及测试系统

为了获得反映压气机性能的示功图,在压气机的汽缸头上安装了一个应变式压力传感器,供实验时汽缸内输出的瞬态压力信号。该信号经桥式整流后,送至动态应变仪放大。对应着活塞上止点的位置,在飞轮外侧粘贴着一块磁条,从电磁传感器上取得活塞上止点的脉冲信号,作为控制采集压力的起止信号,以达到压力和曲柄传角信号的同步。这二路信号经放大器分别放大后,送入A/D板转换为数值量,然后送至计算机,经计算处理便得到了压气机工作过程中的有关数据及展开的示功图和封闭的示功图。见图5—2及图5—3。

图 5—2 封闭的示功图图 5—3 展开的示功图

根据动力学公式,活塞位移量x 与曲柄转角a 有如下关系:

-=1(R x )2cos 1(4

)cos a a -+

λ

(5-1)

式中:

λ=R/L

R ——曲柄半径; H ——连杆长度; a ——曲柄转角。

三、实验原理

1.指示功和指示功率

指示功:活塞压气机进行一个工作过程,活塞对气体所作的功,记为L i 。显然功量就是P —V 图上工作过程线所包围的面积。其纵坐标是以线段长度表示的压力值,而横坐标则表示活塞的位移量,经测面仪测量和计算才能得到功的数值,即:

L i =S ×K 1×K 2×10-5

(kgf-m) (5-2) 式中:

S ——由测面仪测定的面积值 (mm 2

);

K 1——单位长度代表的容积 (mm 3

/mm) ;

gb

LD k

42

1

π=

式中: L ——活塞行程(mm );

gb ——活塞行程的线段长度(mm );

K 2——单位长度代表的压力 (at/mm);

fe

p

k

d

1

2

-=

式中: p ——工作时的表压力(at);

fe ——表压力在纵坐标图上对应的高度(mm);

指示功率:单位时间内活塞对气体所作的功,记为N i 。用下式表示:

N i =L i ×n/102×60 (KW) (5-3)

式中:n —— 转速(转/分)

2.平均多变压缩指数

压气机的实际压缩过程介于定温压缩与定熵压缩之间,过程指数在压缩过程中不断变化,根据压气机的理论轴功和气体压缩功的关系,可以求得平均的多变指数,记为n 0。

?

?-

=

21

2

10

pdv

vdp

n

(5-4)

在P—V示功图上:即为压缩过程线与纵坐标围成的面积同压缩过程线与横坐标围成的面积之比。即:

围成的面积

由围成的面积

由cdabc cdefc n

=

(5-5)

3. 容积效率(

η

c

根据热力学定义:

工作容积

有效吸气容积

=

η

c

(5-6)

在P—V示功图上:即为有效吸气线段长度与活塞行程线段长度之比。即:

gb

hb

c

(5-7)

四、实验步骤

1. 接通所有测试仪器设备的电源。

2. 把采集、处理数据的软件调入计算机。

3. 启动压气机,调好排气量,待压气机工作稳定后,计算机开始采集数据,经过计算机处理,得到了展开的和封闭的始功图。

4. 用测面仪测量封闭示功图的面积。

5. 分别测量压缩过程线与横坐标及纵坐标包围的面积。

6. 用尺子量出有效吸气线段hb 的长度和活塞行程线段gb 的长度。

五、实验报告要求 1. 简述实验目的与原理。

2.记录计算机采集各种数据的理论值,填入在表5-1中。 2. 根据示功图,得到示功图上的三个面积值及压力P d 值。

3. 计算指示功、指示功率、平均多变压缩指数、容积效率等实际值(要求计算过程)。

六、思考题

1. 为什么压缩过程的多变指数与膨胀过程的多变指数不相等?对于同一个过程(压缩或膨胀过程)的不同区段,为什么多变指数也不一样?

2. 当压气机工作时,其压缩指数变化范围是多少?在什么情况下,压气机耗功最省? 3.分析压气机工作压力的改变将对容积效率有何影响。

表5-1压缩机性能实验记录

大气压力

--bar

室温--℃湿度--%排气管内径--cm

1 2 3 4 5 6 7 8 9 10 11

项目储

压气机生产量示

吸气状态生产量

符号P2 Ng η

g

V3 f n V h

bar kW %m3/min cm2r/min m3/min

热力学实验.

工程热力学实验 一、热力设备认识 (时间:第7周周二3、4节;地点:工科D504) 一、实验目的 1. 了解热力设备的基本原理、主要结构及各部件的用途; 2. 认识热力设备在工程热力学中的重要地位、热功转换的一般规律以及热力设备与典型热力循环的联系。 二、热力设备在工程热力学课程中的重要地位 工程热力学主要是研究热能与机械能之间相互转换的规律和工质的热力性质的一门科学,这就必然要涉及一些基本的热力设备(或称热动力装置),如内燃机、制冷机、藩汽动力装置、燃气轮机等。了解这些热力设备的基本原理、主要结构、和各部件的功能,对正确理解工程热力学基本概念、基本定律十分必要。工程热力学中涉及的各循环都是通过热力设备来实现的,如活塞式内燃机有三种理想循环:定容加热循环、定压加热循环和混合加热循环;蒸汽动力装置有朗肯循环;燃气轮机有定压加热循环和回热循环;制冷设备有蒸汽压缩制冷循环、蒸汽喷射制冷循环等。卡诺循环则是由两个定温和两个绝热过程所组成的可逆循,具有最高的热效率,它指出了各种热力设备提高循环热效率的方向。因此,对这些热力设备的工作原理和基本特性有一个初步了解,对一些抽象概念有一个感性认识,能够加深对热力学基本定律的理解,掌握一些重要问题(如可逆和不可逆)的实质,有助于学好工程热力学这门课程。 三、各种热力设备的基本结构与原理 1.内燃机 内燃机包括柴油机和汽油机等,是-种重量轻、体积小、使用方便的动力机械。以二冲程柴油机为例,其基本结构如图1所示。

