用导函数的极限判定函数在某点的可导性

用导函数的极限判定函数在某点的可导性
用导函数的极限判定函数在某点的可导性

(完整版)函数的单调性练习题及答案

函数的单调性练习题 一 选择题: 1. 函数f (x )=x 2+2x-3的递增区间为 ( ) A .(-∞,-3] B .[-3,1] C .(-∞,-1] D .[-1,+∞) 2. 如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A.[-3,+∞) B.(-∞,-3] C.(-∞,5] D.[3,+∞) 3. 函数111 y x =-- ( ) A .在(-1,+∞)内是单调递增 B .在(-1,+∞)内是单调递减 C .在(1,+∞)内是单调递减 D .在(1,+∞)内是单调递增 4. 如果函数()f x kx b =+在R 上单调递减,则( ) A. 0k > B. 0k < C. 0b > D. 0b < 5. 在区间(,0)-∞上为增函数的是( ) A .2y x =- B .2y x = C .||y x = D .2y x =- 6. 函数2()2f x x x =-的最大值是( ). A. -1 B. 0 C. 1 D. 2 7. 函数y x =+ ). A. 0 B. 2 C. 4 D. 二 填空题: 8. 函数f (x )=2x 2一mx+3,在(一∞,一1)上是减函数,在[一1,+∞)上是增函数,则m=_______。 9.已知()x f 是定义在()2,2-上的减函数,并且()()0211>---m f m f ,则实数m 的取值范围______________。 三 解答题: 10. 利用单调函数的定义证明:函数)2,0(2)(在区间x x x f + =上是减函数.

11.已知定义在区间(0,+∞)上的函数()x f 满足()()2121x f x f x x f -=???? ??,且当1>x 时 ()0

专题8极限与函数的导数的题型与方法

专题八 极限与函数的导数的题型与方法 【考点审视】 极限与导数作为初等数学与高等数学的衔接点,新课程卷每年必考,主要考查极限与导数的求法及简单应用。纵观近年来的全国卷与各省市的试卷,试题呈“一小一大”的布局,“小题”在选择、填空题中出现时,都属容易题;“大题”在解答题中出现时,极限通常与其它数学内容联系而构成组合题,主要考查极限思想与方法的灵活应用能力;导数的考查常给出一个含参的函数或应用建模,通过求导、分析函数的单调性与最值,考查“数形结合”、“分类讨论”等数学思想方法的综合运用能力。从2004年各地的高考试卷看,考生在备考时,应从下列考点夯实基础,做到以不变应万变: (1)从数列或函数的变化趋势了解极限概念,理解三个基本极限: 1)c c c n (lim =∞ →是常数),2)01 lim =∞→n n ,3)∞→n lim )1|(|0<=q q n . (2)明确极限四则运算法则的适用条件与范围,会求某些数列和函数的极限。 (3)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值。 (4)了解导数的概念,掌握函数在一点处的导数定义,理解导函数的概念。 (5)熟记八个基本导数公式,掌握求导的四则运算法则,理解复合函数的求导法则,会求简单函数的导数。 (6)掌握导数的几何意义与物理意义,理解可导函数的单调性、极值与导数的关系,强化用导数解决实际问题的能力。 【疑难点拨】:1,极限的四则运算法则,只有当两数列或两函数各自都有极限时才能适用。对 00、∞ ∞ 、∞-∞、∞?0型的函数或数列的极限,一般要先变形或化简再运用法则求极限。例如(2004年辽宁,14)π ππ --→x x x x cos )(lim = 【分析】这是 00 型,需因式分解将分母中的零因子消去,故π ππ--→x x x x cos )(lim =x x x cos )(lim ππ +→=π2-。 2,极限的运算法则仅可以推广到有限个数列或函数,对于无穷项的和或积必须 先求和或积再求极限;商的极限法则,必须分母的极限不为零时才适用。例如: (2004年广东,4)-+++-+∞→131211( lim n n n n …+1 2112+-++n n n n )的值为…( ) (A )-1 (B )0 (C )2 1 (D )1 【分析】这是求无穷项的和,应先求前n 2项的和再求极限

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

导数和极限精辟总结(全)

