数理方程-分离变量法

数理方程-分离变量法
数理方程-分离变量法

第八章 分离变量法

???

?

??

?≤≤=??=>==><

2

222ψ? 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数

分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。

分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。

叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。 特点:(1)数学上 解的唯一性来做作保证。 (2)物理上 由叠加原理作保证。 例:有界弦的自由振动

1.求两端固定的弦的自由振动的规律

???

?

??

?≤≤=??=>==><

2222ψ? 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =

这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。

第二步:代入方程

(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量)

)()()()(2t T x X a t T x X ''=''

变形得

)

()

()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。由于x, t 是相互

独立的变量,上式必然等于同一常数。

方程左边为关于x 的函数,方程右边为关于t 的函数,只有当左右两边都等于常数的时候才成立 令其为λ-(得到的两个常微分方程形式比较标准)

0)()(=+''x X x X λ 0)()(2=+''t T a t T λ

得到两个常微分方程 第三步:代入边界条件

得到:0)()0(=t T X 0)()(=t T l X ,由于是t>0得值,)(t T 是一个范围内不固定的值, 所以0)0(=X 0)(=l X

常微分方程含λ,λ未知,需要对λ进行讨论

0)()(=+''x X x X λ,0)0(=X 0)(=l X

特征(固有)值问题:含有待定常数常微分方程子一定条件下的求解问题。 特征(固有)函数:和特征值相对应的非零解 第四步:确定特征值并得到它的特征函数 分情况讨论:

1)λ<0时, 特征方程为02

=+λR ,特征根为:λ-±=R 得通解为x

x

Be Ae

x X λλ--

-+=)((A 、B 为待定系数)

把定解条件0)0(=X 0)(=l X 代入通解x

x

Be Ae x X λλ--

-+=)(

得到A+B=0

0=+--

-l

l

Be Ae

λλ

于是A=B=0?x

x

Be Ae x X λλ--

-+=)(即)(x X =0

则)()(),(t T x X t x u ==0,零解无意义 即λ<0时,定解问题无解。 2)λ=0时, 0)()(=+''x X x X λ 有B Ax x X +=)( A=B=0?x

x

Be Ae

x X λλ--

-+=)(即)(x X =0

则)()(),(t T x X t x u ==0,零解无意义 3)λ>0时, 0)()(=+''x X x X λ

令2βλ=(β为非零实数)

特征方程为02

=+λR ,特征根为虚数:λ-±=R i 通解为x B x A x X ββsin cos )(+=(A 、B 为待定系数)

把定解条件0)0(=X ,0)(=l X 代入通解x B x A x X ββsin cos )(+=

0)0(=X 得到A =0,即x B x X βsin )(= 0)(=a X 得到0sin =l B β

在B ≠0的情况下,有l βsin =0,即l

n n π

β=(n=1,2,3,…注意n ≠0,若n =0,则β=0,0=λ而β为非零实数)

现在就完成了用分离变量法求解X (x )的部分,得到特征值为2

2

)(l

n n n πβλ==,所对应的特征函数为:x l

n B x X n πsin

)(= 下面求解关于t 的常微分方程

0)()(=+''t T t T λ,将2

)(

l

n n πλ=代入 0)()(22

22

=+''t T l n a t T n n π,这种情况的通解与0)()(=+''x X x X λ的λ>0的情况相同。

即l

at

n D l at n C t T n n

n ππsin cos )('+'= ( n=1,2,3,…)

至此都求出来了与)()(t T x X n n ,所以定解问题的n 个特解(这n 个特解均满足边界条件)为:

)()(),(n n t T x X t x u n ==x l

n l at n D l at n C n n π

ππsin )sin cos

(+ ( n=1,2,3,…) 根据叠加原理,特解的叠加仍是方程的解,所以得到通解

)),(),(1

∑==n

i n t x u t x u

=

∑=+n

i n n x l

n l at n D l at n C 1

sin )sin cos

ππ( n=1,2,3,…) 其中n n D C 、为待定系数(利用初始条件)()

0,(),()0,(x t

x u x x u ψ?=??=求解) 第五步: 利用本征函数的正交归一性确定待定系数

∑=+=n

i n n x l

n l at n D l at n C t x u 1

sin )sin cos

(),(π

ππ

)0,(),(0x u t x u t ==

)(sin

1x x l n C n

i n ?π

==∑= 010

sin )cos sin (),(===∑+-

=??t n

i n t x l

n l at n c l a n l at n C l at n t t x u π

ππππ )(sin 1x x l

n D l a n n

i n ψπ

π==∑

= )()(x x ψ?与正是傅里叶正弦级数,n C 、n D 是傅里叶系数。

利用三角函数的正交性

2

2)/2cos(1sin 002

l dx l n xdx l n l l

=-=??ππ 0]cos [cos 21sin 00=--+-=??l l dx x l m n x l m n xdx l m x l n ππππ(m ≠n ) 得到:n l n n l

C l xdx l m x l n C xdx l m x 2sin sin )(00

0==?∑?∞=πππ?

