核数据处理复习资料

核数据处理复习资料
核数据处理复习资料

第一章:能谱数据的获取

什么是核辐射探测器

核辐射探测器是将入射射线的信息(能量、强度、种类等)转换成电信号或者其它易测量信号(光、热、色或径迹)的转换器,即传感器或换能器。

利用辐射在气体、液体或固体中引起的电离、激发效应或其它物理、化学变化进行辐射探测的器件称为辐射探测器

核辐射探测器的工作原理

? 基于粒子与物质的相互作用。

? 带电粒子:与物质中原子的轨道电子直接相互作用;

? γ/X射线:光电效应,康普顿效应,电子对效应

? 中子:核反应产生带电粒子

核辐射探测器的分类

按工作原理分类:

? 利用射线通过物质产生的电离现象做成的辐射探测器

? 利用射线通过物质产生的荧光现象做成的辐射探测器。闪烁体探测

N aI(Ti) C sI(Ti/Na) BGO LaBr3

? 利用辐射损伤现象做成的探测器。径迹探测器CR-39径迹片。

? 利用射线与物质的核反应或相互碰撞产生易于探测的次级。自给能探测器

利用射线与物质的相互作用的其它原理制成的辐射探测器切伦琴科夫探测器。热释光探测器

谱仪中为什么需要前置放大器:

1.由于探测器输出的信号比较小,提高信号的差异匹配后续电路,必须对信号进行放大。

2.直接将两者连接在一起,系统笨重,且可能受周围环境(空间太小,辐射太强)的影响。

3.同时为减少探测器输出端到放大器间的分布电容、匹配传输线阻抗,减少外界干扰,提高信噪比。

前置放大器的作用:

1.提高系统的信噪比

2.减少信号传输过程中外界干扰的相对影响

3.合理布局,便于调节和使用

4.实现阻抗转换与匹配

模拟式谱仪采集一个信号的过程

数字化谱仪与模拟式谱仪的区别与联系

数字化谱仪:对探测器输出脉冲信号进行采样

模拟式谱仪:

第二章:能谱数据的特征

线状谱转变成类高斯峰的原因

a)探测器产生离子对的统计涨落

b)探测器的边缘效应

c)电子线路的弹道亏损d)脉冲堆积效应

谱线“拖尾”形成的根源

低能拖尾:当探测器介质中存在缺陷时,该缺陷会复合或俘获电子(或空穴),导致实际收集的电量减少,其结果使得计数从高能段向能端转移,峰偏离高斯分布,出现“低能拖尾”。

高能拖尾:由于寄生电容的存在,信号传输后,输出端不会立即变为0,在回路中出现振荡,并缓慢恢复到0。如果恢复时间内又有另一个信号进入,就会使得第二个信号幅度增加,出现“高能拖尾”。

线状谱转变成连续谱的原因

1.光子与核外电子相互作用、瑞利散射—弹性散射、光电效应、康普顿散射—非弹性散射。

2.光子与核或核外电子发生库仑力相互作用、电子对效应、核的势散射。

3.光子与原子核(单个核子) 的作用、汤姆逊散射—弹性散射、核共振效应—非弹性散射光致核反应。

仪器谱中各峰形成的机理

全能峰:a)光电效应;b)多次康普顿散射,将入射光子的能量完全消耗在探测器灵敏体积中;

c )一次康普顿散射的反冲电子能量+散射光子的光电效应产生的光电子;

d )正负电子对的能量+正电子淹没产生的两个光子在探测器内发生上述相互作用将能量损失在探测器灵敏体积中。

康普顿平台:多次康普顿效应,使光子能量不断降低,形成能量从0--hv的连续分布。

反散射峰:入射射线穿过NaI晶体后打到光电倍增管上或晶体周围物质上产生了一些大角度的康普顿散射(>1500),把大部分能量都传递给电子后又回到晶体内。由于射线能量低,极容易产生光电效应。对137Cs反散射光子能量在184kev