导数和导数的极限 函数 )(x f 在 0x 点的左导数定义为 )(0x f -'x x f x x f x ?-?+=-→?)()(lim 000 。 函数 )(x f 在 0x 点的右导数定义为 )(0x f +'x x f x x f x ?-?+=+→?)()(lim 000 。 函数 )(x f 在 0x 点导数的左极限定义为 )0(0-'x f )(lim 0 0x f x x '=-→ 。 函数 )(x f 在 0x 点导数的右极限定义为 )0(0+'x f )(lim 0 0x f x x '=+→ 。 在很多情况下,导数的左极限 )(lim 0 0x f x x '-→ 往往就是左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 往往就是右导数 )(0x f +' 。 例如,函数 ?????≥<=1 11)(2x x x x x f 。 在 1=x 点的左导数为 )1(-'f 1111lim )1()1(lim 00-=?-?+=?-?+=-→?-→?x x x f x f x x ;导数的左极限为 )(lim 01x f x '-→1)1(lim )1(lim 20101-=-='=-→-→x x x x ,两者是一样的。 在 1=x 点的右导数为 21)1(lim )1()1(lim )1(200=?-?+=?-?+='+→?+→?+x x x f x f f x x ;导数的右极限为 )(lim 01x f x '+→2)2(lim )(lim 0 1201=='=+→+→x x x x ,两者也是一样的。 但有时候,导数的左极限 )(lim 0 0x f x x '-→ 并不等于左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 并不等于右导数 )(0x f +' 。

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

函数单调性习题大全

函数的单调性 一、选择题 1. 下列函数中,在区间 上为增函数的是( ). A . B . C . D . 2.函数 的增区间是( )。 A . B . C . D . 3. 在 上是减函数,则a 的取值范围是( )。 A . B . C . D . 4.当 时,函数 的值有正也有负,则实数a 的取值范围是( ) A . B . C . D . 5.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 6.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf , )3(-f 的大小关系是 ( ) A )2()3()(->->f f f π B )3()2()(->->f f f π C )2()3()(-<-

C.(22,4) D.(-2,3) 9.若(31)41()log 1a a x a x f x x x -+≤?=?>?是R 上的减函数,那么a 的取值范围是( ) A.(0,1) B.1(0,)3 C.11[,)73 D.1[,1)7 10.已知函数f (x )=? ?? ?? a x , x <0, (a -3)x +4a , x ≥0.满足对任意x 1≠x 2,都有f (x 1)-f (x 2) x 1-x 2 <0成 立,则a 的取值范围是 ( ) A .(0,3) B .(1,3) C .(0,1 4 ] D .(-∞,3) 二、填空题 1.函数 ,当 时,是增函数,当 时是减函数,则 f(1)=_____________ 2.已知 在定义域内是减函数,且 ,在其定义域内判断下列函数的单调性: ① ( 为常数)是___________; ② ( 为常数)是___________; ③ 是____________; ④ 是__________. 3.函数f (x ) = ax 2 +4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题 1.求函数 的单调递减区间. 2.证明函数x x x f 3)(3 +=在),(+∞-∞上是增函数

极限与导数

第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为 )(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右 极限。类似地)(lim 0 x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0 处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy , 即0 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。 若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1= ;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3) )(')]'([x u c x cu ?=(c 为常数);(4) )()(']')(1[2x u x u x u -=;(5)) () ()(')(')(]')()([2x u x v x u x v x u x u x u -=。

高中数学必修一函数的性质单调性测试题含答案解析

函数的性质单调性 1.在区间(0,+∞)上不是增函数的函数是() 222xxyxyyyx+ 1 DC..B.A.==2=3+1 +=2+1 x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42) 上是减函数,f(1)等于(则) B.1 C.17 A.-7 D.25 fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5) ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间() 4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.( ,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已 知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没 有实根 D.必有唯一的实根 22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数 fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是 A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞) fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定 义域为tfff(13) <(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1) <1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增 区间依次是(.函数9 ) B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范 围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3 B.5 ≥-3 C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、 fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+

导数在求极限中的应用

引言 极限是研究变量的变化趋势的基本工具。在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。 本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L’Hospital 法则,Taylor展式法及微分中值定理在求极限中的应用。旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。 1