于是得到:?=

l n xdx l m x l C 0sin )(2π

? 同理,??=?=

l l n xdx l

m x a n xdx l m x l a n l D 00sin )(2sin )(2πψππψπ 回顾整个求解过程,可作出分离变量法流程图

2. 解的性质

),(t x u n =x l

n l at n D l at n C n n π

ππsin )sin cos

(+---------方程的特解(前面是关于t 的函数,后面是关于x 的函数)

),(t x u n =x l n l at n D l at n C n n πππsin )sin cos

(+=x l

n t A n n n πθωsin )cos(- 其中:n n n D C A 2

2+=,l a n n πω=

,n

n n C D

arctan =θ 当0x x =时,),(t x u n =)cos(sin 0n n n t x l

n A θωπ

----------弦上确定的一点以频率n ω做振动(弦上某点的振动方程)。

当0t t =时,),(t x u n =x l

n t A n n n π

θωsin

)cos(0-----------某一时刻,特解为正弦函数的形式,所有点的位置,波动方程(驻波的方程),每个特解代表一个驻波,因此分离变量法又称为驻波法。

标准的驻波方程:t x

A y ωλ

πcos 2cos

2?=

x l

n πsin

的(驻波)波长为l n n 2

=λ(n=1,2,3,…)

频率:l

na

f n n 22==

πω 波速:ρ

λT

a l n l na f v n n n =

=?=

=22 3. 分离变量法概要:

(1)作分离变量假设,代入方程和边界条件中得到固有值问题 (2)确定固有函数和固有值 (3)写出定解问题的特解 (4)将特解叠加无,给出通解

(5)用初始条件确定通解系数(傅立叶展开 ) 4. 回顾整体思路:

初始条件)()0,(),()0,(x t x u x x u ψ?=??= 定解问题2

2

222x u a t u ??=?? 边界条件0),(,0),0(==t l u t u 将假设)()(),(t T x X t x u =代入方程2

2

222x u a t u ??=??,此偏微分方程得到两个常微分方程0)()(=+''x X x X λ 0)()(2=+''t T a t T λ。

将边界条件0),(,0),0(==t l u t u 代入)()(),(t T x X t x u =,得到0)0(=X 、0)(=l X ,求解已知定解条件的常微分方程0)()(=+''x X x X λ的特征值为22

)(

l n n n πβλ==,特征方程x l

n B x X n n πsin )(=, 求解0)()(2=+''t T a t T λ的特征函数l

at n D l at n C t T n n n ππsin cos )('+'=,所以

)()(),(n n t T x X t x u n ==x l

n B l at n D l at n C n n n πππsin )sin cos ('

+'。 根据叠加原理,特解的叠加是方程的通解,所以得到:

)

),(),(1

∑==n

i n t x u t x u =

∑=+n

i n n x l

n l at n D l at n C 1

sin )sin cos

ππ,将初始条件

)()

0,(),

()0,(x t

x u x x u ψ?=??=代入,求解待定系数n n D C 、(傅立叶展开)。 分离变量法的适用条件:任何二阶线性(齐次)偏微分方程

例一:设有一根长为10个单位的弦,两端固定,初速度为零,初位移为1000

)

10()(x x x -=ψ,求弦做

微小横振动时的位移。

???

?

??

?=??-=>==><

2

422t x u x x x u t t u t u t x x u t u 解:设)()(),(t T x X t x u =,代入

λ-='

'=''T

T X X 4101 得到:0)()(=+''x X x X λ 0)(10)(4

=+''t T t T λ

0)()10(),10(,0)()0(),0(====t T X t u t T X t u

得到本征值问题:,?

??==≤≤=+''0)10(,0)0(10

0,0)()(X X x x X x X λ

经讨论02>=βλ时,有非零解,x B x A x X ββsin cos )(+=

010sin )10(,0)0(====βB X A X ,10

π

βn n =

,n=1,2,3,… 得到特征值:100

2

22

πβλn == 得到特征方程:x n B x X n n 10sin )(π= 于是:0)(100)(22

=+''t T n

t T π,其解为t n D t n C t T n n

n ππ10sin 10cos )('+'= )()(),(n n t T x X t x u n =

x n B n 10

sin

π

=)10sin 10cos (t n D t n C n n

ππ'+' =)10sin 10cos (t n D t n C n n ππ+x n 10sin π )),(),(1

∑==n i n t x u t x u =∑∞

=1

n )10sin 10cos (t n D t n C n n ππ+x n 10

sin

π 将初始条件1000

)

10( 10sin )

0,(1

n x x t n C x u n -=

=∑∞

xdx n x x C n 10

sin 1000)10(102100π

?-=

运用分部积分法求解 =

xdx n x x 10

sin )10(50001100π

?- =?????=-为奇数为偶数n n n n n 4444540

)cos 1(52πππ

0sin )0,(1

==??∑∞=x l n l a n D t x u n n π

π,故n D =0. 所以)),(1

∑==

n i n t x u u =∑

=1

n t

n n ππ)12(10cos )12(54

4

4--x n 10)12(sin π- 例二:???

?

?

????≤≤=??-=>=??=><

0),(,0),0(0,022

2

222 解:设)()(),(t T x X t x u =,代入

λ-='

'=''T

T a X X 21 得到:0)()(=+''x X x X λ 0)()(2=+''t T a t T λ

0)()0(),0(==t T X t u ?

0)0(=X

0)

,(=??x

t l u ?

=??x

t l u )

,(0)()(='t T l X ?0)(='l X

得到本征值问题:,?