特征X射线峰:137Cs 32kev

1.许多放射源在β衰变过程中有轨道电子俘获或γ跃迁中有内转换电子发出,其结果即产生特征X射线。

2.且γ射线与周围物质发生光电效应,也可能产生特征X射线。

湮灭光子峰:高能光子与其它材料(屏蔽体、源、村托等)发生光电效应产生的511 kev

特征X射线逃逸峰:如用NaI探测器测量时,光电效应发生在靠近晶体表面处。产生的KX射线容易逃逸出晶体,相应的输出脉冲幅度比入射射线能量完全被吸收减小28keV,这类脉冲在仪器谱上形成一个峰。I的特征X 射线的能量是28 kev

谱仪前加一层铝/铍窗的作用

1.对空气中天然放射性核素产生α粒子起屏蔽作用;

2.电子穿透能力弱,用铍极容易阻挡,且密度小,产生轫致辐射几率小;

3.采用源激发时,密度小的材料对初始射线衰减小,同时对产生的特征X射线衰减小,提高探测效率。

常见的仪器谱

能量较低时,主要是光电峰,包括出现的碘逃逸峰。对中等能量,除光电峰外还有康普顿坪。在较高能时,特别在1.5Mev以上,谱形上又出现单、双逃逸峰等。

第三章:能谱数据的平滑

能谱数据平滑的目的:减小统计涨落对能谱数据定性、定量分析的影响。

统计涨落影响主要有:丢失弱峰、出现假峰以及边界道难以确定。

平滑前后应保留的信息:峰位与峰面积尽可能保持不变;重峰出现几率尽可能低

常用的滤波方法(原理/区别与联系)

重心法;多项式最小二乘移动平滑法;离散函数褶积变换法;傅立叶变换法

傅立叶变换法的步骤:1.将整个射线能谱从能域变换到频域2.选择适当的频域滤波函数,乘以上述频域数据(过滤高频)3.将上述滤波后的频域逆变换得到滤波后能谱。

切断频率

1.从后1/4谱中找出最大幅度对应的ω1,即为噪声最大幅度。

2.设定R初始值,例如设R=5。

3.从后1/4处向前找出幅度大于R*|Y(ω1 )|的点,此点即为信号起主要作用的点。

4.若找到,从该点向后找第一个幅度低于ω1的点,此点即为切断频率MFC。

5.若找不到,则R=R-0.5,返回3 。

第四章:峰位与峰区的确定

能谱分析对寻峰的基本要求:

a)能识别弱峰;b)假峰出现的几率尽可能小;

c)较高的重峰分辨能力d)能精确确定小数道峰位

常用的寻峰方法:简单比较法;高斯乘积函数找峰法;导数法;协方差法

峰位的精确确定:重心法;对称零面积法;马尔科夫链法;卷积法;核素库峰型定位法;二阶插值多项式;多

项式拟合

第五章:峰面积的确定

几种峰面积确定方法的演化:太复杂了

常用的本底扣除方法:梯形法;多项式拟合;指数法;SINP 法

常见的重峰分辨方法:分支比法;高斯函数拟合法

第六章:谱仪的刻度

谱仪的性能指标

1、道数与道宽:道数越多,道宽越精密,但特征峰被分成更多道,使得峰被展平,弱峰易丢失

2、谱仪的能量分辨力及半高宽(NaI探测器以137Cs 0.662 Mev 的能量分辨率,半导体探测器60Co 1.332Mev的半高宽为标准,X荧光仪55Fe 5.898Kev的半高宽)

3、谱仪的线性:积分线性,峰道址与射线能量之间的线性程度;微分线性,各道宽的均匀程度

4、谱仪的死时间

5、谱仪的稳定性(多次测量谱峰面积…概率大于0.683)

6、谱仪的峰康比:半导60Co的1.332Mev全能峰位计数÷(1.040~1.096Mev康普顿坪的平均计数)一般为60/ 1 。

谱仪的三大刻度

1、能量刻度(放射源(或选定的特征峰)的能量/活度,必须是精确已知的标准源与待测源基质、测量条件和几何结果均相同)

2、效率刻度(定准峰位/确定特征峰效率)

3、峰型刻度(确保谱仪的稳定性好,差值求FWHM)

谱仪的探测限

判断限(作为判断样品中“有”和“无”某中放射性核素的判界)

MDA(在给定置信概率下,谱仪能够探测到的放射性核素最小量)