图1 内燃机结构图 内燃机的工质为燃料燃烧所生成的高温燃气。根据燃料开始燃烧的方式不同可分为点燃式和压燃式,点燃式是在气缸内的可燃气体压缩到一定压力后由电火花点燃燃烧;压燃式是气缸内的空气经压缩其温度升高到燃料自燃温度后,喷入适量燃料,燃料便会自发地燃烧。压燃式内燃机的工作过程分为吸气、压缩、燃烧、膨胀及排气几个阶段。吸气开始时进气门打开,活塞向下运动把空气吸入气缸。活塞到达下死点时进气门关闭而吸气过程结束。进气门和排气门同时关闭,活塞向上运动压缩气缸内空气,空气温度与压力不断升高,直到活塞到达上死点时,压缩过程结束。这时气缸内空气温度已超过燃料自燃温度,向气缸内喷入适量燃料,燃料便发生燃烧。燃烧过程进行的很快,接着是高温燃气发生膨胀,推动活塞向下运动带动曲轴作出机械功。活塞到达下死点时,排气门打开,气缸内的高温高压燃气通过排气门排至大气,活塞又向上运动将气缸内的剩余气体推出气缸,活塞到达上死点时排气过程结束,完成一个循环。当活塞再一次由上死点向下运动时重新开始一个循环。这样通过气缸实现了燃料的化学能变为热能,热能又变为机械能的过程。 汽油机的工作过程基本上与柴油机差不多,不同之处在于汽油机的汽油预先在化油器内蒸发汽化并和空气混合后一起吸入气缸,压缩过程结束后由电火花点燃燃烧。其它过程与柴油机完全相同。 内燃机是主要用在工程机械、船舶和航空等领域,以及海上采油平台用内燃机发电。 汽油机的总体构造分为基本机构和辅助系统,如图2所示。 基本机构包括: 曲柄连杆机构:气缸盖、气缸体、曲轴箱、活塞、连杆和曲轴,其功用是将燃料的热能

建筑物理复习(建筑热工学)

第一篇 建筑热工学 第1章 建筑热工学基础知识 1.室内热环境构成要素: 室内空气温度、空气湿度、气流速度和环境辐射温度构成。 2.人体的热舒适 ①热舒适的必要条件:人体内产生的热量=向环境散发的热量。 m q ——人体新陈代谢产热量 e q ——人体蒸发散热量 r q ——人体与环境辐射换热量 c q ——人体与环境对流换热量 ②充分条件:所谓按正常比例散热,指的是对流换热约占总散热量的25-30% ,辐射散热约为45-50%,呼吸和无感觉蒸发散热约占 25-30%。处于舒适状况的热平衡,可称之为“正常热平衡”。 (注意与“负热平衡区分”) ③影响人体热舒适感觉的因素: 1.温度; 2.湿度; 3.速度; 4.平均辐射温度; 5.人体新陈代谢产热率; 6.人体衣着状况。 3.湿空气的物理性质 ①湿空气组成:干空气+水蒸气=湿空气 ②水蒸气分压力:指一定温度下湿空气中水蒸气部分所产生的压力。 ⑴未饱和湿空气的总压力: w P ——湿空气的总压力(Pa ) d P ——干空气的分压力(Pa ) P ——水蒸气的分压力(Pa ) ⑵饱和状态湿空气中水蒸气分压力:s P ——饱和水蒸气分压力 注:标准大气压下,s P 随着温度的升高而变大(见本篇附录2)。表明在一定的大气压下,湿空气温度越高,其一定容积中所能容纳的水蒸气越少,因而水蒸气呈现出的压力越大。 ③空气湿度:表明空气的干湿程度,有绝对湿度和相对湿度两种不同的表示方法。 ⑴绝对湿度:单位体积空气所含水蒸气的重量,用f 表示(g/m 3)。 饱和状态下的绝对湿度则用饱和水蒸气量max f (g/m 3)表示。 ⑵相对湿度:一定温度,一定大气压力下,湿空气的绝对湿度f ,与同温同压下饱和水蒸气量max f 的百分比: ⑶同一温度(T 相对湿度又可表示为空气中 P ——空气的实际水蒸气分压力 (Pa

实验5

数据结构《实验5》实验报告 实验项目5:快速排序 回答问题完整、实验结果(运行结果界面及源程序,运行结果界面放在前面):

#include #include #define STUDENT EType #define KeyType int struct STUDENT { char number[10]; char name[10]; int age; char sex[10]; char place[10]; }; struct LinearList { EType *r; int length; int maxsize; }; void CreatLinearList(LinearList &L,int MaxListSize) {

L.maxsize=MaxListSize; L.r=new EType[L.maxsize]; L.length=0; } bool InputLinearList(LinearList &L) { int i,num; cout<<"请输入要存储元素的个数:"; cin>>num; L.length=num; cout<>L.r[i].age; return 1; } void OutputLinearList(LinearList &L) { for(int i=0;i=StandardKey) high--; r[low++]=r[high]; while(low<=high&&r[low].age<=StandardKey) low++; r[high--]=r[low]; } r[--low]=temp;