??='=≤≤=+''0)(,0)0(0,0)()(l X X l

x x X x X λ

经讨论0<λ,x

x

Be Ae

x X λλ--

-+=)((A 、B 为待定系数)

把定解条件0)0(=X 0)(='l X 代入通解x

x

Be Ae x X λλ--

-+=)(

得到A+B=0

0=+--

-l

l

e B e

A λλββ

于是A=B=0即)(x X =0

λ=0时, 0)()(=+''x X x X λ,有B Ax x X +=)(,A=B=0即)(x X =0

02>=βλ时,0)()(=+''x X x X λ,x B x A x X ββsin cos )(+=

0)0(=X ?

0=A

)(='l X ?0cos )(=='l B x X ββ

所以l

n n 2)12(π

β-=

n=1,2,3,… 写出特征值和特征函数2

2

22

4)12(l

n πβλ-==,x l n B x X n n 2)12(sin )(π-= 0)()(2

=+''t T a t T λ变为0)(4)12()(2

2

22

=-+''t T l n a

t T n n π t l

a

n D t l a n C t T n n

n 2)12(sin 2)12(cos )(ππ-'+-'=,

所以)()(),(n n t T x X t x u n ==x l n t l a n D t l a n C n n

2)12(sin )2)12(sin 2)12(cos (πππ--'+-' 所以)),(1

∑==

n i n t x u u =∑=--+-n

i n n x l

a n t l a n D t l a n C 12)12(sin )2)12(sin 2)12(cos

(πππ 由初始条件0)

0,(,

2)0,(2

=??-=t

x u lx x x u 确定C n 、D n 。 lx x x l

n C x u n 22)12(sin

)0,(2-=-=∑π

3

3202

)12(322)12(sin )2(2π

π--=--=?n l xdx l n lx x l C l

n 02)12(sin 2)12()0,(=--=??∑x l

n l a n D t x u n ππ,D n =0 )),(1

∑==n

i n t x u u =∑=----

n

i x l n t l a n n l 13

3

2

2)12(sin 2)12(cos )

12(132π

ππ 附录1:二阶常系数微分方程:0=+'+''qy y p y 特征方程:02

=++q pr r 根的三种情况

12

12r r r r r ≠??

==??

得到常系数微分方程的通解:

附录2:线性方程满足叠加原理。

线性齐次方程(只含未知量的一次项,无零次项)通解为所有线性无关特解的叠加;而线性非齐次方程通解为其特解与相应齐次方程(去掉零次项后的线性方程)通解的叠加。

附录3:和差化积公式

cos(A-B)=cosAcosB+sinAsinB

12121212(cos sin )

r x r x rx rx x y C e C e y C e C xe

y e C x C x αββ?=+?=+??=+?

分离变量法

<<电磁场与电磁波>>读书报告 姓 名: 学 院: 学 号: 专 业: 题 目:分离变量法在求静态场的解的应用 成 绩: 二〇一四年四月 Xxx 工程学院 电子工程类

一.引言 分离变量法是在数学物理方法中应用最广泛的一种方法。在求解电磁场与电磁波的分布型问题和边值型问题有很重要的应用。分布型问题是指已知场源(电荷分布、电流分布)直接计算空间各点和位函数。而边值型问题是指已知空间某给定区域的场源分布和该区域边界面上的位函数(或其法向导数),求场内位函数的分布。求解这两类问题可以归结为在给定边界条件下求解拉普拉斯方程或泊松方程,即求解边值问题。这类问题的解法,例如镜像法,分离变量法,复变函数法,格林函数法和有限差分法,都是很常用的解法。这里仅对在直角坐标系情况下的分离变量法作简单介绍。 二.内容 1.分离变量法的特点: 分离变量法是指把一个多变量的函数表示成几个单变量函数乘积,从而将偏微分方程分离为几个带分离常数的常微分方程的方法,属于解析法的一种。它要求要求所给边界与一个适当的坐标系的坐标面重合.在此坐标系中,待求偏微分方程的解可表示成三个函数的乘积,每一函数仅是一个坐标的函数。我们仅讨论直角坐标系中的分离变量法. 2.推导过程: 直角坐标系中的拉普拉斯方程: 222 222 0 x y z ??? ??? ++=??? 我们假设是三个函数的乘积,即

(,,)()()()x y z X x Y y Z z ?= 其中X 只是x 的函数,同时Y 是y 的函数Z 是z 的函数,将上式带入拉普拉斯方程,得 然后上式同时除以XYZ ,得 0X Y Z X Y Z '''''' ++= 上式成立的唯一条件是三项中每一项都是常数,故可分解为下列三个方程: 即 α,β,γ为分离常数,都是待定常数,与边值有关但不能全为实数或全为虚数 。 由上式得2220αβγ++=,下面以X ”/X =α2式为例,说明X 的形式与α的关系 当α2=0时,则 当α2 <0时,令α=jk x (k x 为正实数),则 或 当α2 >0时,令α=k x ,则 或 a ,b ,c ,d 为积分常数,由边界条件决定Y(y)Z(z)的解和X(x)类似。 3解题步骤 1,2λα =±00 ()X x a x b =+12()x x jk x jk x X x b e b e -=+12()sin cos x x X x a k x a k x =+12()x x k x k x X x d e d e -=+12() s x x X x c hk x c chk x =+