第七章:定性/量分析

定性分析过程

1、建立核素库(元素的种类、半衰期、特征射线的能量、分支比、所生成的核素)。

2、对标准样品谱进行测量,并对谱仪进行能量刻度。

3、测量待分析样品谱,分析确定所测谱线中各峰能量。

4、确定所对应峰对应何种核素。

5、从低能端到高能端逐步分析,统计得出待测样品所含有的放射性核素的信息。

γ谱仪定量分析方法X荧光能谱定量分析方法(基体效应)

相对测量方法逆矩阵法如:三道法增量法特散比法

绝对测量方法最小二乘逆矩阵法稀释法非线性校正模式

剥谱/能窗法逐道最小二乘法二元比法强度校正模式

第八章:测量不确定度理论及应用

真值与测量值关系的表达方式演化

系统误差、随机/或然误差─→精密度(离散程度)、准确度(平均值与真值的接近程度)和精确度─→相对误差、绝对误差和样本标准差─→测量不确定度

标准不确定度的评定方法

1. A 类评定采用统计分析方法通过观测来评定不确定度

2. B 类采用统计分析以外的方法来评定不确定度

不确定度的来源及评定步骤

建模,列出不确定度的来源─→评定各影响因素所致标准不确定度,包含A/B类─→计算合成不确定度,扩展不确定度─→测量结果

第九章氡及其子体测量

氡的危害:

①确定性效应表现为:在高浓度氡的暴露下,机体出现血细胞的变化。氡对人体脂肪有很高的亲和力,特别是氡与神经系统结合后,危害更大。

②随机效应主要表现为肿瘤的发生。

氡的产生机理及来源:对流,扩散,土壤中析出,建筑材料中析出墙壁,地基,生活用水中,天然气。

标准测氡方法:双滤膜法;大气球法;活性炭盒法;蚀刻径迹法

氡子体测量方法:

氡子体采样方法一般是将待测空气用超细纤维过滤膜过滤,将氡子体带电微尘收集在滤膜上进行测量。根据取样后测量时间和方法的不同可分为:三点法、三段法、五段法和Α谱法。

1.三点法是测量采样结束后3个时刻的Α计数率,从而求出218Po、214Pb、214Bi3种子体的浓度。

2.三段法是在三点法的基础上发展起来的,其不同点是通过测量取样后3段时间间隔内样品的Α积分计数,进而求出氡子体浓度。

3.五段法是测量取样后5段时间间隔内样品的Α计数,从而确定氡和氕子体浓度。

4.Α能谱法是用Α谱仪分别测218Po、214Bi的Α计数,从而确定218Po、214Pb和214Bi的浓度。

氡及其子体所致剂量评价

1.室内空气质量标准中,氡222Rn年平均值400Bq/立方米(标准值)。

2.民用建筑工程室内环境污染物浓度限量:Ⅰ类民用建筑工程(医院学校≦200Bq/立方米),Ⅱ类民用建筑工程(公交车≦400Bq/立方米)。

3.住房内氡浓度检测标准:新建住房年平均值≦100Bq/立方米,已建住房年平均值≦200Bq/立方米。

误差理论与数据处理实验报告

误差理论与数据处理 实验报告 姓名:小叶9101 学号:小叶9101 班级:小叶9101 指导老师:小叶

目录 实验一误差的基本概念 实验二误差的基本性质与处理 实验三误差的合成与分配 实验四线性参数的最小二乘法处理实验五回归分析 实验心得体会

实验一误差的基本概念 一、实验目的 通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。 二、实验原理 1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示 误差=测得值-真值 1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。 绝对误差=测得值-真值 2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与 真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。 相对误差=绝对误差/真值≈绝对误差/测得值 2、精度 反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。 3、有效数字与数据运算 含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。 数字舍入规则如下: ①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。 ②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。 ③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。即当末位为偶数时则末位不变,当末位为奇数时则末位加1。 三、实验内容 1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。 2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。 原有数据 3.14159 2.71729 4.51050 3.21551 6.378501 舍入后数据

核辐射测量数据处理成都理工大学程序设计报告

程序设计课程设计(论文) 设计(论文)题目 谱的显示、谱光滑、定量分析(峰面积)程序学院名称核技术与自动化工程学院 专业名称辐射防护与环境工程 学生姓名袁子程 学生学号2 任课教师马永红 设计(论文)成绩 教务处制 2015年 1 月10 日

