工程热力学实验报告

工程热力学实验报告
工程热力学实验报告

实 验 报 告

课程名称

实验项目名称

实验类型

实验学时

班级

学号

姓名

指导教师实验室名称

实验时间预习部分

实验过程表现

实验报告

部分

总成绩

实验成绩

教师签字

日期

哈尔滨工程大学教务处 制

、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行

高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高

预习实验一、实验名称

二、实验目的

三、实验仪器

四、实验原理

五、实验内容及步骤(包括表格)

实验报告一、数据处理

二、误差分析

工程热力学实验 二氧化碳PVT实验指导书(2012.06.07)

二氧化碳临界状态观测及p-v-T关系的测定 一、实验目的 1. 观察二氧化碳气体液化过程的状态变化和临界状态时气液突变现象,增加对临界状态概念的感性认识。 2. 加深对课堂所讲的工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。 3. 掌握二氧化碳的p-v-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4. 学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。 二、实验原理 当简单可压缩系统处于平衡状态时,状态参数压力、温度和比容之间有确切的关系,可表示为: (,,)=0 (7-1-1) F p v T 或 =(,) (7-1-2) v f p T 在维持恒温条件下、压缩恒定质量气体的条件下,测量气体的压力与体积是实验测定气体p-v-T关系的基本方法之一。1863年,安德鲁通过实验观察二氧化碳的等温压缩过程,阐明了气体液化的基本现象。 当维持温度不变时,测定气体的比容与压力的对应数值,就可以得到等温线的数据。 在低于临界温度时,实际气体的等温线有气、液相变的直线段,而理想气体的等温线是正双曲线,任何时候也不会出现直线段。只有在临界温度以上,实际气体的等温线才逐渐接近于理想气体的等温线。所以,理想气体的理论不能说明实际气体的气、液两相转变现象和临界状态。 二氧化碳的临界压力为73.87bar(7.387MPa),临界温度为31.1℃,低于临界温度时的等温线出现气、液相变的直线段,如图1所示。30.9℃

是恰好能压缩得到液体二氧化碳的最高温度。在临界温度以上的等温线具有斜率转折点,直到48.1℃才成为均匀的曲线(图中未标出)。图右上角为空气按理想气体计算的等温线,供比较。 1873年范德瓦尔首先对理想气体状态方程式提出修正。他考虑了气体分子体积和分子之间的相互作用力的影响,提出如下修正方程: ()()p a v v b RT + -=2 (7-1-3) 或写成 pv bp RT v av ab 320-++-=() (7-1-4) 范德瓦尔方程式虽然还不够完善,但是它反映了物质气液两相的性质和两相转变的连续性。 式(7-1-4)表示等温线是一个v 的三次方程,已知压力时方程有三个根。在温度较低时有三个不等的实根;在温度较高时有一个实根和两个虚根。得到三个相等实根的等温线上的点为临界点。于是,临界温度的等温线在临界点有转折点,满足如下条件: ( )??p v T =0 (7-1-5)

南京师范大学《工程热力学》考试重点笔记.doc

南京师范大学《工程热力学》考试重点笔记专业课复习资料(最新版)封面 南京师范大学工程热力学第第 1 章基本概念本章基本要求:深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。本章重点:取热力系统,对工质状态的描述,状态与状态参数的关系,状态参数,平衡状态,状态方程,可逆过程。1. 1 热力系统一、热力系统热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。外界:与系统相互作用的环境。界面:假想的、实际的、固定的、运动的、变形的。依据:系统与外界的关系,系统与外界的作用:热交换、功交换、质交换。二、闭口系统和开口系统(按系统与外界有无物质交换)闭口系统:系统内外无物质交换,称控制质量。开口系统:系统内外有物质交换,称控制体积。三、绝热系统与孤立系统绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界 四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。非均匀系统:由两个或两个以上的相所组成的系统。单元系统:一种均匀的和化学成分不变的物质组成的系统。多元系统:由两种或两种以上物质组成的系统。单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。注意:系统的选取方法仅影响解决问题的繁复程度,与研究问题的结果无关。思考题:孤立系统一定是闭口系统吗。反之怎样。孤立系统一定不是开口的吗。孤立系统是否一定绝热。1 .2 工质的热力状态与状态参数一、状态与状态参数状态:工质的热力状态与状态参数一、状态与状态参数状态:热力系统中某瞬间表现的工质热力性质的总状况。状态参数:描述工质状态特性的各种状态的宏观物理量。如:温度(T)、压力(P)、比容()或密度()、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。状态参数的数学特性:1.1212x x dx 有关,而与状态变化的途径无关。2. dx =0 表明:状态参数的循环积分为零基本状态参数:可直接或间接地用仪表测量出来的状态参数。如:温度、压力、比容或密度1 .温度:宏观上,是描述系统热力平衡状况时冷热程度的物理量。微观上,是大量分子热运动强烈程度的量度BTw m22式中22w m分子平移运动的动能,其中 m 是一...