第三章行波法与积分变换法教学提纲

第三章行波法与积分变换法 」 分离变量法,它是求解有限区域内定解问题常用的一种方法。 J 行波法,是一种针对无界域的一维波动方程的求解方法。 」 积分变换法,一个无界域上不受方程类型限制的方法。 作如下代换; X at, X at 利用复合函数求导法则可得 同理可得 2 a 2(£ 代入(1)可得 =0o u(x,t) F( ) G( ) F(X at) G(X at) 这里F,G 为二阶连续可微的函数。再由初始条件可知 F(X ) G(X ) (X ), aF (X ) aG (X ) (X ). X 2 u -2 )(」 2 2」 2 u ~2 先对求积分,再对 求积分,可得u(X,t)d 的一般形式 § 3.1 一维波动方程的达朗贝尔 (D 'alembert )公式 一、达朗贝尔公式 考察如下Cauchy 问题: 2 u 下 u 2 2 u a 2 , X (X), u 0, (1) (X ),- (2) 2 ■4), (3)

由(3)第二式积分可得 1 X F(x) G(x) - 0 (t)dt C , a 0 利用(3)第一式可得 所以,我们有 1 1 x at u(x,t) [ (x at) (x at)] (t)dt 2 2a x at 此式称为无限弦长自由振动的达朗贝尔公式。 二、 特征方程、特征线及其应用 考虑一般的二阶偏微分方程 AU xx 2BU xy CU yy DU x EU y Fu 0 称下常微分方程为其特征方程 A(dy)2 2Bdxdy C(dx)2 0。 由前面讨论知道,直线x at 常数为波动方程对应特征方程的积分曲线, 称为特征线。已知,左行波F(x at)在特征线x at G 上取值为常数值F(CJ , 右行波G(x at)在特征线x at C 2上取值为常数值G(C 2),且这两个值随着特 征线的移动而变化,实际上,波是沿着特征线方向传播的。称变换( 2)为特征 变换,因此行波法又称特征线法。 注:此方法可以推广的其他类型的问题。 三、 公式的物理意义 由 U(x,t) F (x at) G(x at) 其中F(x at)表示一个沿x 轴负方向传播的行波,G(x at)表示一个沿x 轴正方 向传播的行波。达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个 方向传播出去,其传播速度为a 。因此此法称为行波法。 四、 依赖区间、决定区域、影响区域 F(x) 1 2(X ) 2a (t)dt G(x) (x) 1 x 2a o (t)dt (4)

3-5 -可分离变量型方程及其解法

2.1 可分离变量型方程的解法 [教学内容] 1. 介绍导数、不定积分公式表及其意义; 2.介绍求导和求不定积分的法则; 3. 引入齐次方程的概念及其求解方法; 4. 介绍其他可分离变量型方程及其解法. [教学重难点] 重点是知道齐次方程如何引入新的因变量化为分离变量型方程,难点是如何根据方程的形式引入新的变量变换使得新方程为可分离变量型方程. [教学方法] 自学1、2;讲授3、4,5课堂练习 [考核目标] 1. 会熟记、记准导数公式和积分公式; 2. 知道求导法则和积分法则,并熟练、正确计算函数的导数和不定积分; 3. 知道齐次方程的形式 )x y f (dx dy =,并会用变换x y u =,将原方程化为 变量可分离型方程; 4. 知道探照灯形状设计问题及其求解步骤和方法; 5. 知道如何将函数 方程或积分方程求解问题化归为微分方程来求解. 1. 导数公式和积分表的意义 小学时大家熟记乘法口诀表,这是小学、中学数学乘、除运算的基础,要不然,买2斤苹果3斤梨子,都不知道该付给商贩多少钱。 大学时大家关心的是函数,其中求导和求积分是两个重要的运算,函数的不少性质需要求助于这两种运算的结果,比如单调性、凸凹性、曲线的长度等.(导数表参见《数学分析上》P101基本初等函数的导数公式,积分表参见《数学分析上》P180 列表) 练习17. (1) 合上书本,写出基本初等函数的导数公式和不定积分公式. (2)双曲正弦2e e sh x x x --=,双曲余弦2 e e ch x x x -+=,(有的教材用sinh x 和 cosh x 表 示). 证明:1x sh x ch ch x,(sh x)' sh x,(ch x)'2 2 =-==. 2. 求导法则和积分法则 碰到的函数成千上万,不可能记住所有这些函数的导数(积分)公式,但你要会将这些函数的导数(积分)转化为上面基本初等函数的导数(积分)来算,这就要知道求导(积分)法则. 对于一元函数f(x)y =而言,可导性和可微性是等价的, (x)' f dx dy =(x)dx ' f dy =?,导数也称为微商,原因是(x)' f 是y 的微分与x 微分的商. 下面就给出求导、求微分、求积分 法则. 设g(x) v f(x), u ==均可导,则 (x)' g (x)' f g(x))'(f(x)+=+, dv du v)d(u +=+; 相应(1)???+=+dv du v)d(u ; (x)' g )f(x (x)g(x)' f g(x))'(f(x)+=?, dv u du v v)d(u +=?;于是相应地有 (2) ???+=?dv u du v v)d(u ; (x)g' (g(x))' f (g(x)) (f dx d =,g(x) v dv, )v ('f d(f(g(x)))==;于是相应地有

高数可分离变量的微分方程教案

§7. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得 y =x 2+C . 一般地, 方程y '=f (x )的通解为C dx x f y +=?)((此处积分后不再加任意常数). 2. 求微分方程y '=2xy 2 的通解. 因为y 是未知的, 所以积分? dx xy 22无法进行, 方程两边直 接积分不能求出通解. 为求通解可将方程变为 xdx dy y 212 =, 两边积分, 得 C x y +=-21, 或C x y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=?(x , y )能写成 g (y )dy =f (x )dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C , 由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的. 若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有 ) ,(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有 ) ,(),(y x P y x Q dy dx -=.