一、实习目的 学习使用各种编程软件,利用计算机工具开展专业信息处理工作。 使用面向对象编程思想实现谱数据处理功能以及谱显示功能。二、人员组成及分工 本人题目为:谱的显示、谱光滑、定量分析(峰面积)程序 具体要求: 多项式最小二乘拟合实现谱光滑 对称零面积法实现寻峰 Wasson(瓦森、沃森)峰面积法实现峰面积计算 寻峰应在5、7、9、11之间可选,讨论最佳参数 三、实习计划 1.首先进行MFC绘图区域的学习和了解,实现基本绘图功能 2.建立单文档MFC程序,设计一个合理美观的工作区 3.实现文件打开读取功能,并能打开不同文件 4.进行谱数据处理的算法编写 5.编写成谱图形功能并给出处理结论 四、主要工作介绍(详细介绍实习中各功能的实现方法、理论公式和计 算原理,程序流程图和程序运行界面截图等成果信息) 1.建立单文档类MFC可执行程序

2.建立绘图区函数,初始化绘图设备 3.添加文件打开虚函数

4.编写读取文件及初步寻峰代码 5.添加绘制谱图代码

6. 尝试读取mca 文件 7. 添加谱数据处理代码 ①多项式最小二乘拟合法: ∑-=+= m m j j i j b i data A K data 1 ,b=2m+1,为平滑宽度。 谱光滑 5 7 9 11

实际代码: //多项式最小二乘法谱光滑(参数为5) for( i=2;i<1023;i++) { data[i]=1/35*((-3)*data[i-2]+12*data[i-1]+17*data[i]+12*data[i+1]+(-3)*d ata[i+2]); } ②零面积对称法: 基本思想:面积为零的“窗”函数与实验谱数据进行褶积变换,且要求“窗”函数为对称函数。 数学表达式:j j m m j j m m j j i j i C C C data C y --=-=+===∑∑0 ~ 其中,i y ~ 为变换后的谱数据,data i+j 为原始实验谱数据,C j 为对称零面积变换函数,W=2m +1为窗宽(变换宽度)。 对称零面积变换函数:∑-== -=m m j j j j G W d d G C 1 G j :[] ?? ???????==+=-=)634.2(sec ))2(cos )4))(2ln 4exp )22 2 2 2H j h G d H j G c j H H G b H j G a j j j j 双曲正割函数: 余弦平方函数:柯西函数:高斯函数:π 实际代码:

核型分析实验报告

核型分析 摘要植物核型分析是指对植物细胞染色体的数目、形态、长度、带型和着丝粒位置等内容的分析研究,是植物分类和遗传研究的重要手段。本实验利用Photoshop软件,对栽培四棱大麦的染色体进行核型分析。本方法主要是物理分析法,在本试验中,我们先对大麦的染色体进行配对,再利用Photoshop软件对染色体进行分析,并测量了大麦染色体的臂长和随体长。 1.引言 核型指染色体组在有丝分裂中期的表型,包括染色体数目、大小、形态特征的总和。一个体细胞中的全部染色体,按其大小、形态特征(着丝粒的位置)顺序排列所构成的图像就称为核型。将待测细胞的核型进行染色体数目、形态特性的分析,确定其是否与正常核型完全一致,称为核型分析。以目前的技术水平,已实现使用计算机自动完成核型分析,我们学生也可以利用Adobe Photoshop 很容易地完成染色体的测量、排序等工作,再利用Excel 表格和Photoshop结合做出核型模式图。 2.实验材料 2.1实验材料 栽培四棱大麦的分散良好的有丝分裂中期细胞的显微照片、Adobe Photoshop等软件2.2实验方法 2.2.1绘制核型图 在Photoshop中对照片进行必要的处理。首先是剪裁照片,用套索工具将每条染色体分离出来,对染色体进行配对并将每条染色体的着丝点排在一条线上,并对染色体进行适当的旋转变换。其次是利用标尺工具测量每条染色体的臂长、随体长。再根据测量结果计算出染色体的臂比,总长,随体长,相对长度等数据。 2.2.2写出核型公式 根据上面的测量结果写出四棱大麦的核型公式。 2.2.3画核型模式图 将所测并经过计算后的数据在Excel表格中绘制成堆积柱形图,并在Photoshop里切出着丝点和次缢痕。除此之外,还需将整个图像转换成黑白。 3.结果与讨论 3.1染色体核型分析图 图1 染色体核型分析图

