镍和铬在不锈钢中的主要作用

镍和铬在不锈钢中的主要作用
镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用

镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。

在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。

不锈钢是20世纪重要发明之一,经过近百年的研制和开发已形成一个有300多个牌号的系列化的钢种。在特殊钢体系中不锈钢性能独特,应用范围广,起其它特殊钢无法代替的作用,而不锈钢几乎可以涵盖其它任何一类特殊钢。

1 奥氏钢的演变

在发达国家,每年消耗的不锈钢中约有70%是奥氏体不锈钢,尽管我国消费水平不高,奥氏体不锈钢的消耗量也达到总消耗量的65%左右。所以看不锈钢牌号发展动向首先要看奥氏体不锈钢的动向。

早期的研究者已发现碳是造成奥氏体不锈钢晶界腐蚀损坏的主要原因,限于当时的冶金设备水平,很难将碳控制到0.03%以下,

最终想出了在钢中加入Ti和Nb,使其优先与碳反应,生成TiC 和NbC,将碳固定住的方法,防止碳在晶界析出生成Cr23C6,造成晶间腐蚀。由于Nb的成本很高,直到七十年代中期,含Ti 稳定化钢1Cr18Ni9Ti仍在不锈钢中占主导地位。

1Cr18Ni9Ti钢水粘稠,连铸坯表面质量很难过关。采用模铸,钢锭表面质量不好,必须进行剥皮修磨,成材率很低。成品钢材含有TiN夹杂,纯净度低,表面抛光性能差,拉细丝断头多。到了20世纪60年代末期,不锈钢冶炼技术取得了突破性进展,广泛采用AOD和VOD法炼钢,降低不锈钢中的碳不再歉鑫侍饬恕E贰⒚馈⑷盏裙ひ捣⒋锕 蚁群罂 ⒘艘幌盗械吞己统 吞几郑 琓i稳定化钢逐步被低碳和超低碳钢所取代。七十年代,美、日等国已将1Cr18Ni9Ti从标准中淘汰,尽管保留了0Cr19Ni11Ti(321)但其产量仅占总量的0.7~1.5%,顺利地完成了从含钛稳定化钢向低碳和超低碳钢的过渡。

我国不锈钢的生产与应用相对滞后,尽管1984年颁布国家标准GB1220-84《不锈钢棒》时,将1Cr18Ni9Ti列为不推荐使用牌号,但1Cr18Ni9Ti的主导地位并没有变化。直到1995年,随着国民经济的发展,特别是合资企业的介入,国内市场与国际市场逐步接轨,短短5~6年时间,我国奥氏体不锈钢已完成从含钛稳定化钢向低碳和超低碳钢的过渡。目前除少数传统产业仍使用1Cr18Ni9Ti外,304(0Cr19Ni9)和316(0Cr17Ni12Mo)已成为不锈钢的主导牌号。

2 以氮代碳,发展含氮不锈钢

在奥氏体不锈钢中氮和碳有许多共同特性,如增加奥氏体稳定性,能有效提高钢的冷加工强度等。提高碳含量会降低不锈钢的抗晶间腐蚀性能,氮与铬的亲和力要比碳与铬的亲和力小,奥氏体钢很少见到Cr2N的析出。因此,加适量的氮能在提高钢的强度和抗氧化性能的同时,不降低不锈钢的抗晶间腐蚀性能。以氮代碳,开发含氮不锈钢已成为热门话题。

氮在钢中的溶解度有限(<0.15%),加入铬和锰能提高其溶解度,加入镍和碳能减少其溶解度。在大气冶炼条件下,氮通常以Cr-N 或Mn-N合金形式加入钢中,但回收率很难准确控制,一般认为氮含量超过0.2%对冶炼操作极为不利。氩-氧精炼,加压电渣熔炼,平衡压力浇铸等技术的发展和应用,使准确控制钢中氮含量,用氮来控制钢中的组织成为现实。近期研究成果表明,适当调整不锈钢成分,特别是铬与锰的配比,能将钢中的氮含量稳定在0.4%左右,近年来,美国和日本标准(ASTM A580和JIS G4309)先后增加了304N(0Cr19Ni9N)、316N(0Cr17Ni12Mo2N)、XM-19(0Cr22Ni12Mn5Mo2N)、XM-31(1Cr18Mn15N)、XM-10(0Cr20Ni7Mn9N)、XM-11(00Cr20Ni7Mn9N)XM-28(1Cr18Ni2Mn12N)、XM-29(0Cr18Ni3Mn13N)和S28200(1Cr18Mn18MoCuN)共9个含氮牌号。

图1 奥氏钢的演变

3 开发和推广200系列不锈钢

二战期间镍供应严重不足,德国人首先研制出以锰一氮代替部分镍的不锈钢。20世纪50年代美国人因为同样理由,经深入研究,将锰一氮代镍钢定型,开发了高锰系列奥氏体不锈钢,即200系列不锈钢。

我国镍资源匮乏,铬资源也不丰富,以锰-氮代镍,开发和推广200系列不锈钢不仅可以降低不锈钢成本,还有深远的战略意义。印度在200系列不锈钢推广应用方面走在世界的前列,目前全世界200系列钢70%以上是印度生产的,值得我们借鉴。200(Cr-Mn-Ni)系列不锈钢常见牌号的化学成分如表1 。200系列钢以锰-氮代镍,材料成本显著降低。但降低镍后,为保持奥氏体组织必须有足够高的锰、碳和氮来增加镍当量,因此造成200系列钢具有以下特性:①固溶处理后的抗拉强度偏高,一般为800~1100Mpa,而且无法将抗拉强度降下来。②冷加工硬化率急剧上升,冷加工强化系数K>15,加工难度大,过程成本增加。③200系列钢具有优良的耐磨性能。④200系列钢弯曲成形、

冷镦和冲压性能较差。⑤传统的200系列钢,对晶间腐蚀很敏感,而且加稳定化元素也无法改变其敏感性。⑥部分钢(如205、2Cr15Mn15Ni2N等)由于其稳定奥氏体元素含量相对比304高,抗磁性能优于304。鉴于上述特性,201、202和205等钢丝主要用于制作弹簧、筛网和精密轴等。

表1 200(Cr-Mn-Ni)系列不锈钢化学成分

为提高200系列钢在各种介质中的耐蚀性能,改善钢的冷加工和冷顶锻性能,达到用200系列钢代替304的目标,近年来主要从以下几方面着手开发新牌号。①以氮代替碳,稳定奥氏体、在提高强度同时提高耐蚀性能,如204、211、216。②适量添加Mo、Nb等元素,改善钢的抗点蚀、晶间腐蚀和抗应力腐蚀性能,如216、223。③加铜降低钢的冷加工硬化率,改善冷顶锻和冷成形性能,如204Cu、211、223。美国冶金学家、ASTM会员约翰o迈杰,用204Cu代替304的研究成果尤其令人鼓舞。

迈杰在改型201(C=0.03%、Mo=0.2%)钢基础上分别添加1%、2%和3%的铜,发现随Cu含量增加钢的屈服强度和抗拉强度稳步下降,如表2 。

表2 铜对改型201力学性能的影响

204Cu由于含3%Cu,软化处理后的抗拉强度已与304接近,但其冷加工硬化率显著降低。从图2可以看出,冷拉减面率≤45%时,204Cu的冷加工硬化趋势基本与304和304FQ(304M)相近,减面率>45%时,204Cu的冷加工硬化率明显低于304。取304、204Cu和改型201钢丝(ф3.5mm)在同样条件下进行冷顶锻试验试

图2 204Cu与304冷加工硬化趋势对比验结果如表3 。(作者注:1Ksi=0.0069Mpa)