可分离变量的微分方程: 如果一个一阶微分方程能写成 g (y )dy =f (x )dx (或写成y '=?(x )ψ(y )) 的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ?y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ?dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是. (4)y '=1+x +y 2+xy 2, 是. ?y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ?10-y dy =10x dx . (6)x y y x y +='. 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:??=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ) G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dx dy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y 21=, 两边积分得 ??=xdx dy y 21, 即 ln|y |=x 2+C 1, 从而 2 112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2 x Ce y =. 例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.

北邮数理方程课件第三章的分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><

其中A ,B 为积分常数,(7)代入(6)中边界条件,得 00 A B Ae +=???-+=?? (8) 由(8)得A=B=0,得X (x )=0,为平凡解,故不可能有0λ<。 (2) 当0λ=时,(6)式中方程的通解是 ()X x Ax B =+ 由边界条件得A=B=0,得X (x )=0,为平凡解,故也不可能有0λ=。 (3)当 02 >=βλ时,上述固有值问题有非零解.此时式(6)的通解为 x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(212Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D

第二章 分离变量法(§2.1)

第二章 分离变量法 偏微分方程定解问题常用解法,分离变量法。 解常微分方程定解问题时,通常总是先求出微分方程的特解,由线性无关的特解叠加出通解,而后用定解条件定出叠加系数 一阶线性偏微分方程的求解问题,基本方法也是转化为一阶线性常微分方程组的求解问题 对于二阶以及更高阶的偏微分方程定解问题,情况有些不同:即使可以先求出通解,由于通解中含有待定函数,一般来说,很难直接根据定解条件定出,因此,通常的办法就是把它转化为常微分方程问题 §2.1 有界弦的自由振动 什么是分离变量法?使用分离变量法应具备那些条件? 下面通过两端固定的弦的自由振动问题来说明。 定解问题:考虑长为l ,两端固定的弦的自由振动,其数理方程及定解条件为 .0 ),(u ),(u 0, ,0u ,0u 0, l,0 ,0 t 0022 222l x x x t t x x u a t u t t l x x ≤≤==>==><

2019年数学物理方程-第二章分离变量法.doc

2019年数学物理方程-第二章分离变量法.doc

第二章 分离变量法 分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换 法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论. §2?1 特征值问题 2.1.1 矩阵特征值问题 在线性代数中,我们已学过线性变换的特征值问题. 设A 为一n 阶实矩阵,A 可视为n R 到自身的线性变换。该变换的特征值问题(eigenvalue problem )即是求方程: ,n Ax x x R λ=∈, (1.1) 的非零解,其中C λ∈为待定常数. 如果对某个λ,问题(1.1)有非零解n x R λ∈,则λ就称为矩阵A 的特征值(eigenvalue),相应的n x R λ∈称为矩阵A 的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于n 个相异的特征值和线性无关的特征向量. 但可证明: 任一n 阶矩阵都有n 个线性无关的广义特征向量,以此n 个线性无关的广义特征向量作为n R 的一组新基,矩阵就能够化为Jordan 标准型. 若A 为一n 阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正交矩阵T 使得 1T AT D -=, (1.2) 其中D =diag 12(,,...,)n λλλ为实对角阵. 设12[ ... ]n T T T T =,i T 为矩阵T 的第i 列向量(1)i n ≤≤,则式(1.2)可写为如下形式 1212 [ ... ][ ... ]n n A T T T T T T D =, 或 , 1.i i i A T T i n λ=≤≤ (1.3) 上式说明,正交矩阵T 的每一列都是实对称矩阵A 的特征向量,并且这n 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定理的形式给出. 定理1.1 设A 为一n 阶实对称矩阵,考虑以下特征值问题 ,n Ax x x R λ=∈, 则A 的所有特征值为实数,且存在n 个特征向量,1i T i n ≤≤,它们是相互正交的(正交性orthogonality ),可做为n R 的一组基(完备性completeness ). 特征值问题在线性问题求解中具有重要的意义,下面举例说明之. 为简单起见,在下面两个例子中取A 为n 阶非奇异实矩阵,故A 的所有特征值非零,并且假设A 有n 个线性无关的特征向量,i T 相应的特征值为, 1i i n λ≤≤. 例1.1 设n b R ∈,求解线性方程组 Ax b =. 解 由于向量组{1}i T i n ≤≤线性无关,故可做为n R 的一组基. 将,x b 按此

第二章 分离变量法(§2.2,§2.3)