单片机课程设计数据采集系统

一、摘要 此系统主要以ADC0808和80C51为核心,进行实时数据采集,数据处理和显示,终端接收及存储。具体包括控制、显示、A/D转化器等。设计中用AD0808进行8路数据的采样,利用51单片机的串行口进行发送和接收数据。利用8个LCD 数码管进行显示数据处理。采用PROTEUS和Keil uvision3为开发工具,软件设计采用模块化编程 关键字:数据采集、ADC0808、双机通讯、IIC 二、前言 随着计算机技术的飞速发展,数据采集系统应用在多个领域中。数据采集时供、农业控制系统中十分重要的环节,在医药、化工、食品等领域中,往往需要随时检测各生产环节的温度、流量、压力等参数。同时,还要对某一检测点任意参数能够进行随机查寻,将其在某一段时间内检测得到的数据经过转换提取出来,以便进行比较,做出决策,调整控制方案,以提高产品的合格率,产生良好的经济效益。 不仅如此,数据采集系统在我国高科技领域中也扮演着十分重要的地位。雷达的实时数据采集,航天飞机成功升空,通讯卫星的实时通报数据,这些高科技给国家人民的生活带来了便利。 因此数据采集是一项十分重要的技术。从严格意义上来讲,数据采集系统是用计算机控制的多路自动检测或巡回检测,并且能够对采集到的数据进行存储、计算、分析,以及从数据中提取可用的信息,供显示,记录、打印或描绘的系统。 数据采集系统通常由数据输入通道、数据处理、数据存储、数据显示、数据输出五个部分组成。输入通道实现对数据的检测并读取;数据转化是将采集到的数据进行适当的转化;以便输出人们易懂的数据;数据存储是对采集过来的数据进行存储;以防下次用到可以方便提取;数据显示便是将处理后的数据进行显示,让操作者可以方便读取采集到的信息,以便进行控制;数据输出就是将数据输送到打印机打印。 由于RS-485在微机远程通信接口中广泛采用,技术已经相当成熟,故采用标准RS-485标准,实现PC与单片机之间的数据传送(由于本次设计在PROTEUS系统中仿真,因此,略去接口RS-485)。 本设计中对多路采集系统做了基本的研究。此次试验主要解决的是怎样进行多路数据采集并如何通过串行口发送数据实现双机通讯的。 三、正文

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.360docs.net/doc/b13658447.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.360docs.net/doc/b13658447.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

核数据处理课程设计

导数法在γ射线能谱寻峰、边界道的确定、峰面积计算中的应用 摘要:本文导数法对平滑后的能谱数据进行寻峰,并比较各阶导数法寻峰、导数法对于能谱数据寻峰、以及比较不同的拟合公式求导后对寻峰以及峰面积结果分析。 关键词:能谱、峰面积、导数法、寻峰、边界道、拟合Abstract:This method of derivative spectroscopy data after smoothing peak search, and compare order derivative France to find the peak derivative method for the spectroscopy data the peak search and compare different fitting formula derivation on the peak search and peak areaanalysis of results. Keywords: spectroscopy, peak area, the derivative method, peak search, boundary Road, fitting. 导数是一条光沿曲线上数值的微商或微商函数,在数学上称它为曲线上各点的斜率。在导数光谱术中导数吸收光谱是指光强度或吸光强度对波长的变化率曲线。当将原吸收曲线进行一阶、二阶直至四阶求导时,便可得到各阶导数光谱。导数光谱的基本特征(1)对原曲线的极值求一、二阶导数时通过原点,求二阶导数时为极小值,四阶导数为极大值,并恢复至原位置。据此特征可以准确的测定最大的吸收峰位。(2)极值数目随求导阶数的增加而增加。如当原曲线有一个极大值时 ,求n阶导数就有n+1个极大值和极小值,而原曲线有