工程热力学课后习题及答案第六版完整版

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3) MPa p 1.0=, 500 =t ℃时的摩尔容 积 Mv 。 解:(1)2N 的气体常数 28 8314 0= = M R R =)/(K kg J ? (2)标准状态下2N 的比容和密度 101325 273 9.296?== p RT v =kg m /3 v 1 =ρ=3/m kg (3) MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0 =kmol m /3 2-3.把CO 2压送到容积3m 3 的储气罐里,起始表压力 301=g p kPa ,终了表压力3.02=g p Mpa ,温度由 t1=45℃增加到t2=70℃。试求被压入的CO 2的质量。当地大气压B = kPa 。 解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO 2的质量 压送后储气罐中CO 2的质量 根据题意 容积体积不变;R = B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO 2的质量 )1 1 22(21T p T p R v m m m -= -= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m 3 的空气,如外界的温度增高到27℃,大气压降低到,而鼓风机每小时的送风量仍为300 m 3 ,问鼓风机送风量的质量改变多少 解:同上题 1000)273 325 .1013003.99(287300)1122(21?-=-= -=T p T p R v m m m =41.97kg 2-6 空气压缩机每分钟自外界吸入温度为15℃、压力 为的空气3 m 3 ,充入容积8.5 m 3 的储气罐内。设开始时罐内的温度和压力与外界相同,问在多长时间内空气压 缩机才能将气罐的表压力提高到设充气过程中气罐内温度不变。 解:热力系:储气罐。 使用理想气体状态方程。 第一种解法: 首先求终态时需要充入的空气质量 288 2875.810722225???==RT v p m kg 压缩机每分钟充入空气量 288 28731015???==RT pv m kg 所需时间 == m m t 2 第二种解法 将空气充入储气罐中,实际上就是等温情况下把初压为一定量的空气压缩为的空气;或者说、 m 3 的空气在下占体积为多少的问题。 根据等温状态方程 、8.5 m 3 的空气在下占体积为 5.591 .05 .87.01221=?== P V p V m 3 压缩机每分钟可以压缩的空气3 m 3 ,则要压缩 m 3 的 空气需要的时间 == 3 5 .59τ

工程热力学第三版电子教案第10章自我测验题

第十章自我测验题 1、画出柴油机混合加热理想循环的p-v图和T-s图,写出该循环吸热量、放热量、净功量和热效率的计算式;并分析影响其热效率的因素有哪些,与热效率的关系如何? 2、画出汽油机定容加热理想循环的p-v图和T-s图,写出该循环吸热量、放热量、净功量和热效率的计算式,分析如何提高定容加热理想循环的热效率,是否受到限制? 3、柴油机的热效率高于汽油机的热效率其主要原因是什么? 4、怎样合理比较内燃机3种理想循环(混合加热循环、定容加压循环、定压加热循环)热效率的大小?比较结果如何? 5、画出燃气轮机装置定压加热理想循环的p-v图和T-s图。分析如何利用压气机绝热效率和燃气轮机相对内效率确定实际压气机出口的温度和实际燃气轮机出口的温度,怎样来提高定压加热实际循环的热效率? 6、燃气轮机装置定压加热实际循环采用回热的条件是什么?一旦可以采用回热,为什么总会带来循环热效率的提高? 7、朗肯循环的定压吸热是在________中进行的,绝热膨胀是在________中进行的,在冷凝器中发生的是________过程,在水泵中进行的是_______过程。 8、试将如图所示的蒸汽再热循环的状态点1、2、3、4、5、6及循环画在T-s图上。假设各状态点的状态参数已知,填空: 9、如图所示的一级抽汽回热(混合式)蒸汽理想循环,水泵功可忽略。试: (1)定性画出此循环的T-s图和h-s图;