热工学实践实验报告

2016年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

数据库实验5实验报告

淮海工学院计算机工程学院实验报告书 课程名:《数据库原理及应用》 题目:数据库的完整性 班级:软件132 学号:2013122907 姓名:莹莹

一.目的与要求 1.掌握索引创建和删除的方法; 2.掌握创建视图和使用视图的方法; 3.掌握完整性约束的定义方法,包括primary key、foreign key等。 二.实验容 1.基于前面建立的factory数据库,使用T-SQL语句在worker表的“部门号”列上创建一个非聚集索引,若该索引已经存在,则删除后重建。 2.在salary表的“职工号”和“日期”列创建聚集索引,并且强制唯一性。 3.建立视图view1,查询所有职工的职工号、、部门名和2004年2月工资,并按部门名顺序排列。 4.建立视图view2,查询所有职工的职工号、和平均工资; 5.建立视图view3,查询各部门名和该部门的所有职工平均工资; 6.显示视图view3的定义; 7.实施worker表的“性别”列默认值为“男”的约束; 8.实施salary表的“工资”列值限定在0~9999的约束; 9.实施depart表的“部门号”列值唯一的非聚集索引的约束; 10.为worker表建立外键“部门号”,参考表depart的“部门号”列。 11.建立一个规则sex:性别=’男’ OR 性别=’女’,将其绑定到“性别”上; 12.删除上面第7、8、9和10建立的约束; 13.解除第11题所建立的绑定并删除规则sex。 三.实验步骤 1 USE factory GO --判断是否存在depno索引;若存在,则删除之 IF EXISTS(SELECT name FROM sysindexes WHERE name='depno') DROP INDEX worker.depno GO --创建depno索引 CREATE INDEX depno ON worker(部门号) GO EXEC sp_helpindex worker GO 2 USE factory GO --判断是否存在no_date索引;若存在,则删除之 IF EXISTS(SELECT name FROM sysindexes WHERE name='no_date') DROP INDEX salary.no_date GO --创建no_date索引

第一章建筑热工学基本知识习题

第一章建筑热工学基本知识习题 自己收集整理的 错误在所难免 仅供参考交流 如有错误 请指正!谢谢 第一篇建筑热工学 第一章建筑热工学基本知识 习题 1-1、构成室内热环境的四项气候要素是什么?简述各个要素在冬(或夏)季 在居室内 是怎样影响人体热舒适感的 答:(1)室内空气温度:居住建筑冬季采暖设计温度为18℃ 托幼建筑采暖设计温度为20℃ 办公建筑夏季空调设计温度为24℃等 这些都是根据人体舒适度而定的要求

(2)空气湿度:根据卫生工作者的研究 对室内热环境而言 正常的湿度范围是30-60% 冬季 相对湿度较高的房间易出现结露现象 (3)气流速度:当室内温度相同 气流速度不同时 人们热感觉也不相同 如气流速度为0和3m/s时 3m/s的气流速度使人更感觉舒适 (4)环境辐射温度:人体与环境都有不断发生辐射换热的现象 1-2、为什么说 即使人们富裕了 也不应该把房子搞成完全的"人工空间"? 答:我们所生活的室外环境是一个不断变化的环境 它要求人有袍强的适应能力 而一个相对稳定而又级其舒适的室内环境 会导致人的生理功能的降低 使人逐渐丧失适应环境的能力

从而危害人的健康 1-3、传热与导热(热传导)有什么区别?本书所说的对流换热与单纯在流体内部的对流传热有什么不同? 答:导热是指同一物体内部或相接触的两物体之间由于分子热运动 热量由高温向低温处转换的现象 纯粹的导热现象只发生在密实的固体当中 围护结构的传热要经过三个过程:表面吸热、结构本身传热、表面放热严格地说 每一传热过程部是三种基本传热方式的综合过程 本书所说的对流换热即包括由空气流动所引起的对流传热过程 同时也包括空气分子间和接触的空气、空气分子与壁面分子之间的导热过程 对流换热是对流与导热的综合过程 而对流传热只发生在流体之中 它是因温度不同的各部分流体之间发生相对运动 互相掺合而传递热能的 1-4、表面的颜色、光滑程度

第1章 《工程热力学》实验(第四版)

第一章 《工程热力学》实验 §1-1 二氧化碳临界状态及P-V-T 关系实验 一、实验目的和任务 目的: 1.巩固工质热力学状态及实际气体状态变化规律的理论知识,掌握用实验研究的方法和技巧。 2.熟悉部分热工仪器的正确使用方法(如活塞式压力计、恒温水浴等),加深对饱和状态、临界状态等基本概念的理解,为今后研究新工质的状态变化规律奠定基础。 任务: 1.测定CO 2的t v p --关系,在v p -坐标中绘出几种等温曲线,与标准实验曲线及克拉贝龙方程和范得瓦尔方程的理论计算值相比较并分析差异原因。 2.观察临界状态,测定CO 2的临界参数(c c c t v p 、、),将实验所得的c v 值与理想气体状态方程及范得瓦尔方程的理论计算值作一比较,简述其差异原因。 3.测定CO 2在不同压力下饱和蒸气和饱和液体的比容(或密度)及饱和温度和饱和压力的对应关系。 4.观察凝结和汽化过程及临界状态附近汽液两相模糊的现象。 二、实验原理 1.实际气体在压力不太高、温度不太低时,可以近似地认为理想气体,并遵循理想气体状态方程: mRT pV = (1) 式中 p ―绝对压力(Pa ) V ―容积(m 3) T ―绝对温度(K) m ―气体质量(kg) R ―气体常数, 2CO R =8.314/44=0.1889(kJ/kg ·K) 实际气体中分子力和分子体积,在不同温度压力范围内,这两个因素所引起的相反作用按规定是不同的,因而,实际气体与不考虑分子力、分子的体积的理想气体有一定偏差。1873年范得瓦尔针对偏差原因提出了范得瓦尔方程式: (2) 或 0)(2 3=+++-b av v RT bp pv (3) 式中 a ―比例常数, c c p RT a ) (272 =; 2 /v a ―分子力的修正项; RT b v v a p =-+))((2