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

核数据处理复习资料

第一章:能谱数据的获取 什么是核辐射探测器 核辐射探测器是将入射射线的信息(能量、强度、种类等)转换成电信号或者其它易测量信号(光、热、色或径迹)的转换器,即传感器或换能器。 利用辐射在气体、液体或固体中引起的电离、激发效应或其它物理、化学变化进行辐射探测的器件称为辐射探测器 核辐射探测器的工作原理 ? 基于粒子与物质的相互作用。 ? 带电粒子:与物质中原子的轨道电子直接相互作用; ? γ/X射线:光电效应,康普顿效应,电子对效应 ? 中子:核反应产生带电粒子 核辐射探测器的分类 按工作原理分类: ? 利用射线通过物质产生的电离现象做成的辐射探测器 ? 利用射线通过物质产生的荧光现象做成的辐射探测器。闪 烁体探测器 N aI(Ti) C sI(Ti/Na) BGO LaBr3 ? 利用辐射损伤现象做成的探测器。径迹探测器CR-39径迹片。 ? 利用射线与物质的核反应或相互碰撞产生易于探测的次级。自给能探测器 利用射线与物质的相互作用的其它原理制成的辐射探测器切伦琴科夫探测器。热释光探测器谱仪中为什么需要前置放大器: 1.由于探测器输出的信号比较小,提高信号的差异匹配后续电路,必须对信号进行放大。 2.直接将两者连接在一起,系统笨重,且可能受周围环境(空间太小,辐射太强)的影响。 3.同时为减少探测器输出端到放大器间的分布电容、匹配传输线阻抗,减少外界干扰,提 高信噪比。 前置放大器的作用: 1.提高系统的信噪比 2.减少信号传输过程中外界干扰的相对影响 3.合理布局,便于调节和使用 4.实现阻抗转换与匹配 模拟式谱仪采集一个信号的过程 数字化谱仪与模拟式谱仪的区别与联系 数字化谱仪:对探测器输出脉冲信号进行采样 模拟式谱仪: 第二章:能谱数据的特征 线状谱转变成类高斯峰的原因 a)探测器产生离子对的统计涨落 b)探测器的边缘效应 c)电子线路的弹道亏损d)脉冲堆积效应

核数据处理课程设计--能谱谱数据分解方法研究程序

%本次课程设计采用的谱数据为iaea-1995文件夹下iaearfnw?TSTSPEC %里面的数据。首先来看看CALIB.ASC。READ_ME.TXT中说明了这个谱数据包含的部分峰的峰位与对应能量如下: % Channel Energy(keV) %?301122.06 % 1281 511.00 %?1661 661.66 % 2097834.84 %?2951 1173.24 % 3207 1274.54 %?3353 1332.50 %运行程序,其中参数选择为:选择傅里叶变换法平滑输入3,选择高斯滤波器输入2,然后A=1,FWHM=4,对称零面积法的参数是K=2,H=3,b=1寻出来 %的峰与READ_ME.TXT中说明的部分峰的峰位与对应能量数据相吻合。 clc; clear; [Filename,Pathname]=uigetfile('*.*','选择谱数据'); fid=fopen([Pathname Filename],'r')%fid为文件指针,r表示读操作 [array,count]=fscanf(fid,'%d',[1 inf]);%指定格式转换后返回给矩阵array,同时返回成功的读出的数据数量count,1表示读出一个元素到一个列向量,inf表示读到文件结束返回一个与文件数据元素相同的列向量 fclose(fid); %%%%下面开始能谱平滑%%%%%%% pinghuaxuanze=input('请选择平滑方法:\n输入1选择重心法平滑\n输入2选择多项式最小二乘移动平滑法\n输入3选择傅里叶变换法\n输入4选择小波变换:\n'); %************************重心法平滑**************************** if(pinghuaxuanze==1) biaoji=1; for i=1:count array_z(i)=array(i); end w=input('input the widthof the filter window:'); %w表示w 点平滑公式 while mod(w,2)==0 %判断输入的数是否是奇数,不是则重新输入。 w=input('input oddnumber:'); end m=floor(w/2); for j=1:m for i=1:count if(i==1) array_smooth(i)=0.5*(array_z(i)+array_z(i+1)); %能谱左边界做对称镜像处理