(2)写出与图上标出的状态点符号相对应的焓表示的抽汽系数,输出净功,吸热量,放热量,热效率及汽耗率的计算式。 10、某气体依次经历绝热、定容、定压3个可逆过程完成循环。试在T-s图上判断该循环是热机循环还是制冷循环。 11、蒸气压缩制冷循环可以采用节流阀来代替膨胀机,空气压缩制冷循环是否也可以采用这种方法?为什么? 12、何谓制冷系数?何谓热泵系数?试用热力学原理说明能否利用一台制冷装置在冬天供暖。 13、一内燃机按定容加热理想循环工作,其进口状态为p1=98kPa,t1=60℃,压缩比为6,加入热量q1=879kJ/kg。工质视为空气,比热容为定值,试: (l)在p-v图和T-s图上画出该机的理想循环; (2)计算压缩终了温度、循环最高温度、循环放热量及循环热效率。 14、内燃机定压加热循环,工质视为空气,已知p1=100kPa,t1=70℃,压缩比为12, 。设比热容为定值,求循环的吸热量、放热量、循环净功量及循环热效率。 15、一内燃机混合加热循环,已知p1=103kPa,t1=22℃,压缩比为16,定压加热过程比体积的增量占整个膨胀过程的3%,循环加热量为801.8kJ/kg。求循环最高压力、最高温度及循环热效率。 16、一燃气轮机装置定压加热循环,工质视为空气,进入压气机时的温度p1=93kPa,t1=20℃,在绝热效率为0.83的压气机中被压缩到p2=552kPa。在燃烧室中吸热后温度上升到t3=870℃,经相对内效率为0.8的燃气轮机绝热膨胀到p4=93kPa。空气的质量流量为10 kg/s。设空气比热容为定值,试求: (l)循环的净功率; (2)循环热效率。 17、如图所示的一次再热和一级抽汽回热蒸汽动力理想循环,新蒸汽与再热蒸汽温度相同,回热器为表面式,疏水进人凝汽器,被加热水出口焓看作等于抽汽压力下的饱和水焓,水泵功可忽略。试:

热力学实验.

工程热力学实验 一、热力设备认识 (时间:第7周周二3、4节;地点:工科D504) 一、实验目的 1. 了解热力设备的基本原理、主要结构及各部件的用途; 2. 认识热力设备在工程热力学中的重要地位、热功转换的一般规律以及热力设备与典型热力循环的联系。 二、热力设备在工程热力学课程中的重要地位 工程热力学主要是研究热能与机械能之间相互转换的规律和工质的热力性质的一门科学,这就必然要涉及一些基本的热力设备(或称热动力装置),如内燃机、制冷机、藩汽动力装置、燃气轮机等。了解这些热力设备的基本原理、主要结构、和各部件的功能,对正确理解工程热力学基本概念、基本定律十分必要。工程热力学中涉及的各循环都是通过热力设备来实现的,如活塞式内燃机有三种理想循环:定容加热循环、定压加热循环和混合加热循环;蒸汽动力装置有朗肯循环;燃气轮机有定压加热循环和回热循环;制冷设备有蒸汽压缩制冷循环、蒸汽喷射制冷循环等。卡诺循环则是由两个定温和两个绝热过程所组成的可逆循,具有最高的热效率,它指出了各种热力设备提高循环热效率的方向。因此,对这些热力设备的工作原理和基本特性有一个初步了解,对一些抽象概念有一个感性认识,能够加深对热力学基本定律的理解,掌握一些重要问题(如可逆和不可逆)的实质,有助于学好工程热力学这门课程。 三、各种热力设备的基本结构与原理 1.内燃机 内燃机包括柴油机和汽油机等,是-种重量轻、体积小、使用方便的动力机械。以二冲程柴油机为例,其基本结构如图1所示。