表表3 冷顶锻试验结果

注:Φ3.5mm钢丝经多道次模具冲顶成形,螺栓头部直径为钢丝的3.5倍。每个牌号取数百个螺栓,肉眼检查头部裂纹状况。/p>

从表3 可以看出,改型201加3%Cu后,耐盐雾腐蚀和冷成形能力有了根本性的改善。204Cu冷顶锻成形性能优于304,耐盐雾腐蚀能力与304相当。

进一步试验已证明,在5种常见酸性介质中,204Cu的耐腐蚀

性能优于304,如表4 。

表4 204Cu与304耐蚀性能比较

注:试验温度从0℃,每次升5℃,逐步上升到全部试样出现浸蚀裂纹的温度-25℃为止。*不产生浸蚀裂纹的最高温度。

综上所述,204Cu与304相比,抗拉强度和屈服强度高,冷加工硬化率低,冷成形性能好;在各种腐蚀环境中的耐蚀性能优于,至少是相当于304;再加上200系列钢固有的耐磨损、材料成本低等优势,204Cu完全有可能取代304成为通用不锈钢。美国近年来在电子、通讯、安全防护、食品加工、能源和烟草加工行业,大力推广204Cu,成效显著。

4 超级铁素体不锈钢

铁素体不锈钢具有良好的耐蚀性能和抗氧化性能,其抗应力腐蚀性能优于奥氏体不锈钢,价格比奥氏体不锈钢便宜,但存在可焊性差、脆性倾向比较大的缺点,生产和使用受到限制。二十世纪

60年代初期的研究已经证明,铁素体钢的高温脆性、冲击韧性、可焊性都与钢中的间隙元素含量有关,通过降低钢中的碳和氮的含量,添加钛、铌、锆、钽等稳定化元素,添加铜、铝、钒等焊缝金属韧化元素3种途径,可以改善铁素体钢的可焊性和脆性。铁素体按C+N含量可以分为不同级别:

C+N>0.03% 为常规铁素体不锈钢,表示为0Cr;

C+N≤0.03% 为超低碳铁素体不锈钢,表示为00Cr;

C+N≤0.02% 为高纯铁素体不锈钢,表示为000Cr;

C+N≤0.01% 为超纯铁素体不锈钢,表示为0000Cr

国外一些企业已经用AOD熔炼或真空熔炼加电子束精炼的方法生产出含氮低于90ppm,碳和氮总量在110~120ppm范围内的高纯铁素体钢。我国已研制出000Cr18Mo2Ti和000Cr30Mo2高纯铁素体钢.国内外近期研制成功的超级铁素体钢化学成分如表5。

表表5 超级铁素体钢的化学成分(wt%)

美国标准ASTMA493-88已经纳入XM-27(000Cr26Mo)、S44700(000Cr29Mo3)和S44800(000Cr29Ni2Mo3)3个超纯铁素体牌号,其化学成分如表6。

表6 ASTMA493中超纯铁素体钢化学成分wt%

5 超级奥氏体钢

超级奥氏体钢指Cr、Mo、N含量显著高于常规不锈钢的奥氏体钢,其中比较著名的是含6%Mo的钢(254SMo),这类钢具有非常好的耐局部腐蚀性能,在海水、充气、存在缝隙、低速冲刷条件下,有良好的抗点蚀性能(PI≥40)和较好的抗应力腐蚀性能,是Ni基合金和钛合金的代用材料。超级奥氏体钢的化学成分如表7。

表7 超级奥氏体钢的化学成分

注:①点蚀指数PI =Cr%+3.3Mo%+30N%。②临界缝隙腐蚀温

度CCT = -(45±5)+11Mo%。

超级奥氏体不锈钢热加工难度较大,一般认为杂质和低熔点金属在晶界富集、沉淀是造成奥氏体钢热脆性的主要原因,控制Mn≈0.5%、Cu≤0.7%、Si≤0.30%、S≤0.005%、Bi≤5×10-6、Pb≤15×10-6有利于热加工。超级奥氏体钢的冷加工性能良好,其抗拉强度偏高,与一般奥氏体钢相比,要达到相同的软化效果,固溶温度应提到1150~1200℃。

6 超马氏体不锈钢

传统的马氏体不锈钢2~4Cr13和1Cr17Ni2缺乏足够的延展性,在冷顶锻变形过程中对应力十分敏感,冷加工成型比较困难。加之钢的可焊性比较差,使用范围受到了限制。为克服马氏体钢的上述不足,近年人们已找到一种有效途径:通过降低钢的含碳量,增加镍含量,开发了一个新系列合金钢--超马氏体钢。这类钢抗拉强度高,延展性好,焊接性能也得到改善,因此超马氏体钢又称为软马氏体钢或可焊接马氏体钢。

超马氏体钢的典型显微组织为低碳回火马氏体组织,这种组织具有很高的强度和良好的韧性。随镍含量和热处理工艺的变化,某些牌号的超马氏体钢显微组织中可能有10~40%的细小弥散状残余奥氏体,含铬16%的超马氏体钢中可能出现少量的δ铁素体。进一步改善超马氏体钢性能的途径是获得晶粒更细的回火马

氏体组织。

近年来,各国不锈钢生产企业在开发低碳、低氮超马氏体钢方面做了很大努力,生产出一批适用于不同用途的超马氏体不锈钢,几种典型的超马氏体钢化学成分如表8。

表8 典型超马氏体钢化学成分(wt%)

超马氏体钢的成分特点是在13%或17%Cr基础上降低C含量。(<0.03%或<0.025%)和S含量(<0.01%或<0.005%),增加Ni(4~6.5%)和Mo(最高2.5%)改善钢的焊接性能、韧性、耐蚀性能。为获得好的低温性能,减少甚至完全消除显微组织中的铁素体是极为重要的,随着对低温冲击性能要求加严(从-20℃降到-40℃)应选用Ni含量更高的牌号,同时在热加工过程应控制加热温度(<1250℃)和加热时间,防止产生高温δ铁素体相。一般说来超马氏体钢锻造性能优于同类马氏体钢,即使锻造温度偏低,也可以生产出无裂纹钢坯。br> 与马氏体钢相比,超马氏体钢盘条的强度、硬度和塑性均高出很多,并且无论是用完全退火还是球化退火的方法,都无法将盘条的强度(硬度)降到马氏体钢的水平。超马氏体推荐采用650℃左右,长时间保温,然后空冷的退火工艺来实现软化,盘条退火后虽然强度(硬度)高,但拉拔塑性很好(断面收缩率>40%),可以按常规工

艺拉拔。一般经过两个循环的退火拉拔,钢丝的抗拉强度可以降到950MPa以下。阿维斯塔·谢菲尔德公司生产的248SV (00Cr16Ni5Mo)钢淬回火成品的物理性能见表9。

表表9 248SV(00Cr16Ni5Mo)的物理性能

超马氏体钢含碳量低,加入一定量的Mo相当于提高了铬的当量,再加上Ni的配合,耐蚀性能,特别是在含二氧化碳和硫化氢介质中的耐蚀性能有很大的提高,现已在石油和天燃气开采、储运设备上得到广泛适用,在水力发电,采矿、化工及高温纸浆生产设备上也极具应用前景。br> 超马氏体钢丝主要用于制作压缩机和阀门的连杆及焊丝。人们越来越多的用超马氏体钢取代双相不锈钢,原因在于作为结构体用钢,超马氏体钢具备良好的耐蚀性能和低温冲击性,但其强度比双相钢高的多,制作零件可以减小壁厚,减轻重量,节约成本。作为焊丝用钢,目前多用双相不锈钢焊丝,焊后因焊缝成分与基体成分差别较大,极易出现不均匀腐蚀现象。使用超马氏体钢焊丝,焊缝同样不需经热处理直接使用,可以选配与基体更接近的成分,减轻不均匀腐蚀。更重要的是使用超马氏体钢代替双相钢材料成本可降低30%左右。