实验5实验报告

学号:20164477 姓名:陈家凤 实验五SQL语言 一、目的与要求 1.掌握SQL语言的查询功能; 2.掌握SQL语言的数据操作功能; 3.掌握对象资源管理器建立查询、索引和视图的方法; 二、实验准备 1.了解SQL语言的查改增删四大操作的语法; 2.了解查询、索引和视图的概念; 3.了解各类常用函数的含义。 三、实验内容 (一)SQL查询功能 使用提供的studentdb数据库文件,先附加到目录树中,再完成下列题目,SQL命令请保存到脚本文件中。 1.基本查询 (1)查询所有姓王的学生的姓名、学号和性别 Select St_Name,St_Sex,St_ID From st_info Where St_Name like'王%' 图5-1 (2)查询全体学生的情况,查询结构按班级降序排列,同一班级再按学号升序, 并将结果存入新表new中 select*into new from st_info order by Cl_Name desc,st_ID asc

图5-2 (3)对S_C_info表中选修了“体育”课的学生的平均成绩生成汇总行和明细 行。(提示:用compute汇总计算) 因2014版本已不支持compute关键字,所以选择用其他方式。 Select c_no,score From s_c_info Where c_no=29000011 group by c_no,score 图5-3 2.嵌套查询 (1)查询其他班级中比“材料科学0601班”的学生年龄都大的学生姓名和年 龄 select st_name,born_date from st_info where cl_name!='材料科学0601班'and born_date<(select min(born_date) from st_info where cl_name='材料科学0601班')

工程热力学实验报告

水的饱和蒸汽压力和温度关系 实验报告

水的饱和蒸汽压力和温度关系 一、实验目的 1、通过水的饱和蒸汽压力和温度关系实验,加深对饱和状态的理解。 2、通过对实验数据的整理,掌握饱和蒸汽P-t关系图表的编制方法。 3、学会压力表和调压器等仪表的使用方法。 二、实验设备与原理 456 7 1. 开关 2. 可视玻璃 3. 保温棉(硅酸铝) 4. 真空压力表(-0.1~1.5MPa) 5. 测温管 6. 电压指示 7. 温度指示8. 蒸汽发生器9. 电加热器10. 水蒸汽11.蒸馏水12. 调压器 图1 实验系统图 物质由液态转变为蒸汽的过程称为汽化过程。汽化过程总是伴随着分子回到液体中的凝结过程。到一定程度时,虽然汽化和凝结都在进行,但汽化的分子数与凝结的分子数处于动态平衡,这种状态称为饱和态,在这一状态下的温度称为饱和温度。此时蒸汽分子动能和分子总数保持不变,因此压力也确定不变,称为饱和压力。饱和温度和饱和压力的关系一一对应。 二、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将调压器指针调至零位,接通电源。 3、将调压器输出电压调至200V,待蒸汽压力升至一定值时,将电压降至30-50V保温(保温电压需要随蒸汽压力升高而升高),待工况稳定后迅速记录水蒸汽的压力和温度。 4、重复步骤3,在0~4MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 5、实验完毕后,将调压器指针旋回至零位,断开电源。 6、记录室温和大气压力。