图1 内燃机结构图 内燃机的工质为燃料燃烧所生成的高温燃气。根据燃料开始燃烧的方式不同可分为点燃式和压燃式,点燃式是在气缸内的可燃气体压缩到一定压力后由电火花点燃燃烧;压燃式是气缸内的空气经压缩其温度升高到燃料自燃温度后,喷入适量燃料,燃料便会自发地燃烧。压燃式内燃机的工作过程分为吸气、压缩、燃烧、膨胀及排气几个阶段。吸气开始时进气门打开,活塞向下运动把空气吸入气缸。活塞到达下死点时进气门关闭而吸气过程结束。进气门和排气门同时关闭,活塞向上运动压缩气缸内空气,空气温度与压力不断升高,直到活塞到达上死点时,压缩过程结束。这时气缸内空气温度已超过燃料自燃温度,向气缸内喷入适量燃料,燃料便发生燃烧。燃烧过程进行的很快,接着是高温燃气发生膨胀,推动活塞向下运动带动曲轴作出机械功。活塞到达下死点时,排气门打开,气缸内的高温高压燃气通过排气门排至大气,活塞又向上运动将气缸内的剩余气体推出气缸,活塞到达上死点时排气过程结束,完成一个循环。当活塞再一次由上死点向下运动时重新开始一个循环。这样通过气缸实现了燃料的化学能变为热能,热能又变为机械能的过程。 汽油机的工作过程基本上与柴油机差不多,不同之处在于汽油机的汽油预先在化油器内蒸发汽化并和空气混合后一起吸入气缸,压缩过程结束后由电火花点燃燃烧。其它过程与柴油机完全相同。 内燃机是主要用在工程机械、船舶和航空等领域,以及海上采油平台用内燃机发电。 汽油机的总体构造分为基本机构和辅助系统,如图2所示。 基本机构包括: 曲柄连杆机构:气缸盖、气缸体、曲轴箱、活塞、连杆和曲轴,其功用是将燃料的热能

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

《工程热力学A》(含实验)课程教学大纲.

《工程热力学A》(含实验)课程教学大纲 课程编码:08242025 课程名称:工程热力学A 英文名称:Engineering Thermodynamics A 开课学期:4 学时/学分:54 / 4 (其中实验学时:6 ) 课程类型:学科基础课 开课专业:热能与动力工程(汽车发动机方向)、热能与动力工程(热能方向) 选用教材:陈贵堂《工程热力学》北京理工大学出版社,1998; 陈贵堂王永珍《工程热力学》(第二版)北京理工大学出版社,2008 主要参考书: 1.陈贵堂王永珍《工程热力学学习指导》北京理工大学出版社,2008 2.华自强张忠进《工程热力学》.高等教育出版社.2000 3.沈维道,蒋智敏,童钧耕.工程热力学.第三版.北京:高等教育出版社,2001 4.曾丹苓,敖越,张新铭,刘朝编.工程热力学.第三版.北京:高等教育出版社,2002 5.严家马录.工程热力学.第三版.北京:高等教育出版社,2001 执笔人:王永珍 一、课程性质、目的与任务 该课程是热能与动力工程专业、建筑环境与设备工程专业基础课,是本专业学生未来学习、生活与工作的基石。通过它的认真学习可以可使学生了解并掌握一种新的理论方法体系,了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算,为学生学习专业课程提供充分的理论准备,同时培养学生对工程中有关热工问题的判断、估算和综合分析的能力,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 二、教学基本要求 通过本课程的学习可使学生了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算。同时学生还可了解并掌握一种新的理论方法体系——外界分析法(The Surrounding Analysis Method, SAM),有利与开阔学生分析问题、解决问题的思路,有利于培养学生对工程中有关热工问题的判断、估算和综合分析的能力与素质,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 三、各章节内容及学时分配 绪论introduction(1学时) 主要内容是让学生了解工程热力学的研究对象及研究方法、经典热力学理论体系的逻辑结构、SAM体系的逻辑结构及其主要特点。 一、热力学的定义、研究目的及分类Definition, Purpose, Classification 二、本门课的主要内容Contents 三、本门课的理论体系theory systems 第一章基本概念及定义Basic Concepts and Definitions(3学时,重点) 1-1 热力学模型The Thermodynamic Model of the SAM System 让学生了解并掌握热力学系统、边界、外界等概念,了解并重点掌握外界分析法的基本热力学