§2.2 有限杆上的热传导 定解问题:一均匀细杆,长为l ,两端坐标为l x x == ,0。杆的侧面绝热,且在端点0=x 处温度为零,而在l x = 处杆的热量自由发散到周围温度为0的介质中。初始温度为)(x ?,求杆上的温度变化情况,即考虑下定解问题: .0 ),(u 0, ,0hu ,0u 0, l,0 ,0002 2 2l x x t x u t x x u a t u t l x x ≤≤=>=+??=><<=??-??===? 仍用分离变量法求解。此定解问题的边界条件为第三类边界条件。类似§2.1中步骤,设)()(),(t T x X t x u =,代入上面的方程可得 ?????=+=+?-==. 0)()(,0)()() ()()()( 2 ' '22'2 2'''x X x X t T a t T x T a x T x X x X βββ 从而可得通解 x B x A x X ββsin cos )(+= 由边界条件知 .0)()(,0)0('=+=l hX l X X 从而 ?? ???-=?=+=.tan 0sin cos , 0h l l h l A βββββ 令 αγ γαβγ=?- ==tan 1 ,hl l 上方程的解可以看作曲线γtan 1=y ,αγ=2y 交点的横坐标,显然他们有无穷多个,于是方程有无穷多个根。用下符号表示其无穷多个正根 ,,21n γγγ 于是得到特征值问题的无穷个特征值

1,2,3...) (n ,2 2 2== l n n γβ 及相应的特征函数 x B x X n n n βsin )(= 再由方程0)()(22'=+t T a t T β, 可得 t a n n n e A t T 2 2)(β-=, 从而我们得到满足边界条件的一组特解 x e C t x u n t a n n n ββsin ),(2 2-= 由于方程和边界条件是齐次的,所以 ∑∞ =-=1 sin ),(2 2n n t a n x e C t x u n ββ 仍满足此方程和边界条件。 下面研究一下其是否满足初始条件。 )(sin 1 x x C n n n ?β=∑∞ = 可以证明}{sin x n β在区域[0,l]上具有正交性,即 ?≠=l m n xdx x 0 n m ,0sin sin ββ 证明: ) )((sin cos cos sin ))((2)sin()()sin()( ) (2)sin()(2)sin( ))cos()(cos(2 1sin sin 00=+--- =+-+---+=++- --=--+- =??m n m n m n n m n m m n m n m n m n m n m n m n m n m n m n l m n m n l m n l l l l l l l l dx x x xdx x ββββββββββββββββββββββββββββββββββββ 完成。 令 ?=l n n n xdx x L 0 ,sin sin ββ 于是, ?= l n n n xdx x L C 0 sin )(1β ?

高中数学解题方法之分离变量法(含标准答案)

分离变量法 分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法. 分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知. 解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围: 定理1 不等式()()f x g a ≥恒成立?[]min ()()f x g a ≥(求解()f x 的最小值);不等式 ()()f x g a ≤恒成立?[]max ()()f x g a ≤(求解()f x 的最大值). 定理2 不等式()()f x g a ≥存在解?[]max ()()f x g a ≥(求解()f x 的最大值);不等式 ()()f x g a ≤存在解?[]min ()()f x g a ≤(即求解()f x 的最小值). 定理3 方程()()f x g a =有解?()g a 的范围=()f x 的值域(求解()f x 的值域). 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域. 再现性题组: 1、已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。 2、若f(x)=2 33x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。 3、若f(x)=233x x --在[1,4]x ∈-上有2 ()251f x x a a ≥+--恒成立,求a 的取值范围。 4、若方程42210x x a -+=有解,请求a 的取值范围 5、已知32 11132 y x ax x = -++是(0,)+∞上的单调递增函数,则a 的取值范围是( ) .0A a <.22B a -≤≤.2C a <.2D a ≤ 6、求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 再现性题组答案: 1、解:原不等式4sin cos 25x x a ?+<-+当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立max a+5>(4sinx+cos2x)?-,设f(x)=4sinx+cos2x 则 22f(x)= 4sinx+cos2x=2sin x+4sinx+1=2(sinx 1)+3 --- ∴a+5>3a<2-∴

用分离变量法解常微分方程

用分离变量法解常微分方程 . 1 直接可分离变量的微分方程 1.1形如 dx dy = ()x f ()y ? (1.1) 的方程,称为变量分离方程,这里()x f ,()y ?分别是的连续函数. 如果?(y)≠0,我们可将(1.1)改写成 ) (y dy ?= ()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到 通解:? )(x dy ?=? dx x f )( + c. (1.2) 其中,c 表示该常数,? )(x dy ?,?dx x f )(分别理解为) (1y ?,()x f 的原函数.常数c 的取值必须保证(1.2)有意义.使()0=y ?的0y y =是方程(1.1)的解. 例1 求解方程01122=-+-dx y dy x 的通解. 解:(1)变形且分离变量: ), ,(11112 2 <<-- =-y x x dx y dy (2)两边积分: c x dx y dy +-=-? ? 2 2 11 , 得

c x y +-=arcsin arcsin . 可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解. 我们可以用这个方法来解决中学常见的一些几何问题. 例2 曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方程. 分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点 ),(y x P 的法线的斜率. 解:由题意得 y ' - =1法κ. 从而法线PQ 的方程为 )(1 x X y y Y -' - =-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为?? ? ??2,0y ,代入上式,得 )0(1 2x y y y -' -=-. 整理后,得 x y y 2-=', 分离变量,解得 y x =+2 2 2 其中c 为任意正数,如图1.