四、数据记录 五、实验总结 1. 绘制P-t关系曲线将实验结果绘在坐标纸上,清除偏离点,绘制曲线。

2011年热工学实践实验内容34解析

2012年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

关于建筑物理知识点

建筑热工学第一章:室内热环境 1.室内热环境的组成要素:室内气温、湿度、气流、壁面热辐射。 2.人体热舒适的充分必要条件,人体的热平衡是达到人体热舒适的必要条件。人体按正常比例散热是达到人体热舒适的充分条件。 对流换热约占总散热量的25%-30%, 辐射散热量占45%-50%, 蒸发散热量占25%-30% 3.影响人体热感的因素为:空气温度、空气湿度、气流速度、环境平均辐射温度、人体新陈代谢产热率和人体衣着状况。 4.室内热环境的影响因素: 1)室外气候因素 太阳辐射 以太阳直射辐射照度、散射辐射照度及用两者之和的太阳总辐射照度表示。水平面上太阳直射照度与太阳高度角、大气透明度成正比关系。散射辐射照度与太阳高度角成正比, 与大气透明度成反比。太阳总辐射受太阳高度角、大气透明度、云量、海拔高度和地理纬度等因素的影响。 空气温度 地面与空气的热交换是空气温度升降的直接原因,大气的对流作用也以最强的方式影响气温,下垫面的状况,海拔高度、地形地貌都对气温及其变化有一定影响。 空气湿度 指空气中水蒸气的含量。一年中相对湿度的大小和绝对湿度相反。 风 地表增温不同是引起大气压力差的主要原因 降水 2)室内的影响因素: 热环境设备的影响;其他设备的影响;人体活动的影响 5.人体与周围环境的换热方式有对流、辐射和蒸发三种。 6.气流速度对人体的对流换热影响很大,至于人体是散热还是得热,则取决于空气温度的高低。 7.影响人体蒸发散热的主要因素是作用于人体的气流速度和环境的水蒸气分压力。 8..热环境的综合评价: 1)有效温度:ET 依据半裸的人与穿夏季薄衫的人在一定条件的环境中所反应的瞬时热感觉作为决定各项因素综合作用的评价标准。 2)热应力指数:HSI 根据在给定的热环境中作用于人体的外部热应力、 不同活动量下的新陈代谢产热率及环境蒸发率等的理论计算 而提出的。当已知环境的空气温度、空气湿度、气流速度和平均辐射温度以及人体新陈代谢产热率便可按相关线解图求得热应力指标。 3)预计热感指数:PMV 人体蓄热量是空气温度、空气相对湿度、气流速度和平均辐射温度4个环境参数及人体新陈代谢产热率、皮肤平均温度、肌体蒸发率、所着衣热阻的函数。 9、城市区域气候特点: 1)大气透明度较小,削弱了太阳辐射;

C++程序设计实验报告5

《程序设计基础》 实验报告 学号:2016211990 姓名:王贯东 班级:16-计算机科学与技术-1班

学院:计算机与信息学院 实验五指针 1.实验目的要求 (1)掌握指针的概念,学会定义和使用指针变量。 (2)学会使用数组指针和指向数组的指针变量。 (3)学会使用字符串指针和指向字符串的指针变量。 (4)了解指向指针的指针的概念以及其使用方法。 (5)掌握指针、引用、数组做函数参数的传递机制。 (6)*学会使用指向函数的指针变量。 2.实验设备 Visual C++ 6.0 3.实验内容 (1)阅读下面程序,写出其运行结果。

<1> #include sub ( int x , int y , int *z ) { *z = y – x ; } void main( ) { int a,b,c; sub( 10 , 5 , &a ) ; sub( 7, a, &b ) ; sub( a, b, &c ) ; cout << a <<‘,’<< b <<‘,’<< c << endl ; } 解:输出-5,-12,-7 <2> #include #include void main()

{ int stre ( char[ ] ) ; char str [ 10 ] , *p = str ; gets ( p ) ; cout << stre ( p ) << endl ; } int stre ( char str[ ] ) { int num = 0 ; while( * ( str + num ) != ’\0’ ) num ++ ; return ( num ) ; } 解:题目库函数少了 。该正后,输入1234,输出4 (2)编写程序实现下列问题的求解。 (1)输入三个整数,按由小到大的顺序输出,然后将程序改为:输入三个字符串,按由小到大的顺序输出。 #include using namespace std; int turn (int *p1,int *p2)

工程热力学实验一

工程热力学实验一 二氧化碳临界状态观测及p-v-t关系测定实验 [实验目的] 1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。 2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。 3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。 [实验设备及原理] 整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。 图一试验台系统图 试验台本体如图二所示。其中:1—高压容器;2 —玻璃杯;3—压力机;4—水银;5—密封填料;6 —填料压盖;7—恒温水套;8—承压玻璃杯;9—CO2 空间;10—温度计。 对简单可压缩热力系统,当工质处于平衡状态 时,其状态参数p、v、t之间有: F(p,v,t)=0 或t=f(p,v) (1) 本实验就是根据式(1),采用定温方法来测定 CO2的p-v-t关系,从而找出CO2的p-v-t关系。 实验中,压力台油缸送来的压力由压力油传入高 压容器和玻璃杯上半部,迫使水银进入预先装了CO2 气体的承压玻璃管容器,CO2被压缩,其压力通过压 力台上的活塞杆的进、退来调节。温度由恒温器供给 的水套里的水温来调节。 实验工质二氧化碳的压力值,由装在压力台上的 压力表读出。温度由插在恒温水套中的温度计读出。 比容首先由承压玻璃管内二氧化碳柱的高度来测量, 而后再根据承压玻璃管内径截面不变等条件来换算 图二实验台本体 得出。 [实验内容] 1、测定CO2的p-v-t关系。在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。 2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,

实验5-RAID实验-实验报告

计算机系统结构实验报告 班 级 实验日期 实验成绩 姓 名 学号 实 验 名 称 计算机系统结构实验5(磁盘、固态盘仿真) 实 验 目 的 、 要 求 编译Disksim,测试单个磁盘的性能(Response time) 配置RAID0、RAID1、RAID5并做性能测试 探究性实验(2选1) 实 验 内 容 、 步 骤 及 结 果 一、编译D ISKSIM,测试单个磁盘的性能(R ESPONSE TIME) 测试某个磁盘,cheetah4LP.parv ../src/disksim cheetah4LP.parv cheetah4LP.outv validate cheetah4LP.trace 0 查看相应的outv文件,获取响应时间结果,使用grep命令得到 grep "IOdriver Response time average" cheetah4LP.outv 二、配置RAID0、RAID1、RAID5并做性能测试 (1)RAID5:为了方便对性能进行比较,进行如下的参数修改: 保存为synthraid5.parv,并进行测试 (2)RAID0:删除多余的generator 0 只留下一个,做如下更改:

保存为synthraid0.parv,并进行测试 (3)RAID1:删除多余的generator 0 只留下一个,做如下更改: 保存为synthraid1.parv,并进行测试 结论:通过测试我们可以发现在有效存储容量相同的情况下,RAID0使用的时间最少,速度最快。 三、探究性实验(2选1) 设计实验,任意选择其中一种RAID模式,分析验证其参数敏感性 参数包括盘数,条带大小。 ◎敏感性指:给定负载,其性能是否会随着参数变化而剧烈变化? ◎看上去完全没变化?注意负载强度是否足够。 这里我们选择RAID5模式进行测试。 (1)条带大小一定,磁盘数改变 此时(Stripe unit = 64,Parity stripe unit = 64) 磁盘个数7个8个9个10个11个 设备有效容量12336048 14392056 16448064 18504072 20560080 Synthetic结果21.657719 20.865686 20.332438 19.923599 19.728367 Financial结果2014.436976 1355.984474 1019.857911 882.827067 676.563854

(完整版)建筑热工学习题(有答案)-15

《建筑物理》补充习题(建筑热工学) 6. 把下列材料的导热系数从低到高顺序排列, n 、水泥膨胀珍珠岩 哪一组是正确的(B ) ?1、钢筋混凝土; (A) n 、v 、i 、w 、川 (B) v 、n 、 川、W 、I (C) i 、w 、川、n 、v (D) v 、n 、 W 、川、I 7.人感觉最适宜的相对湿度应为( ) (A) 30~70 % (B) 50~60% (C) 40~70% (D) 40~50% 8.下列陈述哪些是不正确的( ) A.铝箔的反射率大、黑度小 B.玻璃是透明体 C.浅色物体的吸收率不一定小于深颜色物体的吸收率 D.光滑平整物体的反射率大于粗糙凹凸物体的反射率 9.白色物体表面与黑色物体表面对于长波热辐射的吸收能力( )。 A.白色物体表面比黑色物体表面弱 B.白色物体表面比黑色物体表面强 C.相差极大 D.相差极小 10.在稳定传热状态下当材料厚度为 面积的导热量,称为( )。 1m 两表面的温差为 1 C 时,在一小时内通过 1m 2截 A. 热流密度 B.热流强度 C.传热量 D.导热系数 11. 下面列出的传热实例,( )不属于基本传热方式。 C. 人体表面接受外来的太阳辐射 D.热空气和冷空气通过 1. 太阳辐射的可见光,其波长范围是( A . 0.28~3.0 (B) 0.38~ 0.76 2. 下列的叙述,() )微米。 (C) 0.5~1.0 不是属于太阳的短波辐射。 (A)天空和云层的散射 (C)水面、玻璃对太阳辐射的反射 3. 避免或减弱热岛现象的措施,描述错误是( (A)在城市中增加水面设置 (C)采用方形、圆形城市面积的设计 4. 对于影响室外气温的主要因素的叙述中, (A)空气温度取决于地球表面温度 (C)室外气温与空气气流状况有关 5. 在热量的传递过程中, 量传递称为( )。 (A)辐射 (B)对流 (D) 0.5~2.0 (B)混凝土对太阳辐射的反射 (D)建筑物之间通常传递的辐射能 )。 (B)扩大绿化面积 (D)多采用带形城市设计 ()是不正确的。 (B)室外气温与太阳辐射照度有关 (D)室外气温与地面覆盖情况及地形无关 物体温度不同部分相邻分子发生碰撞和自由电子迁移所引起的能 (C)导热 (D)传热 ;川、平板玻璃;W 、重沙浆砌筑粘土砖砌体;V 、胶合板 A. 热量从砖墙的内表面传递到外表面 B. 热空气流过墙面将热量传递给墙面

热工学实验指导书

《热工学》实验指导书 高寿云编 南京工业大学城建学院 2011年10月5日

实验一、气体定压比热测定实验 气体定压比热的测定是工程热力学的基本实验之一。实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(湿空气)方面的基本知识。本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,以利于培养分析问题和解决问题的能力。 一、实验目的 1)了解气体比热测定基本原理和构思。 2)熟悉本实验中的测温、测压、测热、测流量的方法。 3)掌握由基本数据计算出比热值和比热公式的方法。 4)分析本实验产生误差的原因及减小误差的可能途径。 二、实验装置 1)整个装置由风机、流量计、比热仪本体、电功率调节及测量系统共四部分组成,如图一所示。 2)比热仪本体如图二所示。其中1一进口温度计;2一多层杜瓦瓶;3一电热器;4一均流网;5一绝缘垫;6一旋流片;7一混流网;8一出口温度计。 3)空气(也可以是其它气体)由风机经流量计送人比热仪本体,经加热、均流、旋流、混流、测温后流出。气体流量由节流阀控制,气体出口温度由输入电热器的电压调节。 4)该比热仪可测300℃以下气体的定压比热。 三、测量与计算 1)接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。 2)摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附近。测出流量计出口空气的干球温度( o t)和湿球温度(w t)。 3)将温度计插回流量计,调节流量,使它保持在额定值附近。逐渐提高电压,使出口温 度升高至予计温度C可以根据下式予先估计所需电功率: τt E ? ≈12。式中W为电功率(瓦); t?为进出口温度差(℃);τ为每流过10升空气所需时间(秒))。 4)待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据:每10升气体通过流量计所需时间(τ,秒);比热仪进口温度(t1,℃)和出口温度(t。,℃);当时应大气压力(B,毫米汞柱)和流量计出口处的表压(h ?,毫米水柱)。