工程热力学(1)考试复习重点总结

第一章 基本概念及定义 一、填空题 1、热量与膨胀功都是 量,热量通过 差而传递热能,膨胀功通过 差传递机械能。 2、使系统实现可逆过程的条件是:(1) ,(2) 。 3、工质的基本状态参数有 、 、 。 4、热力过程中工质比热力学能的变化量只取决于过程的___________而与过程的路经无关。 5、热力过程中热力系与外界交换的热量,不但与过程的初终状态有关,而且与_______有关。 6、温度计测温的基本原理是 。 二、判断题 1、容器中气体的压力不变则压力表的读数也绝对不会改变。( ) 2、无论过程是否可逆,闭口绝热系统的膨胀功总是等于初、终态的内能差。( ) 3、膨胀功的计算式?= 2 1 pdv w ,只能适用于可逆过程。 ( ) 4、系统的平衡状态是指系统在无外界影响的条件下(不考虑外力场作用),宏观热力性质不随时间而变化的状态。( ) 5、循环功越大,热效率越高。( ) 6、可逆过程必是准静态过程,准静态过程不一定是可逆过程。( ) 7、系统内质量保持不变,则一定是闭口系统。( ) 8、系统的状态参数保持不变,则系统一定处于平衡状态。( ) 9、孤立系统的热力状态不能发生变化。( ) 10、经历一个不可逆过程后,系统和外界的整个系统都能恢复原来状态。( ) 三、选择题 1、闭口系统功的计算式21u u w -=( )。 (A )适用于可逆与不可逆的绝热过程 (B )只适用于绝热自由膨胀过程 (C )只适用于理想气体绝热过程 (D )只适用于可逆的绝热过程 2、孤立系统是指系统与外界( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有任何能量传递与质交换 3、绝热系统与外界没有( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有功量交换

工程热力学第四版课后思考题答案

1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗? 不一定,稳定流动系统内质量也保持恒定。 2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。 3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式 p =p b +p g (p > p b ), p = p b -p v (p < p b ) 中,当地大气压是否必定是环境大气 压? 当地大气压p b 改变,压力表读数就会改变。当地大气压 p b 不一定是环境大气压。 5.温度计测温的基本原理是什么? 6.经验温标的缺点是什么?为什么? 不同测温物质的测温结果有较大的误差,因为测温结果 依赖于测温物质的性质。 7.促使系统状态变化的原因是什么? 举例说明。 有势差(温度差、压力差、浓度差、电位差等等)存在。 8.分别以图1-20所示的参加公路自行车赛的运动员、运动手枪中的压缩空气、杯子里的热水和正在运行的电视机为研究对象,说明这些是什么系统。 参加公路自行车赛的运动员是开口系统、运动手枪中的压缩空气是闭口绝热系统、杯子里的热水是开口系统(闭口系统——忽略蒸发时)、正在运行的电视机是闭口系统。 9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。取正在使用的家用电热水器为控制体(但不包括电加热器),这是什么系统?把电加热器包括在研究对象内,这是什么系统?什么情况下能构成孤立系统? 不包括电加热器为开口(不绝热)系统(a 图)。包括电加热器则为开口绝热系统(b 图)。 将能量传递和质量传递(冷水源、热水汇、热源、电源等)全部包括在内,构成孤立系统。或者说,孤立系统把所有发生相互作用的部分均包括在内。 4题图 9题图