高中数学解题方法之分离变量法(含答案)

七、分离变量法 分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法. 分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知. 解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围: 定理1 不等式()()f x g a ≥恒成立?[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立?[]max ()()f x g a ≤(求解()f x 的最大值). 定理2 不等式()()f x g a ≥存在解?[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解?[]min ()()f x g a ≤(即求解()f x 的最小值). 定理3 方程()()f x g a =有解?()g a 的范围=()f x 的值域(求解()f x 的值域). 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域. 再现性题组: 1、已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。 2、若f(x)=2 33x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。 3、若f(x)=233x x --在[1,4]x ∈-上有2 ()251f x x a a ≥+--恒成立,求a 的取值范围。 4、若方程42210x x a -+= 有解,请求a 的取值范围 5、已知32 11132 y x ax x = -++是(0,)+∞上的单调递增函数,则a 的取值范围是( ) .0A a < .22B a -≤≤ .2C a < .2D a ≤ 6、求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 再现性题组答案: 1、解:原不等式4sin cos 25x x a ?+<-+当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立max a+5>(4sinx+cos2x)?-,设f(x)=4sinx+cos2x 则 22f(x)= 4sinx+cos2x=2sin x+4sinx+1=2(sinx 1)+3 --- ∴a+5>3a<2-∴

(整理)数学物理方程第二章分离变量法word版

第五讲补充常微分方程求解相关知识。

第二章 分离变量法 偏微分方程定解问题常用解法,分离变量法。 解常微分方程定解问题时,通常总是先求出微分方程的特解,由线性无关的特解叠加出通解,而后用定解条件定出叠加系数 一阶线性偏微分方程的求解问题,基本方法也是转化为一阶线性常微分方程组的求解问题 对于二阶以及更高阶的偏微分方程定解问题,情况有些不同:即使可以先求出通解,由于通解中含有待定函数,一般来说,很难直接根据定解条件定出,因此,通常的办法就是把它转化为常微分方程问题 (第六讲) §2.1 有界弦的自由振动 什么是分离变量法?使用分离变量法应具备那些条件? 下面通过两端固定的弦的自由振动问题来说明。 定解问题:考虑长为l ,两端固定的弦的自由振动,其数理方程及定解条件为 .0 ),(u ),(u 0, ,0u ,0u 0, l,0 ,0 t 0022 222l x x x t t x x u a t u t t l x x ≤≤==>==><

最新21变量分离方程及可化为变量分离方程的方程求解汇总

21变量分离方程及可化为变量分离方程的 方程求解

第二章、一阶微分方程的初等解法 [教学目标] 1. 理解变量分离方程以及可化为变量分离方程的类型(齐次方程),熟练掌握变量分离 方程的解法。 2. 理解一阶线性微分方程的类型,熟练掌握常数变易法及伯努力方程的求解。 3. 理解恰当方程的类型,掌握恰当方程的解法及简单积分因子的求法。 4. 理解一阶隐式方程的可积类型,掌握隐式方程的参数解法。 [教学重难点] 重点是一阶微分方程的各类初等解法,难点是积分因子的求法以及隐式方程的解法。 [教学方法] 讲授,实践。 [教学时间] 14学时 [教学内容] 变量分离方程,齐次方程以及可化为变量分离方程类型,一阶线性微分方程及其常数变易法,伯努利方程,恰当方程及其积分因子法,隐式方程。 [考核目标] 1.一阶微分方程的初等解法:变量分离法、一阶线性微分方程的常数变易法、恰当方程与积分因子法、一阶隐方程的参数解法。 2.会建立一阶微分方程并能求解。 §2.1 变量分离方程与变量变换 1、变量分离方程 1) 变量分离方程 形如 ?Skip Record If...? (或?Skip Record If...?) (2.1)

的方程,称为变量分离方程,其中函数?Skip Record If...?和?Skip Record If...?分别是?Skip Record If...?的连续函数. 2) 求解方法 如果?Skip Record If...?,方程(2.1)可化为, ?Skip Record If...? 这样变量就分离开了,两边积分,得到 ?Skip Record If...?(2.2) 把?Skip Record If...?分别理解为?Skip Record If...?的某一个原函数. 容易验证由(2.2)所确定的隐函数?Skip Record If...?满足方程(2.1).因而(2.2)是(2.1)的通解. 如果存在?Skip Record If...?使?Skip Record If...?,可知?Skip Record If...?也是(2.1)的解.可能它不包含在方程的通解(2.2)中,必须予以补上. 3) 例题 例1 求解方程?Skip Record If...? 解将变量分离,得到 ?Skip Record If...? 两边积分,即得 ?Skip Record If...? 因而,通解为 ?Skip Record If...?这里的?Skip Record If...?是任意的正常数. 或解出显式形式 ?Skip Record If...? 例2 解方程 ?Skip Record If...? 并求满足初始条件:当?Skip Record If...?时.?Skip Record If...?的特解.

北邮数理方程课件 第三章 分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><=βλ时,上述固有值问题有非零解.此时式(6)的通解为

x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(21 2Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D 3 32 02)12(322)12(sin )2(2ππ+- =+-=?n l xdx l n lx x l C l n 故所求的解为 x l n t l a n n l t x u n 2)12(sin 2)12(cos )12(132),(0 3 3 2 π ππ++?+- =∑∞ = 例2 演奏琵琶是把弦的某一点向旁边拨开一小段距离,然后放手任其自由振动。设弦 长为l ,被拨开的点在弦长的0 1 n (0n 为正整数)处,拨开距离为h ,试求解弦的振动,即求解定解问题