建筑物理热工学复习整理

室内热环境: 室内热环境的组成要素:空气温度、空气湿度、空气流速、平均辐射温度 影响因素(重点掌握人体热舒适及其影响因素):空气温度、空气湿度、空气流速、壁面温度、新陈代谢率、衣服热阻。 室内热环境的评价方法和标准:单因素评价:空气温度:居住建筑室内舒适性标准:夏季26—28度,冬季18—20度;可居住性标准:夏季不高于30度,冬季不低于12度 多因素综合评价方法:有利于发挥各种热环境改善措施的作用,降低能源消耗和经济成本。有效温度(ET*) 热应力指数(HSI) 预计热感觉指数(PMV-PPD) 生物气候图 采暖期度日数:室内基准温度(18度)与当地采暖期室外平均温度的差值乘以采暖期天数得出的数值,单位度*天。 “制冷期度日数”(空调期度日数):当地空调期室外平均温度与室内基准温度(26度)的差值乘以空调期天数得出的数值,单位度*天。 室外热环境 室外热环境主要因素(重点):太阳辐射、空气温度、空气湿度、风、降水 太阳辐射:地球基本热量来源,决定地球气候的主要因素,直接决定建筑的得热状况…… 辐射量表征:太阳辐射照度(强度)和日照时数 直接辐射照度、间接辐射照度、总辐射照度 太阳辐射照度影响因素:太阳高度角、空气质量、云量云状,地理纬度海拔高度、朝向…… 太阳辐射特点:直接辐射:太阳高度角、大气透明度成正比关系 云量少的地方日总量和年总量都较大 海拔越高,直接辐射越强 低纬度地区照度高于高纬度地区 城市区域比郊区弱 间接辐射:与太阳高度角成正比,与大气透明度成反比 高层云的散射辐射照度高于低层云 有云天的散射辐射照度大于无云天 日照时数:可照时数、实照时数 日照百分率:实照时数/可照时数*100% 我国日照特点:日照时数由西北向东南逐步减少 四川盆地日照时数最低 一般在太阳能资源区划中有丰富区、欠丰富区、贫乏区 空气温度:气温是常用的气候评价指标,单位摄氏度、华氏度(F=32+1.8C) 气象学中所指的空气温度是距离地面1.5m高,背阴处空气的温度。测量空气温度必须避免太阳辐射的影响。 空气温度的主要影响因素:太阳辐射(迟滞效应) 地表状况(下垫面)大气对流作用

【建筑工程管理】工程热力学实验指导书

《工程热力学》实验指导书 喷管特性实验 一、实验目的 1、验证并进一步加深对喷管中气流基本规律的理解,树立临界压力、临界流速和最大流量等喷管临界参数的概念; 2、比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法; 3、明确在渐缩喷管中,其出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量。 二、实验装置 喷管实验台 1.进气管 2.空气吸气口 3.孔板流量计 4.U形管压差计 5.喷管 6.支架 7.测压探压针 8.可移动真空表 9.手轮螺杆机构10.背压真空表11.背压用调节阀12.真空罐13.软管接头 渐缩喷管 三、实验原理 1、喷管中气流的基本规律

,来流速度,喷管为渐缩喷管. 2、气流动的临界概念 当某一截面的流速达到当地音速(亦称临界速度)时,该截面上的压力称为临界压力()。临界压力与喷管初压()之比称为临界压力比,有: 当渐缩喷管出口处气流速度达到音速,通过喷管的气体流量便达到了最大值(),或称为临界流量。可由下式确定: 式中:—最小截面积(本实验台的最小截面积为:19.625 mm2)。 3、气体在喷管中的流动 渐缩喷管因受几何条件的限制,气体流速只能等于或低于音速();出口截面的压力只能高于或等于临界压力();通过喷管的流量只能等于或小于最大流量()。根据不同的背压(),渐缩喷管可分为三种工况: A—亚临界工况(),此时m<, B—临界工况(),此时m=, C—超临界工况(),此时m, 四、操作步骤

1、用“坐标校准器”调好“位移坐标板”的基准位置; 2、打开罐前的调节阀,将真空泵的飞轮盘车一至二圈。一切正常后,全开罐后调节阀,打开冷却水阀门。而后启动真空泵; 3、测量轴向压力分布:用罐前调节阀调节背压至一定值(见真空表读数),并记录;然后转动手轮,使测压探针向出口方向移动。每移动5mm便停顿下来,记录该点的位置及相应的压力值,一直测至喷管出口之外; 4、流量的测量:把测压探针的引压孔移至出口截面之外,打开罐后调节阀,关闭罐前调节阀,启动真空泵,然后用罐前调节阀调节背压,每次改变50mmHg柱,稳定后记录背压值和U形管差压计的读数。当背压升高到某一值时,U形管差压计的液柱便不再变化(即流量达到了最大值),此后尽管不断提高背压,但U形管差压计的液柱仍保持不变; 5、打开罐前调节阀,关闭罐后调节阀,让真空罐充气;3分钟后停真空泵并立即打开罐后调节阀,让真空泵充气(目的是防止回油),最后关闭冷却水阀门。

实验报告5答案

实验报告 课程名称:高级语言程序设计 实验五:循环结构程序设计 班级: 学生姓名: 学号: 专业: 指导教师: 学期:2010-2011学年上学期 云南大学信息学院