7 抗菌不锈钢

随着经济的发展,不锈钢在食品工业、餐饮服务业和家庭生活中的应用越来越广泛,人们希望不锈钢器皿和餐具除具有不锈、光洁如新的特点外,最好还具有防霉变、抗菌、杀菌功能,日本日新制钢为适应市场需求,已研制开发了一系列抗菌不锈钢。

众所周知,有些金属,如银、铜、铋等具有抗菌、杀菌效果,所谓抗菌不锈钢,就是在不锈钢中加入适量的具有抗菌效果的元素(如铜、银),生产出的钢材经抗菌性热处理后,具有稳定的加工性能和良好的抗菌性能。

铜是抗菌的关键元素,加多少既要考虑抗菌性,又要保证钢具有良好稳定的加工性能。铜的最佳加入量因钢种而异,日新制钢开发的抗菌不锈钢化学成分如表10,铁素体钢中加铜1.5%,马氏体钢中加铜3%,奥氏体钢中加铜3.8%。

表10 各类抗菌不锈钢的化学成分

研究表明:铜与细菌直接接触是抗菌杀菌的先决条件,为此抗菌不锈钢首先要进行热处理,使高浓度的铜从基体中析出,以ε-Cu 相均匀弥散分布。再经表面抛光处理,使ε-Cu暴露在金属表面,从而起抗菌作用。试验结果证明,铁素体和马氏体不锈钢对黄色葡萄球菌和大肠杆菌的减菌率为100%,奥氏体不锈钢的减菌率

99%。抗菌不锈钢使用一段时间后表面ε-Cu相枯竭时,抗菌性能就会降低,此时经抛光之类再加工,会重新形成含ε-Cu相的新表面,恢复原有的抗菌性能。

抗菌不锈钢与同类不锈钢相比,耐蚀性能有增无减,物理性能基本相当,力学性能稍有变化:铁素体钢的屈服强度与杯突稍有提高,其它性能大致相当;马氏体不锈钢屈服强度、抗拉强度和硬度均有明显提高,伸长率有所下降;奥氏体钢屈服强度和硬度稍有提高,其它性能相当。不锈钢中加入铜对热加工不利,对冷加工利大于弊。随着含铜量的增加热加工时要考虑降低加热温度,工艺操作不当极易造成钢坯角裂和表面裂纹。抗菌不锈钢与同类不锈钢相比,拉拔塑性和承受深度冷加工的能力明显改善,但马氏体钢强度(硬度)明显提高带来的模具损坏明显增多。奥氏体钢则随铜量的增加,奥氏体稳定性能提高,冷加工强化减缓,钢可承受更大加工率的冷加工,钢的冷墩和深冲性能大幅度提高,钢也由弱磁转变为无磁。

抗菌不锈钢具有不锈钢优点和良好的抗菌性能,投放市场以来很受欢迎,在厨房设备、食品工业的工作台及器皿、医疗器械、日常生活中的餐具及挂毛巾支架,冷藏柜的托架等领域全面推广使用,公共场所的一些设施如公交汽车的扶手、楼梯扶手、电话亭、护栏等为杜绝交叉感染也应试用抗菌不锈钢。钢丝行业应注重医疗器械用马氏体抗菌不锈钢丝,织网用奥氏体抗菌不锈钢丝和清洁球用铁素体抗菌不锈钢细丝的开发。

参考资料

1(美)DONALD PECKNE 主编,顾守仁等译, 《不锈钢手册》,机械工业出版社,1987年3月。

2陆士英等编, 《不锈钢》,原子能出版社,1995年9月。

3《国外钢丝标准译文集》,冶金工业部金属制品研究所,1986年10月。

4潘永村,不锈钢, 《钢铁材料设计与应用》。

5罗永赞,近代超级不锈钢的发展,《特殊钢》2000年第四期P5~7。

5张孝福,超马氏体不锈钢, 《不锈》1999年第5期。

7张孝福,抗菌不锈钢-介绍日本的新钢种, 《不锈》1998年第10期。

8 By John Magee, Development of Type 204Cu Stainless Steel,

a Low-Cost alternate to Type 304,《Wire Journal International》May 2002 P84~90.

9郝培钢,高锰低镍奥氏体不锈钢在广东,《世界金属导报》2003年8月5日第8版

不锈钢的种类:

不锈钢可以按用途、化学成分及金相组织来大体分类。

以奥氏体系类的钢由18%铬-8%镍为基本组成,各元素的加入量变化的不同,而开发各种用途的钢种。

1.以化学成分分类:

①.CR系列:铁素体系列、马氏体系列

②.CR-NI系列:奥氏体系列,异常系列,析出硬化系列。

2.以金相组织的分类:

①.奥氏体不锈钢

②.铁素体不锈钢

③.马氏体不锈钢

④.双相不锈钢

⑤.沉淀硬化不锈钢

不锈钢的定义:

在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,使用于多方面的钢铁的一

种,通常称为不锈钢。代表性能的有13铬钢,18-铬镍钢等高合金钢。

从金相学角度分析,因为不锈钢含有铬而使表面形成很薄的铬膜,这个膜隔离开与钢内侵入的氧气起耐腐蚀的作用。

为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬。我们通常看到和用到的是1Cr18Ni9Ti

关于不锈钢知识:

一、不锈钢热轧钢板

不锈钢热轧钢板是用热轧工艺生产的不锈钢钢板。厚度不大于3mm的为薄板,厚度大于3mm的为厚板。用于化工、石油、机械、船舶等行业制造耐蚀零件、容器和设备。其分类和牌号如下:

1.奥氏体型钢

(1)1Cr17Mn6Ni15N;(2)1Cr18Mn8Ni5N;(3)1Cr18Ni9;

(4)1Cr18Ni9Si3;(5)0Cr18Ni9;(6)00Cr19Ni10;(7)0Cr19Ni9N;

(8)0Cr19Ni10NbN;(9)00Cr18Ni10N;(10)1Cr18Ni12;(11)

0Cr23Ni13;(12)0Cr25Ni20;(13) 0Cr17Ni12Mo2;(14) 00Cr17Ni14Mo2;(15) 0Cr17Ni12Mo2N;

(16)00Cr17Ni13Mo2N;(17) 1Cr18Ni12Mo2Ti;

(18)0Cr18Ni12Mo2Ti;(19) 1Cr18Ni12Mo3Ti;(20) 0Cr18Ni12Mo3Ti;(21) 0Cr18Ni12Mo2Cu2;(22) 00Cr18Ni14Mo2Cu2;(23) 0Cr19Ni13Mo3;(24) 00Cr19Ni13Mo3;(25)0Cr18Ni16Mo5;(26) 1Cr18Ni9Ti;(27) 0Cr18Ni10Ti;(28) 0Cr18Ni11Nb;(29) 0Cr18Ni13Si4

2.奥氏体——铁素体型钢

(30)0Cr26Ni5Mo2;(31)00Cr18Ni5Mo3Si2;

3.铁素体型钢

(32)0Cr13Al;(33)00Cr12;(34)1Cr15;(35)1Cr17;

(36)1Cr17Mo;(37)00Cr17Mo;(38)00Cr18Mo2;