第1章 《工程热力学》实验(第四版)

第一章 《工程热力学》实验 §1-1 二氧化碳临界状态及P-V-T 关系实验 一、实验目的和任务 目的: 1.巩固工质热力学状态及实际气体状态变化规律的理论知识,掌握用实验研究的方法和技巧。 2.熟悉部分热工仪器的正确使用方法(如活塞式压力计、恒温水浴等),加深对饱和状态、临界状态等基本概念的理解,为今后研究新工质的状态变化规律奠定基础。 任务: 1.测定CO 2的t v p --关系,在v p -坐标中绘出几种等温曲线,与标准实验曲线及克拉贝龙方程和范得瓦尔方程的理论计算值相比较并分析差异原因。 2.观察临界状态,测定CO 2的临界参数(c c c t v p 、、),将实验所得的c v 值与理想气体状态方程及范得瓦尔方程的理论计算值作一比较,简述其差异原因。 3.测定CO 2在不同压力下饱和蒸气和饱和液体的比容(或密度)及饱和温度和饱和压力的对应关系。 4.观察凝结和汽化过程及临界状态附近汽液两相模糊的现象。 二、实验原理 1.实际气体在压力不太高、温度不太低时,可以近似地认为理想气体,并遵循理想气体状态方程: mRT pV = (1) 式中 p ―绝对压力(Pa ) V ―容积(m 3) T ―绝对温度(K) m ―气体质量(kg) R ―气体常数, 2CO R =8.314/44=0.1889(kJ/kg ·K) 实际气体中分子力和分子体积,在不同温度压力范围内,这两个因素所引起的相反作用按规定是不同的,因而,实际气体与不考虑分子力、分子的体积的理想气体有一定偏差。1873年范得瓦尔针对偏差原因提出了范得瓦尔方程式: (2) 或 0)(2 3=+++-b av v RT bp pv (3) 式中 a ―比例常数, c c p RT a ) (272 =; 2 /v a ―分子力的修正项; RT b v v a p =-+))((2

工程热力学复习重点及简答题

工程热力学复习重点2012. 3 绪论 [1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2]理解热能利用的两种主要方式及其特点 [3]了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 [1]热能:能量的一种形式 [2]来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3]利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 [1]过程的方向性:如:由高温传向低温 [2]能量属性:数量属性、,质量属性(即做功能力) [3]数量守衡、质量不守衡 [4]提高热能利用率:能源消耗量与国民生产总值成正比。 第1章基本概念及定义 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。 依据:系统与外界的关系 系统与外界的作用:热交换、功交换、质交换。 二、闭口系统和开口系统 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统 绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换

工程热力学课后答案

《工程热力学》沈维道主编第四版课后思想题答案(1?5章)第1章基本概念 1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。"绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 3.平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 P 二P b P e (P P b) ;P = P b - P v (P :: P b) 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的Pb应是“当地环境介质”的压力,而不是随便任何其它 意义上的“大气压力",或被视为不变的“环境大气压力”。 5.温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 6.经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。这便是经验温标的根本缺点。 7.促使系统状态变化的原因是什么?举例说明答:分两种不同情况:⑴若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用, 系统的状态将发生变化。例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的温度逐渐降低,水的温度逐渐升高,最终系统从热不平衡的状态过渡到一种新的热平衡状态;⑵若系统原处于平衡状态,则只有在外界的作用下(作功或传热)系统的状态才会发生变。 &图1-16a、b所示容器为刚性容器:⑴将容器分成两部分。一部分装气体, 一部分抽 成真空,中间是隔板。若突然抽去隔板,气体(系统)是否作功?⑵设真空部分装 有许多隔板,每抽去一块隔板让气体先恢复平衡再抽去一块, 问气体係统)是否作功? 图1-16 .吾苦翹E附團 ⑶上述两种情况从初态变化到终态,其过程是否都可在P-V图上表示? 答:⑴;受刚性容器的约束,气体与外界间无任何力的作用,气体(系统)不对外界作功; ⑵b情况下系统也与外界无力的作用,因此系统不对外界作功;