一、实验目的 1、理解循环的概念 2、理解并掌握循环结构相关语句的含义、格式及使用 3、学会循环的应用及控制,包括: ① 掌握使用循环输入多个数据的方法 ② 掌握在多个数据中有选择地输出数据的方法 ③ 掌握在多个数据中对某种数据进行计数的方法 ④ 掌握求多个数据中最大值、最小值的方法 ⑤ 掌握使用break 、continue 语句终止循环 4、掌握循环的嵌套 二、知识要点 1、循环变量、循环条件、循环体的概念 2、三种循环语句的一般格式、执行过程 3、理解选择结构与循环结构中“条件表达式”之不同含义 4、二重循环的执行过程 三、实验预习 (要求做实验前完成) 1、循环变量的主要用途是: 2、用循环求多个数的和之前,先要把和的初始值赋为: 3、用循环求多个数的乘积之前,先要把乘积的初始值赋为: 4、字符变量能否作为循环变量? 5、循环过程中,如果循环条件成立,但需要结束循环,可采用什么办法? 6、什么叫循环的嵌套? 四、实验内容 (要求提供:① 算法描述或流程图 ② 源程序 ) 1、编程,利用循环计算以下表达式的值: (5+52)*(4+42)*(3+32)*(2+22)*(1+12)*(1/2+1/3+1/4+1/5)(for 循环) 2、编程,从键盘输入若干个整数,当输入0时,输入停止。统计并输出总共输入了几个 数,以及所有输入数的和。(while 循环) 3、输入一行字符,分别统计其中的英文字母、数字、空格和其他字符的个数。 4、使用二重循环编程,绘制如下图形: *****A ****B ***C **D *E 5. 输入10个整数,输出最大值、最小值和平均分。 6. 编写程序,其功能是:根据以下公式求π的值(要求精度0.0005,即某项小于0.0005时停止迭代)。程序运行后,若输入精度0.0005,则程序应输出为3.14…。 () 1121231234121233535735793521n n π?????????=++++++?????????+………… 五、实验结果(要求写出运行界面及输出的运行结果)

热工学实验

实验十 渐缩(缩放)喷管内压力分布和流量测定 一、实验目的 1.验证并加深对喷管中的气流基本规律的理解,树立临界压力,临界流速,最大流量等喷管临界参数的概念,把理性认识和感性认识结合起来。 2.对喷管中气流的实际复杂过程有概略的了解。 3.通过渐缩喷管气流特性的观测,要明确:在渐缩喷管中压力不可能低于临界压力,流速不可能高于音速,流量仍不能大于最大流量。 4.根据实验条件,计算喷管(最大)流量的理论值,并与实侧值进行对比。 二、实验设备 本设备由2x 型真空泵,PG -Ⅲ型喷管(见图10-1)和计算机(控制与显示设备)构成。由于真空泵的抽吸,空气自吸气口2进入进气管1,流过孔板流量计3,流量的大小可以从U 型管压差计4读出。喷管5用有机玻璃制成,有渐缩、缩放两种型式(见图10-2、10-3),可根据实验要求,松开夹持法兰上的螺丝,向右推开进气管的三轮支架6,更换所需的喷管。喷管各截面上的压力是由插在其中,外径0.2mm 的测压探针连至可移动真空表8测得,探针的顶封死,中段开有测压小孔,摇动手轮——螺杆机构9,即可移动探针,从而改变测压小孔在喷管中的位置,实现对喷管不同截面的压力测量。在喷管的排气管上装有背压真空表10,排气管的下方为真空罐12,起稳定背压的作用,背压的高低用调节阀11调节。罐前的调节阀用作急速调节,罐后的调节阀作缓慢调节,为减少震动,真空罐与真空泵之间用软管13连接。 在实验中必须观测四个变量:(1)测压孔所在截面至喷管进口的距离x ;(2)气流在该截面上压力P ;(3)背压P b ;(4)流量m 。这些变量除可分别用位移指针的位置、移动真空表,背压真空表及 U 形管压差计的读数来显示读出外,还可分别用位移电位器、负压传感器、压差传感器把它们转换为电信号,由计算机显示并绘出实验曲线。位移电位器将在螺杆之旁,它实际上是一只滑杆变阻器。负压传感器和压差传感器分别装在真空表和U 形管压差计附近,其内部结构为一直流电桥,压力和压差改变时将改变电桥中两臂的电阻,从而获得电桥的不平衡电压输出。为了使这些传感器可靠而稳定地工作,都由直流稳压电源供电。 三、实验原理 1.喷管中气流的基本规律 气流在喷管中稳定流动后,喷管任何截面上的质量流量m 均相等,有连续性方程: M= 2 2 21 1 1C A C A AC υυυ = = =定值,[kg/s] (10-1) 式中:A —— 截面积[m 2] C —— 气体流速[m/ s] υ —— 气体比容[m 3/kg] 下标1—— 喷管进口 下标2——喷管出口 气体在喷管中作绝热膨胀,C 1<C 2,工质为理想流体时,喷管的理论流量可按下式计算: ])()[(121 1 22 12112 2 2 2k k k p p p p p k k A C A m +-?-== υυ (10-2) 式中: k —— 绝热指数,对于空气k=1.4 P 1 —— 喷管进口压力(初压) [N/ m 2] P 2 —— 喷管出口压力 [N/ m 2] 喷管中气体状态参数P 、υ和流动参数C 的变化规律和流通截面积A 的变化以及喷管

相关文档
最新文档