(39)00Cr30Mo2;(40)00Cr27Mo

4.马氏体型钢

(41)1Cr12;(42)0Cr13;(43);1Cr13;(44)2Cr13;(45)3Cr13;(46)4Cr13;(47)3Cr16;(48)7Cr17

5.沉淀硬化型钢

(49)0Cr17Ni7Al

二、不锈钢冷轧钢板

不锈钢冷轧钢板是用冷轧工艺生产的不锈钢钢板,厚度不大于

3mm的为薄板,厚度大于3mm的为厚板。用于制作耐腐蚀部件,石油、化工的管道、容器、医疗器械、船舶设备等,其分类和牌号如下:

1.奥氏体型钢

除与热轧部分相同外(29种),还有:(1)2Cr13Mn9Ni4(2)1Cr17Ni7(3) 1Cr17Ni8

2.奥氏体——铁素体型钢

除与热轧部分相同外(2种),还有:(1)1Cr18Ni11Si4AlTi(2) 1Cr21Ni5Ti

3.铁素体型钢

除与热轧部分相同外(9种),还有:00Cr17

4.马氏体型钢

除与热轧部分相同外(8种),还有1Cr17Ni2

5.沉淀硬化型钢:同热轧部分

三、铁素体、奥氏体、马氏体简介

大家知道固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原

各元素在高速钢中的作用

高速工具钢主要用于制造高效率的切削刀具。由于其具有红硬性高、耐磨性好、强度高等特性,也用于制造性能要求高的模具、轧辊、高温轴承和高温弹簧等。高速工具钢经热处理后的使用硬度可达HRC63以上,在600℃左右的工作温度下仍能保持高的硬度,而且其韧性、耐磨性和耐热性均较好。退火状态的高速工具钢的主要合金元素有多、钼、铬、钒,还有一些高速工具钢中加入了钴、铝等元素。这类钢属于高碳高合金莱氏体钢,其主要的组织特征之一是含有大量的碳化物。铸态高速工具钢中的碳化物是共晶碳化物,经热压力加工后破碎成颗粒状分布在钢中,称为一次碳化物;从奥氏体和马氏体基体中析出的碳化物称为二次碳化物。这些碳化物对高速工具钢的性能影响很大,特别是二次碳化物,其对钢的奥氏本晶粒度和二次硬化等性能有很大影响。碳化物的数量、类型与钢的化学成分有关,而碳化物的颗粒度和分布则与钢的变形量有关。钨、钼是高速工具钢的主要合金元素,对钢的二次硬化和其他性能起重要作用。铬对钢的淬透性、抗氧化性和耐磨性起重要作用,对二次硬化也有一定的作用。钒对钢的二次硬化和耐磨性起重要作用,但降低可磨削性能。 高速工个钢的淬火温度很高,接近熔点,其目的是使合金碳化物更多的溶入基体中,使钢具有更好的二次硬化能力。高速工具钢淬火后硬度升高,此为第一次硬化,但淬火温度越高,则回火后的强度和韧性越低。淬火后在350℃以下低温回火硬度下降在350℃以上温度回火硬度逐渐提高,至520~580℃范围内回火(化学成分不同,回火温度不同)出现第二次硬度高峰,并超过淬火硬度,此为二次硬化。这是高速工具钢的重要特性。 高速工个钢除了具有高的硬度、耐磨性、红硬性等使用性能外,还具有一定的热塑性、可磨削性等工艺性能。 多系高速工具钢主要合金元素是钨,不含钼或含少量钼。其主要特性是过热敏感性小,脱碳敏感性小、热处理和热加工温度范围较宽,但碳化物颗粒粗大,分布均匀性差,影响钢的韧性和塑性。 钨钼系高速工具钢的主要合金元素是钨和钼。其主要特性是碳化物的颗粒度和分布均优于钨系高速工具钢,脱碳敏感性和过热敏感性低于钼系高速工具钢,使用性能和工艺性能均较好。钼系高速工具钢的主要合金元素是钼,不含钨或含少量钨。其主要特性是碳化物颗粒细,分布均匀、韧性好,但脱碳敏感性和过热敏感性大、热加工和热处理范围窄。 含钻高速工具钢是在通用高速工具钢的基础上加入一定量的钴,可显著提高钢的硬度、耐磨性和韧性。 粉末高速工具钢是用粉末冶金方法产生的。首先用雾化法制取低氧高速工具钢预合金粉末,然后用冷、热静压机将粉末压实成全致密的钢坯,再经锻、轧成材。粉末高速工具钢的碳化物细小、分布均匀,韧性、可磨削性和尺寸稳定性等均很好,可生产用铸锭法个可能产生更高合金元素含量的超硬高速工具钢。粉末高速工具钢可分为3类,第一类是含钴高速工具钢,其特点是具有接近硬质合金的硬度,而且还具有良好的可锻性、可加工性、可磨性和强韧性。第二类是无钴高钨、钼、钒超硬高速工具钢。第三类是超级耐磨高速工具钢。其硬度不太高,但耐磨性极好,主要用于要求高耐磨并承受冲击负荷的工作条件。 Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性

(整理)镍在不锈钢中作用

镍在不锈钢中作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有

4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400 系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。 300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,

镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。 300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。 不锈钢是20世纪重要发明之一,经过近百年的研制和开发已形成一个有300多个牌号的系列化的钢种。在特殊钢体系中不锈钢性能独特,应用围广,起其它特殊钢无法代替的作用,而不锈钢几乎可以涵盖其它任何一类特殊钢。 1 奥氏钢的演变 在发达国家,每年消耗的不锈钢中约有70%是奥氏体不锈钢,尽管我国消费水平不高,奥氏体不锈钢的消耗量也达到总消耗量的65%左右。所以看不锈钢牌号发展动向首先要看奥氏体不锈钢的动向。 早期的研究者已发现碳是造成奥氏体不锈钢晶界腐蚀损坏的主要原因,限于当时的冶金设备水平,很难将碳控制到0.03%以下,

钼和铜在不锈钢中的作用

钼和铜在不锈钢中的作用 钼和铜可以提高不锈钢的耐蚀性能。304不锈钢的钝化作用是在氧化性介质中形成的,通常所说的耐腐蚀,多指氧化介质而言。在非氧化性酸中,如稀硫酸和强有机酸中,一般铬不锈钢、铬镍不锈钢均不耐蚀。特别是在含有氯离子(Cl)的介质中,由于氯离子能破坏不锈钢表面的钝化膜,造成不锈钢局部地区的腐蚀,即点腐蚀。在不锈钢中加人钼和铜是提高不锈钢在非氧化性介质中抗蚀性能的有效途径。 钼能促使304不锈钢表面钝化,具有增强不锈钢抗点腐蚀和缝隙腐蚀的能力.铁素体不锈钢中如果不含钼,铬含量再高也很难获得满意的抗点蚀性能,但只有在含铬钢中钼才能发挥作用。一般来说,铬含量越高,翎提高钢耐点蚀性能效果越明显。研究表明,铝提高耐点蚀性能的能力相当于铬的3倍。1Crl7钢中加入1%的钼(1Cr17Mo)可使其在有机酸和盐酸中的耐腐蚀性能明显提高。18-8铬镍钢中加人1.5%-4.0%的钼,可以提高其在稀硫酸、有机酸(醋酸、蚁酸、草酸)、硫化氢、海水中的耐蚀性能。 铝是形成铁素体的元素,因此,钼和铜可以提高304不锈钢的耐蚀性能。304不锈钢的钝化作用是在氧化性介质中形成的,通常所说的耐腐蚀,多指氧化介质而言。加钼后,为保持纯奥氏体组织,镍含量也要相应提高。加钼后,304不锈钢https://www.360docs.net/doc/b116173434.html,的镍含量一般提高至12%以上,如OCrl7Nil2Mo2和OOCr17Nil4Mo2。