数学物理方程第二篇分离变量法

第二章 分离变量法 分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换 法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论. §2?1 特征值问题 2. 矩阵特征值问题 在线性代数中,我们已学过线性变换的特征值问题. 设A 为一n 阶实矩阵, A 可视为n R 到自身的线性变换。该变换的特征值问题(eigenvalue problem )即是求方程: ,n Ax x x R λ=∈, () 的非零解,其中C λ∈为待定常数. 如果对某个λ,问题()有非零解n x R λ∈,则λ就称为矩阵A 的特征值(eigenvalue),相应的n x R λ∈称为矩阵A 的特征向量(eigenvector). 一般来讲,特征值问题()有不多于n 个相异的特征值和线性无关的特征向量. 但可证明: 任一n 阶矩阵都有n 个线性无关的广义特征向量,以此n 个线性无关的广义特征向量作为n R 的一组新基,矩阵就能够化为 Jordan 标准型. 若A 为一n 阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正交矩阵T 使得 1T AT D -=, () 其中D =diag 12(,,...,)n λλλ为实对角阵. 设12[ ... ]n T T T T =,i T 为矩阵T 的第i 列向量(1)i n ≤≤,则式()可写为如下形式 1212 [ ... ][ ... ]n n A T T T T T T D =, 或

第二章 分离变量法

第二章 分离变量法 §2.1 有界弦的自由振动 为了了解什么是分离变量法以及使用分离变量法应该具备什么条件,我们选取两端固定的弦的自由振动问题为例,通过具体地求解逐步回答这些问题。 讨论两端固定的弦的自由振动,归结求解下列定解问题: 22222000,0,0 (2.1)0,0,0 (2.2)(),(),0 (2.3)x x l t t u u a x l t t x u u t u u x x x l t ?ψ====???=<<>?????==>????==≤≤??? 这个定解问题的特点是:偏微分方程是线性齐次的,边界条件也是齐次的。求解这样的问题,可以运用叠加原理。我们知道,在求解常系数线性齐次常微分方程的初值问题时,是先求出足够多个特解(它们能构成通解),再利用叠加原理作这些特解的线性组合,使满足初始条件。这就启发我们,要解问题(2.1~2.3),先寻求齐次方程(2.1)的满足齐次边界条件(2.2)的足够多个具有简单形式(变量被分离的形式)的特解,再利用它们作线性组合使满足初始条件(2.3)。 这种思想方法,还可以从物理模型得到启示。从物理学知道乐器发出的声音可以分解成各种不同频率的单音,每种单音,振动时形成正弦曲线,其振幅依赖于时间t ,即每个单音可以表示成

(,)()sin u x t A t x ω= 的形式,这种形式的特点是:u (x ,t )中的变量x 与t 被分离出来。 根据上面的分析,现在我们就试求方程(2.1)的分离变量形式 (,)()()u x t X x T t = 的非零解,并要求它满足齐次边界条件(2.2),式中X (x ),T (t )分别表示仅与x 有关及仅与t 有关的待定函数。 由(,)()()u x t X x T t =得 2222()(),()()u u X x T t X x T t x t ??''''==?? 代入方程(2.1)得 2()()()()X x T t a X x T t ''''= 或 2()()()() X x T t X x a T t ''''= 这个式子左端仅是x 的函数,右端仅是t 的函数,只有它们均为常数时才能相等。令此常数为-λ,则有 2()()()() X x T t X x a T t λ''''==- 这样我们得到两个常微分方程: 2()()0T t a T t λ''+= (2.4) ()()0X x X x λ''+= (2.5) 再利用边界条件(2.2),由于u (x ,t )=X (x ) T (t ),故有 (0)()0,()()0X T t X l T t == 但T (t )不恒等于零,因为如果T (t )≡0,则u (x ,t )=0,这种解称

数学物理方程-第三章分离变量法2

第三章 贝塞尔函数 对两个自变量的情形,在第二章中比较系统地介绍了分离变量法的基本思想 以及求解偏微分方程定解问题的主要步骤. 本章讨论多于两个自变量的情形,其求解过程和两个自变量情形基本相同,区别仅在于特征值问题的求解要用到一类特殊函数—贝塞尔(Bessel )函数. 本章前两节围绕一类特征值问题的求解,比较系统地介绍二阶常微分方程的幂级数解法,以及Bessel 函数的一些基本性质. 第三节介绍多于两个自变量情形的分离变量法. §3?1 二阶线性常微分方程的幂级数解法 3.1.1 常系数线性方程的基解组 在高等数学中,同学们已学过常微分方程的一些求解方法. 对于常系数线性常微分方程,只要求出特征方程的根,就很容易写出齐次方程的基解组,由此可得齐次方程通解表达式. 例1.1 求解下列齐次微分方程 (1) '''320y y y -+=. (2) '''4130y y y ++=. (3) '''440y y y ++=. 解 (1) 特征方程为 2320λλ-+=, 特征根为121,2,λλ== 故基解组为 2{, }x x e e . (2)特征方程为 24130λλ++=, 特征根为1223, 23i i λλ=-+=--,是一对共轭复数,基解组为(23)(23){, }i x i x e e -+--, 这两个解为复值函数. 为得到实值函数的基解组,利用齐次微分方程解的线性性质得 2(23)(23)1 cos3 (+ )2x i x i x e x e e --+--=, 2(23)(23)1 sin 3 ( )2x i x i x e x e e i --+--=-, 这两个实值函数22cos3, sin3x x e x e x --也是方程(2)的解,由此得方程(2)的基解组为 22{cos3, sin3}x x e x e x --. (3)特征方程为 2440λλ++=,

相关文档
最新文档