2 第1章 导数在求极限中的基本应用 1.1 导数定义法 这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限. 定义 若函数()y f x =在其定义域中的一点0x 处极限 0000()()lim lim x x f x x f x y x x ?→?→+?-?=?? 存在,则称在0x 处可导,称此极限值为()f x 在0x 处的导数,记为0()f x '.显然,()f x 在0x 处的导数还有如下的等价定义形式: 000 ()() ()lim x x f x f x f x x x →-'=-. 下面通过两个例子让大家逐步领悟导数定义法的内涵 例1 求极限tan sin 0 lim sin b x b x x x αα+-→-. 解 由于 tan sin tan sin tan sin tan sin sin b x b x b x b b b x x x x x x αααααα+-+----= + . 所以,tan sin tan sin 0 tan lim lim lim sin tan sin sin b x b x b x b b b x x x x x x x x x αααααα+-+-→→→---=+ ln ln 2ln b b b αααααα=+=. 例2 (本题选自《数学分析中的典型问题与方法》裴礼文.第二版.) 设(0)f k '=,试证00()() lim a b f b f a k b a - + →→-=-. 证明 (希望把极限式写成导数定义中的形式)

三角函数的单调性测试题(人教A版)(含答案)

三角函数的单调性(人教A版) 一、单选题(共13道,每道7分) 1.下列四个命题中,正确的个数是( )(1)在定义域内是增函数;(2) 在第一、第四象限是增函数;(3)与在第二象限都是减函数;(4) 在上是增函数. A.1个 B.2个 C.3个 D.4个 答案:A 解题思路: 试题难度:三颗星知识点:正切函数的单调性 2.的单调递增区间是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 3.函数的一个单调递增区间为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 4.在上,使为增函数,为减函数的区间为( ) A. B. C. D. 答案:A

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 5.在上,使为增函数,为减函数的区间为( ) A. B.或 C. D.或 答案:A 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 6.的单调递增区间是( )

A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:正切函数的单调性 7.关于函数,下列说法正确的是( ) A.在上递减 B.在上递增 C.在上递减 D.在上递减答案:C

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 8.函数的最小正周期为,则( ) A.在上单调递减 B.在上单调递减 C.在上单调递增 D.在 上单调递增 答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 9.使函数为增函数的区间是( )

A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 10.函数的单调递减区间为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 11.已知函数,则在区间上的最大值与最小值

高二数学函数的单调性与导数测试题

选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac>0 ?B.b>0,c>0 C.b=0,c>0 ??D.b2-3ac<0 [答案] D [解析]∵a>0,f(x)为增函数, ∴f′(x)=3ax2+2bx+c>0恒成立, ∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0. 2.(2009·广东文,8)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) ?B.(0,3) C.(1,4)???D.(2,+∞) [答案]D [解析] 考查导数的简单应用. f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)e x, 令f′(x)>0,解得x>2,故选D. 3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x 2)(x0+1)2,则该函数的单调递减区间为( ) 0- A.[-1,+∞)???B.(-∞,2] C.(-∞,-1)和(1,2)??D.[2,+∞) [答案] B [解析] 令k≤0得x0≤2,由导数的几何意义可知,函数的单调

减区间为(-∞,2]. 4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf′(x)>0,∴f′(x)>0,故y=f(x)在(1,+∞)上为增函数,因此否定A、B、D故选C. 5.函数y=xsin x+cos x,x∈(-π,π)的单调增区间是( ) A.错误!和错误! B.错误!和错误! C.错误!和错误!

经济数学基础微分学之第2章 极限、导数与微分

第一单元 极限的概念及其运算 第一节 极限的概念 一、学习目标 极限是微积分学中的重要概念,微积分中的许多重要概念都是由极限定义的.学习了这一节课,要使我们了解极限、左、右极限和无穷小量的概念. 并且能够利用函数图形和极限定义去求简单函数的极限. 二、内容讲解 1.极限的概念1 数列的极限: ①数列:一般地,按一定规律排列的一串数1x ,2x ,…,n x ,…称为数列,简记为{}n x 。其中的第n 项n x 称为该数列的通项。 ②数列的极限:给定数列{}n x ,如果当n 无限增大时,n x 无限地趋近某个固定的常数A ,则称当n 趋于无穷时,数列{}n x 以A 为极限。记为A x n n =∞ →lim 2.极限的概念2 研究函数是利用极限的方法来进行;极限是一个变量在变化过程中的变化趋势。 例1 圆的周长的求法.早在公元263年,古代数学家刘徽用圆内接正四边形、正五边形、正八边形、正十六边形……等的边长近似圆的周长,显然随着边数的增加,正多边形的边长将无限趋近圆的周长. 例2 讨论当+∞→x 时,x 1 的变化趋势. 例3 讨论一个定长的棒,每天截去一半,随着天数的增加,棒长的变化趋势.“一尺之棰,日截其半,万世不竭”——庄子?天下 定义2.1——函数的极限