钼能改善奥氏体不锈钢的高温力学性能,见表12-4。在马氏体不锈钢中加人0.5%-4.0%的钼可以增加钢的回火稳定性。钼在不锈钢中还能形成沉淀析出相,提高钢的强度,如沉淀硬化型不锈钢中加人钢可提高不锈钢在硫酸中的耐蚀性能。含铜不锈钢钢水流动性较好,容易铸成高质量的部件。铜还能提高不锈不锈钢OCr17Ni5Mo3。钢的冷加工性能,如OCr18Ni9Cu3多作为冷顶锻钢使用。

镍在不锈钢中起到的作用

镍在不锈钢中的作用 伦镍在不锈钢中的具体作用,在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。 普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代

替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201不锈钢中,只含有4.5% 的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。 430不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。 304不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。 信用行不锈钢网购平台https://www.360docs.net/doc/b116173434.html,讯。

各种元素在不锈钢中所起的作用

各种元素在不锈钢中所起的作用: 碳钢一般是铁碳系的,元素一般有C、Fe、Mn、Si、S、p。 不锈钢一般是铬(Cr)或铬镍(Cr-Ni)系的。不过不锈钢也分铁素体不锈钢、奥氏体不锈钢、马氏体不锈钢、双相不锈钢等。 马氏体不锈钢一般Cr含量为13%左右,铁素体不锈钢一般Cr含量为17%左右。用的比较多的是奥氏体不锈钢,也就是Cr-Ni系的。用的较多的有304、308、316等等。 合金元素的影响: Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性 4、磁钢中的主要合金元素(含量在0.40%范围内时,改善热裂倾向,含量高时,易形成柱状晶,增加热裂倾向。) Cr 1、在低合金范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的耐热性 4、在高合金范围内,使钢具有对强氧化性酸类等腐蚀介质的耐腐蚀能力 Mo 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的耐热性和高温强度 Ni 1、提高钢的强度,而不降低其塑性,改善钢的低温韧性 2、降低钢的临界冷却速度,提高钢的淬透性 3、扩大奥氏体区,是奥氏体化的有效元素 4、本身具有一定耐蚀性,对一些还原性酸类有良好的耐蚀能力 Al 1、炼钢中起良好的脱氧作用 2、细化钢的晶粒,提高钢的强度 3、提高钢的抗氧化性能,提高不锈钢对强氧化性酸类的耐蚀能力

铬镍不锈钢焊条简明表

铬镍不锈钢焊条简明表 牌号 GB 标准 AWS 标准 药皮类型 焊接 电源 主要用途 A002 E308L-16 E308L-16 钛钙型 AC 、DC+ 用于焊接超低碳Cr19Ni10不锈钢结构,也可用于 0Cr19Ni11Ti 工作温度低于 300℃耐腐蚀的不锈钢结 构,主要用于合成纤维、化肥、石油等设备的制造。 A022 E316L-16 E316L-16 钛钙型 AC 、 DC+ 用于焊接尿素、合成纤维等设备及相同类型的不锈钢 结构,也可用于焊后不能进 行热处理的铬不锈钢及复合钢、异种钢等。 A022Mo E317L-16 E317L-16 钛钙型 AC 、DC+ 用于超低碳00Cr18Ni12Mo3 不锈钢,也可用于焊后不能 进行热处理的铬不锈钢及 复合钢和异种钢的焊接。 A032 E317MoCuL-16 钛钙型 AC 、 DC+ 由于焊缝中含有Mo 和Cu ,在硫酸介质中具有较高的抗腐蚀性能,用于焊接合成 纤维等设备在稀、中浓度硫 酸介质中工作的同类型低碳不锈钢结构,也可焊接Cr10Si3耐酸钢。 A042 E309MoL-16 E309MoL-16 钛钙型 AC 、 DC+ 用于相同类型的超低碳不 锈钢材料(如尿素合成塔衬 里)及异种钢焊接等。 A052 钛钙型 AC 、 DC+ 用于化学耐硫酸、醋酸、磷酸的反应器、分离器,同时 可用于抗海水腐蚀用钢 (00Cr18Ni24Mo5)以及异种钢的焊接。 A062 E309L-16 E309L-16 钛钙型 AC 、DC+ 用于合成纤维、石油化工等设备制造的相同类型的不 锈钢结构、复合钢和异种钢 等构件,也可用于核反应 堆、压力容器内壁过渡层堆焊和塔内构件焊接。 A101 E308-16 E308-16 钛型 AC 、 DC+ 用于工作温度低于300℃的Cr19Ni9及Cr19Ni11Ti 的 不锈钢薄板结构的焊接。 A102 E308-16 E308-16 钛钙型 AC 、DC+ 用于焊接工作温度低于 300℃的耐腐蚀的0Cr19Ni9

元素对奥氏体不锈钢的影响

在奥氏体不锈钢中,有碳、铬、锰、硅、硫、磷、钼、氮、钛、铌、镍、铜、硼、铈、镧等元素组成.每种元素对奥氏体不锈钢的影响如下 1.碳的影响: 碳在奥氏体不锈钢中是强烈形成并稳定奥氏体且扩大奥氏体区的元素,碳形成奥氏体的能力为镍的30倍.钢中随着含碳量增加,奥氏体不锈钢强度也随之提高.此外,还能提高奥氏体不锈钢在高浓氯化物(如42%MgCl2沸腾溶液)中的耐应力腐蚀性能.但是在奥氏体不锈钢中,碳通常被视为有害元素,因为在焊接或加热到450度到850度,碳可以和钢中的铬形成Cr23C6型碳化物.导致局部铬贫化,使钢的耐晶间腐蚀性能下降.20世纪60年代以来新发展的铬镍奥氏体不锈钢,为含碳量小于0.03%或0.02%的超低碳型不锈钢.因此,在冷、热加工及焊接与碳弧气刨时应防止不锈钢表面增碳,以免铬的碳化物析出. 2.铬的影响: 在奥氏体不锈钢中,铬是强烈形成并稳定铁素体的元素,可以缩小奥氏体区.在铬镍奥氏体不锈钢中,当碳含量为0.1%,铬含量为18%时,为获得稳定单一奥氏体组织,所需镍的含最最低为8%,铬能增大碳的溶解度而降低铬的贫化度,因而提高铬含量对奥氏体不锈钢的耐晶间腐蚀是有益的.铬还能极有效地改善奥氏体不锈钢的耐点蚀及缝隙腐蚀性能.因此铬对奥氏体不锈钢性能影响最大的是耐蚀性.铬可提高

钢的耐氧化性介质和酸性氯化物介质的性能,在镍、钼、铜的复合作用下,铬可提高钢耐一些还原性介质、如有机酸、碱介质的性能. 3.镍的影响: 奥氏体不锈钢中主要合金元素镍,其主梌用是形成并稳定奥氏体,获得完全奥氏体组织,使强有良好的强度、塑性和韧性并具有优良的冷、热加工性、可焊性及低温与无磁性,镍还可以显著降低奥氏体不锈钢的冷加工硬化倾向.由于镍能改善铬的氧化膜成份、结构和性能,从而提高奥氏体不锈钢耐氧化性介质的性能.但是降低了钢的抗高温硫化性能,这是由于钢中晶界处形成低熔点硫化镍所致. 4.钼的影响: 钼的作用主要是提高钢在还原性介质(比如H2So4、H2PO4以及一些有机酸和尿素环境)的耐蚀性,并提高钢的耐点蚀及缝隙腐蚀等性能.含钼不儿钢的热加工性比不含钼的差,钼含量越高,热加工越坏.另外含钼奥氏体不锈钢中容易形成X(σ)沉淀,这会恶化钢的塑性和韧性.钼的耐点蚀和耐缝隙腐蚀能力相当于铬的3倍左右. 5.氮的影响: 氮日益成为铬镍氮奥氏体不锈钢的重要合金元素,氮能提高钢的耐局部腐蚀(耐晶间腐蚀、点蚀和缝隙腐蚀)性,氮形成奥氏体的能力与碳相当,约为镍的30倍.作为间隙元素的氮,其固溶强化作用很强,因