工程热力学实验报告

水的饱和蒸汽压力和温度关系 实验报告

水的饱和蒸汽压力和温度关系 一、实验目的 1、通过水的饱和蒸汽压力和温度关系实验,加深对饱和状态的理解。 2、通过对实验数据的整理,掌握饱和蒸汽P-t关系图表的编制方法。 3、学会压力表和调压器等仪表的使用方法。 二、实验设备与原理 456 7 1. 开关 2. 可视玻璃 3. 保温棉(硅酸铝) 4. 真空压力表(-0.1~1.5MPa) 5. 测温管 6. 电压指示 7. 温度指示8. 蒸汽发生器9. 电加热器10. 水蒸汽11.蒸馏水12. 调压器 图1 实验系统图 物质由液态转变为蒸汽的过程称为汽化过程。汽化过程总是伴随着分子回到液体中的凝结过程。到一定程度时,虽然汽化和凝结都在进行,但汽化的分子数与凝结的分子数处于动态平衡,这种状态称为饱和态,在这一状态下的温度称为饱和温度。此时蒸汽分子动能和分子总数保持不变,因此压力也确定不变,称为饱和压力。饱和温度和饱和压力的关系一一对应。 二、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将调压器指针调至零位,接通电源。 3、将调压器输出电压调至200V,待蒸汽压力升至一定值时,将电压降至30-50V保温(保温电压需要随蒸汽压力升高而升高),待工况稳定后迅速记录水蒸汽的压力和温度。 4、重复步骤3,在0~4MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 5、实验完毕后,将调压器指针旋回至零位,断开电源。 6、记录室温和大气压力。

四、数据记录 五、实验总结 1. 绘制P-t关系曲线将实验结果绘在坐标纸上,清除偏离点,绘制曲线。

工程热力学第二章整理知识点第三版

工程热力学第三版 沈维道蒋智敏童钧耕合编 第二章热力学第一定律 热力学第一定律(能量守恒与转换定律):自然界中的一切物质都具有能量, 能量不可能被创造, 也不可能被消灭;但能量可以从一种形态转变为另一种形态,且在能量的转化过程中能量的总量保持不变。它确定了热力 过程中热力系与外界进行能量交换时,各种形态能量数量上的守恒关系。 能量是物质运动的度量。分子运动学说阐明了热能是组成物质的分子、原子等微粒的杂乱运动———热运动的能量。 根据气体分子运动学说,热力学能是热力状态的单值函数。在一定的热 力状态下, 分子有一定的均方根速度和平均距离, 就有一定的热力学能, 而与达到这一热力状态的路径无关,因而热力学能是状态参数。由于气体的热力状态可由两个独立状态参数决定, 所以热力学能一定是两个独立状态参数的函数,如: u = f( T, v) 或 u = f( T, p) ; u = f( p, v)

能量传递方式:作功和传热。作功来传递能量总是和物体的宏观位移有关。 功的形式除了膨胀功或压缩功这类与系统的界面移动有关的功外, 还有因工质在开口系统中流动而传递的功, 这种功叫做推动功。对开口系统进行功的计算时需要考虑这种功。 开口系统和外界之间功的交换。 取燃气轮机为一开口系统,当1 kg工质从截面 1 - 1 流入该热力系时, 工质带入系统的 推动功为 p 1 v 1 , 工质在系统中进行膨胀, 由状态 1 膨胀到状态 2, 作膨胀功 w, 然后从截面 2 - 2 流出, 带出系统的推动功为 p 2 v 2 。推动功差 Δ( pv) = p 2 v 2 - p 1 v 1 是系统为维持工质流动所需的功,称为流动功(系统为维持工质流动所需的功)。在不考虑工质的动能及位能变化时,开口系与外界交换的功量是膨胀功与流动功之差w - ( p 2 v 2

工程热力学课后答案..