设函数)(x f 在点0x 的邻域(点0x 可以除外)内有定义,如果当x 无限趋于0x (但0x x ≠) 时,)(x f 无限趋近于某个常数A ,则称x 趋于0x 时,)(x f 以A 为极限,记为A x f x x =→)(lim 0或 A x f →)()(0x x →;若自变量x 趋于0x 时,函数)(x f 没有一个固定的变化趋势,则称函数) (x f 在 x 处没有极限. 在理解极限定义时要注意两个细节: 1.0x x →时(0x x ≠), 2. ?? ?→<→>→000 00)()(x x x x x x x x (包括这两种情况) 考虑函数x y =,依照极限的定义,不能考虑0→x 的极限.因为x y =在0≤=010 )(x x x x f ,如果讨论0→x 是的极限,则函数分别在0x 时不是同一个表达式,必须分别考虑.由此引出左右极限的概念: 定义2.2——左右极限 设函数f x ()在点x 0的邻域(x 0点可以除外)内有定义,如果当x x <0且x 无限于x 0(即 x 从x 0的左侧趋于x 0,记为x x →- 0)时,函数f x ()无限地趋近于常数L ,则称当x 趋于x 0时, f x ()以L 为左极限,记作lim ()x x f x L →- =0 或f x -()0= L ;如果当x x >0且x 无限趋于x 0(即 x 从x 0的右侧趋于x 0,记为x x →+ 0)时,函数f x ()无限地趋近于常数R ,则称当x 趋于x 0时, f x ()以R 为右极限,记作lim ()() x x f x R f x →++ =00或=R 。

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

函数的单调性练习题

高一数学同步测试(6)—函数的单调性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2 +x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0, 2 1) B .( 2 1,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞

考研数学极限与导数复习方法

考研数学极限与导数复习方法 我们在进行考研数学的备考复习时,需要掌握好极限与导数的复习方法。小编为大家精心准备了考研数学极限与导数复习秘诀,欢迎大家前来阅读。 考研数学极限与导数复习技巧 极限 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极 限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练

的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行 计算,如果最大的分母和最小的分母相除的极限不等于1,则 凑成定积分的定义的形式进行计算;单调有界收敛定理可用来 证明数列极限存在,并求递归数列的极限。 与极限计算相关知识点包括:1、连续、间断点以及 间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式;3、渐近线(水平、垂直、斜渐近线);4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。 导数 求导与求微分每年直接考查的知识所占分值平均在 10分到13分左右。常考题型:(1)利用定义计算导数或讨论 函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。

函数的单调性检测题及参考答案

函数的单调性检测题 一、选择题 1.若),(b a 是)(x f 的单调增区间,()b a x x ,,21∈,且21x x <,则有 A . ()()21x f x f < B . ()()21x f x f = C . ()()21x f x f > D . ()()021>x f x f 2.函数()2 2-=x y 的单调递减区间为 A .[)+∞,0 B .(]0,∞+ C .),2[+∞ D .]2,(-∞ 3.下列函数中,在区间(0,2)上递增的是 A .x y 1 = B .x y -= C .1-=x y D .122++=x x y 4. 若函数1 2)(-=x a x f 在()0,∞-上单调递增,则a 的取值范围是 A .()0,∞- B .()+∞,0 C .()0,1- D .()+∞,1 5. 设函数x a y )12(-=在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 6. 函数2)1(2)(2 +-+=x a x x f 在区间(]2,∞-上是减函数,则实数a 的取值范围是 A .3≤a B .3≥a C .3-≥a D .3-≤a 二、填空题 7.函数1-=x y 的单调递增区间是____________. 8.函数)(x f 在()+∞,0是增函数,则)2(f a =、 )2 (π f b =、)2 3 (f c =的大小关系是 . 9.函数32)(2+--= x x x f 的单调递增区间是_______. 10.若二次函数45)(2 ++=mx x x f 在区间]1,(--∞是减函数,在区间),1(+∞-上是增函数, 则f (1)=________.

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

相关文档
最新文档