Ni元素在不锈钢中的作用

镍Ni元素在不锈钢中的作用 时间:2011-01-27 13:56来源:未知作者:admin 点击:192次 对不锈钢钢的显微组织及热处理的作用 1.镍和铁能无限固溶,镍扩大铁的奥氏体区,即升高A 4 点,降低A 3 点,是形成和稳定奥氏体的主要合金元素2.镍和碳不形成碳化物3.降低临界转 对不锈钢钢的显微组织及热处理的作用 1.镍和铁能无限固溶,镍扩大铁的奥氏体区,即升高A4点,降低A3点,是形成和稳定奥氏体的主要合金元素 2.镍和碳不形成碳化物 3.降低临界转变温度,降低钢中各元素的扩散速率,提高淬透性 4.降低共析珠光体的碳含量,其作用仅次于氮而强于锰。在降低马氏体转变温度方面的作用为锰的一半 对不锈钢的力学性能的作用 1.强化铁素体并细化和增多珠光体,提高钢的强度,不显著影响钢的塑性 2.含镍钢的碳含量可适当降低,因而可使韧性和塑性有所改善 3.提高钢的疲劳抗力,减小钢对缺口的敏感性 4.由于对提高钢的淬透性和回火稳定性的作用并不十分强,镍对调质钢的意义不大 5.降低钢的低温脆化转变温度,含Ni3.5%的钢可在-100℃时使用,含Ni9%的钢可在-196℃时使用 对不锈钢的物理化学及工艺性能的作用 1.强烈降低钢的热导率和电导率 2.Ni<30%的奥氏体钢呈现顺磁性,即无磁钢。Ni>30%的Fe-Ni合金是重要的精密软磁材料 3.含镍超过15%-20%的钢对硫酸和盐酸有很高的抗蚀性能,但不能抗硝酸的腐蚀。总的来说,含镍钢对酸、碱以及大气都有一定的抗蚀能力。含镍的低合金钢还有较高的腐蚀疲劳抗力。含镍钢在含硫和一氧化的气氛中加热时易发生热脆和侵蚀性气孔 4.含镍较高的钢在焊接时应采用奥氏体焊条,以防止裂缝 5.含镍钢中易出现带状组织和白点缺陷,应在生产工艺中加以防止 在不锈钢中的应用 1.单纯的镍钢只在要求有特别高的冲击韧性或很低的工作温度时才使用 2. 机械制造中使用的镍铬或镍铬钼钢,在热处理后能获得强度和韧性配合良好的综合力学性能。含镍钢特别适用于需要表面渗碳的部件 3.在高合金奥氏体不锈耐热钢中镍是奥氏体化元素,能提供良好的综合性能,主要为NiCr 系钢。CrMnN、CrAlSi、FeAlMn钢,在一些用途上可取代CrNi系钢 4.由于镍的稀缺,又是重要的战略物资。非在用其他合金元素不可能达到性能要求时,应尽量少用和不用镍作为钢的合金元素

第一章镍铬系不锈钢

第一章镍铬系不锈钢、高温合金钢中的Mn 、P、Cr、Ni、Ti、 Mo 的联合测试 一、方法提要 试样经浓盐酸、双氧水分解后,用高氯酸发烟,借以驱除氯及氧化低价元素,控制酸度,将析出的盐类用水溶解后,稀至适当倍数,制成试样母液,然后分取母液,分别测定各元素的含量。 二、母液的制备 1、试剂: a 、盐酸:P:1.19 b 、过氧化氢:30% c 、 高氯酸:70% 2、操作步骤: 称取200mg 试样于150ml 锥形瓶中加入5ml 盐酸、2ml 双氧水、轻摇一下,让试样自然溶解。待试样基本溶解后,加入5ml高氯酸,在电炉上加热至冒浓白烟至瓶口,维持30s (瓶底盐类呈桔红色),取下加入少量水,溶解盐类后,移入200ml 容量瓶中,用水稀至刻度,摇匀。 三、各元素的分别测定 1、Mn 的测定:高碘酸钠氧化光度法(0.01~3.0% ) 试剂及其配制: a、高碘酸钠:(4%)称取20g 高碘酸钠溶于500ml 混酸中(需加热煮沸,搅拌溶解),贮于棕色瓶中备 用。 b、混酸:水+磷酸+硝酸=5:3:2,混匀备用。 分析操作: 分取母液10~20ml 于100ml 的锥形瓶中,加入10ml 高碘酸钠摇匀,加热煮沸显色。参比液:显色液中滴加0.5% 的亚硝酸钠褪色。 于530nm、1~2ml 比色杯,所制参比液作参比。 2、Cr的分析:二苯氨基脲直接光度法(w 26% ) 试剂配制: a、二苯氨基脲:0.5% ,称取4g 邻苯二甲酸酐溶于微热的100ml 乙醇中,再加入0.5g 二苯氨基脲,搅拌溶 解后备用。 b、尿素:5% c、氟化钠:5%

d、亚硝酸钠:0.5% e、硫磷混酸:884ml水+66ml硫酸+50ml磷酸,混匀 分析操作: 分取测Mn 显色液1~5ml 于100ml 两用量瓶中,加入10ml 硫磷混酸,摇匀,加10ml 脲素,摇匀后滴加亚硝酸钠至红色刚好褪去,加入3ml (2ml)二苯氨基脲,摇匀,放置1min,加入10ml 氟化钠,用水定容到刻度,摇匀。于530nm、1~2ml 比色杯,水作参比,10min 内测定结束,否则结果波动。 3、P 的测定:磷铋钼兰光度法:0.002~0.2% 试剂及其配制: a、抗坏血酸:硝酸铋混合液:0.5g 硝酸铋溶于100ml (1+9)的硝酸中,和1 %的抗坏血酸等体积混合。 (抗坏血酸当天配制) b、钼酸铵溶液:0.5% 分析步骤: 分取5~20ml母液于150ml锥形瓶中,钼酸铵20ml,加入混合溶液20ml,摇匀。水作参比,660nm、2~3cm 比色杯。 P 的测定:磷钼兰光度法:0.001~0.1% 试剂及其配制: a、钼酸铵:5% b、氯化亚锡:0.4%:1g 氯化亚锡溶于500ml 2.4%的氯化钠中。(贮存、使用不超过3天) 分析步骤: 分取适量母液于150ml锥形瓶中,加入1+4的硝酸10ml,摇匀,加5ml钼酸铵,15ml氯化亚锡,摇匀后于 650nm、1~2cm 比色杯中,水作参比。 4、Ni的测定:丁二肟直接光度法(w 30% ) 试剂及其配制: a、碘-柠檬酸混合溶液:称取12.7g 碘和25g 碘化钾。先将碘放于少量水中,搅拌下分批加入碘化钾,待碘溶完 后用水稀至500ml。再和500ml柠檬酸(30%)混匀,贮于棕色瓶中备用。b、丁二肟氨性溶液:0.01%。1g 丁二肟溶于少量无水乙醇中,用1+1的氨水稀至1000ml , 贮于 棕色瓶中备用。 分析步骤: 分取母液2~20ml 于100ml 量瓶中,加入5ml 碘-柠混合液摇匀,加上5ml 氨性丁二肟(空白中改加1+1 的氨水)用水稀至刻度。于530nm、0.5~2cm 比色杯中,所制空白作参比,测其含量。 5、Mo的测定:硫氢酸盐光度法(w 5% ) 试剂及其配制: a、混合显色液:20ml浓盐酸中加入6g氯化亚锡,加热溶解后,再加280ml水,6g硫氢酸铵, 搅拌溶解后备用。 b、空白溶液:20ml浓盐酸中加入6g氯化亚锡,加热定容后,再加280ml水,摇匀后备用。