《工程热力学》 沈维道主编 第四版 课后思想题答案(1~5章) 第1章 基本概念 ⒈ 闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 ⒉ 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊ 平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋ 倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 b e p p p =+ ()b p p >; b v p p p =- ()b p p < 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的Pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。 ⒌ 温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 ⒍ 经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。这便是经验温标的根本缺点。 ⒎ 促使系统状态变化的原因是什么?举例说明。 答:分两种不同情况: ⑴ 若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用,系统的状态将发生变化。例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的温度逐渐降低,水的温度逐渐升高,最终系统从热不平衡的状态过渡到一种新的热平衡状态; ⑵ 若系统原处于平衡状态,则只有在外界的作用下(作功或传热)系统的状态才会发生变。 ⒏ 图1-16a 、b 所示容器为刚性容器:⑴将容器分成两部分。一部分装气体, 一部分抽成真空,中间是隔板。若突然抽去隔板,气体(系统)是否作功? ⑵设真空部分装有许多隔板,每抽去一块隔板让气体先恢复平衡再抽去一块, 问气体(系统)是否作功? ⑶上述两种情况从初态变化到终态,其过程是否都可在P-v 图上表示? 答:⑴;受刚性容器的约束,气体与外界间无任何力的作用,气体(系统)不对外界作功; ⑵ b 情况下系统也与外界无力的作用,因此系统不对外界作功;

工程热力学第三版电子教案第10章

第10章动力循环及制冷循环 10.1本章基本要求 (101) 10.2 例题 (101) 10.3 思考及练习题 (107) 10.4自测题 (110)

10.1本章基本要求 1.熟练掌握水蒸气朗肯循环、回热循环、再热循环以及热电循环的组成、热效率计算及提高热效率的方法和途径。 2.熟练空气和蒸汽压缩制冷循环的组成、制冷系数的计算及提高制冷系数的方法和途径。 3.了解吸收制冷、蒸汽喷射制冷及热泵的原理。 10.2 例题 例1:某朗肯循环的蒸汽参数取为1t =550C 0 ,1p =30bar ,2p =0.05bar 。试计算1) 水泵所消耗的功量,2) 汽轮机作功量, 3) 汽轮机出口蒸汽干度, 4) 循环净功, 5) 循环热效率。 解:根据蒸汽表或图查得1、2、3、4各状态点的焓、熵值: 1h =3568.6KJ/kg 1s =7.3752kJ/kgK 2h =2236kJ/kg 2s =7.3752kJ/kgK 3h =137.8kJ /kg 3s =0.4762kJ/kgK 4h =140.9kJ/kg 则 1) 水泵所消耗的功量为 34h h w p -==140.9-137.78=3.1kJ/kg 2) 汽轮机作功量 21h h w t -==3568.6-2236=1332.6kJ/kg 3) 汽轮机出口蒸汽干度

2p =0.05bar 时的'2s =0.4762kJ/kgK "2s =8.3952kJ/kgK. 则 =--=' 2 "2' 2 2s s s s x 0.87 或查h-s 图可得 x =0.87. 4) 循环净功 p T w w w -=0=1332.6-3.1=1329.5kJ/kg 5) 循环热效率 411h h q -= =3568.6-140.9=3427.7KJ/kg 故 1 q w T = η =0.39=39% (i )p 3a =6.867bar ,t 3a =490℃ 水泵的功8.0)(12÷-=p p v w a p =0.001(686.7-9.81)÷0.8=0.846kJ/kg w net =923.57-0.846=922.72kJ/kg (ii) p 3b =58.86 bar ,t 3b =490℃ 水泵的功8.0)(12÷-=p p v w b p =0.001(5886-9.81)÷0.8=7.34 kJ/kg w net =1057.5-7.34=1050.16 kJ/kg

工程热力学基本概念及重要公式

工程热力学基本概念及 重要公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一章基本概念1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

相关文档
最新文档