镍、锰、氮、碳在不锈钢中的作用

镍、锰、碳、硅在不锈钢中的作用 镍是优良的耐腐蚀材料,也是合金钢的重要合金化元素。镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变。所以镍不能单独构成不锈钢。但是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有许多可贵的性能。 基于上面的情况可知,镍作为合金元素在不锈钢中的作用,在于它使高铬钢的组织发生变化,从而使不锈钢的耐腐蚀性能及工艺性能获得某些改善。 铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍20%以下的热强钢的大量发展与应用,以及化学工业日益发展对不锈钢的需要量越来越大,而镍的矿藏量较少且又集中分布在少数地区,因此在世界范围内出现了镍在供和需方面的矛盾。所以在不锈钢与许多其他合金领域(如大型铸锻件用钢、工具钢、热强钢等)中,特别是镍的资源比较缺乏的国家,广泛地开展了节镍和以其他元素代镍的科学研究与生产实践,在这方面研究和应用比较多的是以锰和氮来代替不锈钢与耐热钢中的镍。 锰对于奥氏体的作用与镍相似。但说得确切一些,锰的作用不在于形成奥氏体,而是在于它降低钢的临界淬火速度,在冷却时增加奥氏体的稳定性,抑制奥氏体的分解,使高温下形成的奥氏体得以保持到常温。在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从0到10.4%变化,也不使钢在空气与酸中的耐腐蚀性能发生明显的改变。这是因为锰对提高铁基固溶体的电极电位的作用不大,形成的氧化膜的防护作用也很低,所以工业上虽有以锰合金化的奥氏体钢(如40Mn18Cr4,50Mn18Cr4WN、ZGMn13钢等),但它们不能作为不锈钢使用。锰在钢中稳定奥氏体的作用约为镍的二分之一,即2%的氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大。例如,欲使含18%铬的钢在常温下获得奥氏体组织,以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢,目前已在工业中获得应用,有的已成功地代替了经典的18-8铬镍不锈钢。

不锈钢中各元素的作用

1、镍Ni:镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。 目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5 Mn %+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔 性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少 和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的 氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是 用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数 量就越高。例如在201型不锈钢中,只含有 4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也 是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体 形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥 氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅 添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。 300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400 系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,因此它在许多环境中 具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。是主要奥氏体形成元素,能减缓钢的腐蚀现象及在加热时晶粒的长大镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要 原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:奥氏体形成能力=Ni%+30C%+30N%+0.5 Mn %+0.25Cu%

合金元素对马氏体铬镍不锈钢组织和性能的影响

合金元素对马氏体铬镍不锈钢组织和性能的影 响 1.1 镍的影响 (2)镍对钢的组织结构的影响 图2-28 镍对0.04C-18Cr钢Ms温度的影响 αγ相区,有可能使低碳的铁一铬合金具由于镍扩大铁一铬合金的γ区相和+ 有淬火能力、或者由于镍的存在可使低碳(<0.15%)马氏体铬不锈钢的铬含量向更高的水平推移,提高了钢的耐蚀性。从而解决了马氏体铬不锈钢为提搞其耐蚀性以损失钢的硬度为代价的难题。在马氏体格镍不锈钢中的镍含量不能过高,否则由于镍扩大γ相区和降低Ms温度〔见图2-28)的双重作用,将使钢成为单相奥氏铁不锈钢而丧失淬火能力。镍的另一重要作用是降低钠中的δ铁素体含量,在所有合金元素中其共效果最好,见图3-29。在特定的碳、铬含量条件下,这一作用可使钢获得满意的相变效果和最大硬度值。

图2-29 合金元素对0.1C-17Cr钢 铁素体数量的影响(2)镍对可淬性的影响 镍提高钢的淬透性和可淬性,对于低碳、高铬的铁一铬合金,添加适量的镍可恢复其淬火能力而成为马氏体不锈钢,见图2-30和图2-31。由图可知,对于含碳0.21%-0.24%,含铬近于20%的钢、如果不含镍,则失去了淬火能力;含2%~4%Ni使该合金恢复淬火能力;过高的镍将使钢变成奥氏体组织而失去可淬性。在沉淀硬化不锈钢中.钢的硬化特性与镍含量间的关系见图2-32,为了得到满意的硬化效果,应选择最佳镍含量。马氏体不锈钢的回火稳定性是钢的重要性能.镍的加入提高了马氏体不锈钢的回火稳定性,见图2-33。可见,少量的镍即可有效地降低回火的软化程度。

图2-31 镍对0.1C-17Cr钢硬化特性的影响

铬元素对不锈钢的影响

铬元素对不锈钢的影响 铬的影响:铬是奥氏体不锈钢中最主要的合金元素,奥氏体不锈钢的不锈性和耐蚀性的获得主要是由于在会质作用下,铬促进了钢的钝化并使钢保持稳定钝态的结果.1铬对组织的影响:在奥氏体不锈钢中,铬是强烈形成并稳定铁体的元素,缩小奥氏体区,随着钢中含量增加,奥氏体不锈钢中可出现铁素体(δ)组织,研究表明,在铬镍奥氏体不锈钢中,当碳含量为0.1%,铬含量为18%时,为获得稳定的单一奥氏体组织,所需镍含量最低,约为8%,就这一点而言,常用的18Cr—8Ni型铬镍奥氏体不锈钢是含铬,镍量配比最为适宜的一种. 有奥氏体不锈钢中,随着铬含量的增加,一些金属间相(比如δ相)的形成倾向增大,当钢中含有钼时,铬含含量会增加还会χ相等的形成,如前所述,σ, χ相的析出不仅显著降低钢的塑性和韧性,而且在一些条件下还降低钢的耐蚀性,奥氏体不锈钢中铬含量的提高可使马氏体转烃温度(Ms)下降,从而提高奥氏体基体的稳定性.因此高铬(比如超过20%)奥氏体不锈钢即使经过冷加工和低温处理也很难获得马氏体组织.. 铬是强碳化物形成元素,在奥氏体不锈钢中也不例外,奥氏体不锈钢中常见的铬碳化物有Cr23C6;当钢中含有钼或铬时,还可见到期Cr6C等碳化物,它们的形成在某些条件下对钢的性能会产生重要影响.2铬对性能的影响:一般来主,只要奥氏体不锈钢保持完全奥氏体组织而没有δ铁素体等的形成,仅提高钢中铬含量不会对力学性能有显著影响,铬对奥氏体不锈钢性能影响最大的是耐蚀性,主要表现为:铬提高钢的耐氧化性介质和酸性氯化物介质的性能;在镍以及钼和铜复合作用下,铬提高钢耐一些还原性介质,有机酸,尿素和碱介质的性能;铬还提高钢耐局部腐蚀,比如晶间腐蚀.点腐蚀,缝隙腐蚀以及某此条件下应力体育馆的性能..对奥氏体不锈钢晶间体育馆敏感性影响最大的因素是钢中碳含量,其他元素对晶间体育馆的作用主要视其对碳化物的溶解和沉淀行为的影响而定,在奥氏体不锈钢中,铬能增大碳的溶解度而降低铬的贫化度,因而提高铬含量对奥氏体不锈钢的耐晶间腐蚀是有益,铬非常有效地改善奥氏体不锈钢的耐点腐蚀及缝隙腐蚀性能,当钢中同时有钼或钼及氮存在时,铬的这种有效性大加强,虽然根据研究钼的耐点体育馆及缝隙腐蚀的能力为铬的话倍左右,氮为铬的30倍,但是大量研究,奥氏体不锈钢中如果没有铬或者铬含量较低,钼及氮的耐点腐蚀与缝隙腐蚀作用便会丧失或不够显著.

铸造奥氏体不锈钢的铬镍当量比和相对磁导率_范修谦

铸造奥氏体不锈钢的铬镍当量比和相对磁导率 范修谦 (保定风帆精密铸造制品有限公司) 摘 要 介绍了铸造奥氏体不锈钢中各元素的作用;通过铬当量和镍当量经验公式计算CrE/NiE。使用不锈钢的CrE/NiE(成分当量)图估算铸造奥氏体不锈钢中的铁素体含量;使用磁导率检测仪检测相应铸件的相对磁导率,从而验证了铬镍当量CrE/NiE、铁素体量与相对磁导率的非线性关系。关键词 铬镍当量比;铁素体;相对磁导率 中图分类号 TG249.5 文献标志码 A 文章编号 1001-2249(2011)05-0439-03DOI:10.3870/tzzz.2011.05.016 收稿日期:2010-11-29;修改稿收到日期:2010-12- 25作者简介:范修谦,男,1956年出生,研究员级高级工程师,河北保定风帆精密铸造制品有限公司,河北保定(071051),电话:13703362617,E-mail :fan218@126.com 奥氏体不锈钢在常温下一般具有单一的奥氏体组 织, 是非磁性的。但在铸造状态下,由于成分偏析及合金含量不同,在奥氏体基体上还会产生其他相,如奥氏体(γ相)的同素异位体(铁素体,F)等。由于铁素体和奥氏体基体之间的化学成分、力学性能以及热稳定性等方面的差异,在某些场合下铁素体的出现会对奥氏体不 锈钢的性能带来不利影响[ 1~3 ]。对奥氏体不锈钢材料的力学性能和各元素的含量都有较详细的规定,但对铁素体的含量没有明确的说明。为了保证特殊用途下不锈钢的性能,有客户提出了控制奥氏体铸造不锈钢相对磁导率(μ≤0.2)的要求。可以通过控制不锈钢中起主要作用的合金含量即铬镍当量比来控制奥氏体不锈钢的相对磁导率, 从而也控制了奥氏体不锈钢中的铁素体含量。1 合金元素在奥氏体不锈钢中的作用 奥氏体不锈钢中形成铁素体的Cr、Si、Mo等元素和促进形成奥氏体的Ni、C、Mn等元素相互作用和补充,使奥氏体不锈钢在多种腐蚀介质中有较好的耐腐蚀性和良好的力学性能。一般地可使用铬镍当量经验公式:铬当量CrE=w(Cr)+w(Mo)+w(Si)×1.5%+w(Nb)×0.5%;镍当量NiE=w( Ni)+w(c)×30%+w(Mn)×0.5%定性地估计奥氏体不锈钢中铁素体形成的可能性及相对含量,见图1。另外也可用不锈钢的CrE/NiE成分当量比对铁素体的含量进行估算,见图2。但上述两种方法使用起来很不方便。而不锈钢磁导率主要取决于钢的化学成分、晶体结构、晶粒组织内应力。奥氏体不锈钢的组织结构、化学成分和钢的铬镍当量紧密相关,因此在不锈钢熔化时取样,使用磁导率测量仪控制磁导率大小,也就控制了奥氏体铸造不锈钢中奥氏体和铁素体的质量分数,也就使奥氏体不锈钢的综合性能达到预期要求 。 图1 室温下不锈钢的组织与铬、镍当量的关系(Hammond 图 ) 图2 不锈钢的CrE/NiE当量比与铁素体含量的关系 2 铬镍当量比CrE/NiE与相对磁导率的关系 使用光谱分析仪对不同铸件的化学成分进行分析(见表1 )。根据铸件化学成分计算出铸件的铬镍当量比CrE/NiE。使用CrE/NiE成分当量图( 见图2)或不锈钢组织状态图(见图1)估算出铸件的铁素体量,估算值见表1。 使用美国Permabltiy omdicator#6373磁导率称对铸件的磁导率进行检验,数据见表1。根据表1数据,分别制作CrE/NiE与相对磁导率μ关系, 见图3。铁素体含量与磁导率μ关系见图4。从CrE/NiE与相对磁导率关系图3,可看出铬镍当量比CrE/NiE与相对磁导率μ的关系为非线性关系,随铬镍当量CrE/NiE的增大,铸造不锈钢的相对磁导率也相应增大。 9 34精密铸造 特种铸造及有色合金 2011年第31卷第5期

不锈钢所含各元素的作用

不锈钢所含各元素的作用 目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。 实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。 1).各种元素对不锈钢的性能和组织的影响和作用 1-1.铬在不锈钢中的决定作用:决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。迄今为止,还没有不含铬的不锈钢。铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展。这种变化可以从以下方面得到说明: ①铬使铁基固溶体的电极电位提高 ②铬吸收铁的电子使铁钝化 钝化是由于阳极反应被阻止而引起金属与合金耐腐蚀性能被提高的现象。构成金属与合金钝化的理论很多,主要有薄膜论、吸附论及电子排列论。 1-2. 碳在不锈钢中的两重性 碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥

氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成—系列复杂的碳化物。所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。 认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢。 例如工业中应用最广泛的,也是最起码的不锈钢——0Crl3~4Cr13这五个钢号的标准含铬量规定为12~14%,就是把碳要与铬形成碳化铬的因素考虑进去以后才决定的,目的即在于使碳与铬结合成碳化铬以后,固溶体中的含铬量不致低于11.7%这一最低限度的含铬量。 就这五个钢号来说由于含碳量不同,强度与耐腐蚀性能也是有区别的,0Cr13~2Crl3钢的耐腐蚀性较好但强度低于3Crl3和4Cr13钢,多用于制造结构零件,后两个钢号由于含碳较高而可获得高的强度多用于制造弹簧、刀具等要求高强度及耐磨的零件。又如为了克服18-8铬镍不锈钢的晶间腐蚀,可以将钢的含碳量降至0.03%以下,或者加入比铬和碳亲和力更大的元素(钛或铌),使之不形成碳化铬,再如当高硬度与耐磨性成为主要要求时,我们可以在增加钢的含碳量的同时适当地提高含铬量,做到既满足硬度与耐磨性的要求,又兼顾—定的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢9Cr18和9Cr17MoVCo钢,含碳量虽高达0.85~0.95%,由于它们的含铬量也相应地提高了,所以仍保证了耐腐蚀的要求。 总的来讲,目前工业中获得应用的不锈钢的含碳量都是比较低的,大多数不锈钢的含碳量在0.1~0.4%之间,耐酸钢则以含碳0.1~0.2%的居多。含碳量大于0.4%的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,不锈钢总是以耐腐蚀为主要目的。此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。 1-3. 镍在不锈钢中的作用是在与铬配合后才发挥出来的 镍是优良的耐腐蚀材料,也是合金钢的重要合金化元素。镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变。所以镍不能单独构成不锈钢。但是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有许多可贵

相关文档
最新文档