核数据处理课程设计报告

核数据处理课程设计报告 核数据处理课程设计报告姓名:学号:班级:2012年月日目录一、设计目的和要求二、设计原理1、探测原理。2、核数据处理的分析方法:谱光滑、寻峰、求峰面积。三、任务实现1、计算器2、写数据到文件中3、按钮实现数据的读写4、显示图谱5、寻峰及道址换算6、求峰面积一、设计目的和要求1、掌握核辐射探测的原理及核数据处理的方法; 2、了解图形程序的编写技能与技巧; 3、掌握文件读写函数的使用; 4、理解整个谱数据处理的流程; 5、进一步掌握对常用核数据处理的基本方法。二、设计原理1、探测原理。什么是核辐射和核辐射探测?

所谓核辐射是指在各种核跃迁中,从原子核中释放出来中子、质子、α粒子、β粒子、X射线、γ射线等。于它们本身具有波粒二象性,所以也将它们称为粒子或射线。而核辐射探测主要是用各种类型和规格的核辐射探测器记录粒子数目,测定放射源的活度,确定粒子的质量、电荷、寿命、能量以及动量等。在核辐射探测原理中,最基本的是利用带电粒子在物质中对物质原子产生的电离和激发效应或快速轻带电粒子穿过物质时的电磁效应。X射线和γ射线在物质中没有直接电离和激发效应,因此,不能直接被探测到。只有利用它们在物质中的光电效应、康普顿散射和电子对产生效应等产生的次级电子再引起的电离和激发才能探测到。射线与物质的相互作用主要有三个过程:光电效应、康普顿效应、电子对效应光电效应光子通过物质时和物质原子相互作用,光子被原子吸收后发射轨道电子的现象,称为光电效应,也称

光电吸收。光电效应发出来的电子叫做光电子。光电效应、特征X 射线和俄歇电的发射示意图光电子可以从原子的K、L、M等各壳层中发射出来。在光电效应过程中,因为动量守恒要求,除入射光子和光电外,还必需有第三者参加,即原子核,严格的讲是发射光电子之后余下的整个原子。所以自电子不能产生光电效应,而且原子的内层电子于受到原子核的强束缚更容易满足动量守恒而更容易发射光电子。一般的说,如果入射光子的能量超过K层电子结合能,那么,大约80%的光电吸收发生在K层电子上。光电子的能量入射光电子的能量原子发射光电子,从内壳层打出电子,便处于激发状态。退激有两种形式,一种是外层电子向内层跃迁伴随着放射特征X射线,其能量为两个壳层结合能之差另一种是原子的激发能直接交给外壳层的其它电子,使外壳层电子从原子中发射出来,即发射俄歇电子,其能量也仅

CPU课程设计报告

课程设计报告 课程片上计算机系统 题目 CPU模型机设计 班级 专业 学生 学号 指导教师 2014年7 月 3 日 目录: 1.课程设计的目的及要求 (3) 2.处理器的设计思想和设计内容 (3)

3.设计处理器的结构和实现方法 (3) 4.模型机的指令系统 (4) 5.处理器的状态跳转操作过程 (4) 6. CPU的Verilog代码 (7) 7. 模型机在Quartus II环境下的应用 (19) 8. 仿真波形 (19) 9. 课程设计的总结 (21) 一.课程设计的目的及要求: (一)目的: 1.掌握RISC CPU与内存数据交换的方法。 2.学会指令格式的设计与用汇编语言编写简易程序。 3.能够使用VHDL硬件描述语言在QuartusⅡ软件环境下完成CPU模型机的 设计。

(二)要求: 1.以《计算机组成与设计》书中123页的简化模型为基础更改其指令系 统,形成设计者的CPU, 2.在Quartus II环境下与主存连接,调试程序,观察指令的执行是否达 到设计构想。 二.处理器的设计思想和设计内容: 处理器的字长为16b;包括四种指令格式,格式1、格式2、格式3的指令字长度为8b,格式4的指令字长度为16b;处理器内部的状态机包括七个状态。(一)关于修改后的CPU: 一共设计25条指令,主要包括空操作指令、中断指令、加法指令、减法指令、加法指令、四种逻辑运算指令、比较、算术移位操作指令、逻辑移位操作指令、加减1指令、加减2指令、数据传输指令、转移类指令、读写指令、特权指令等等。 (二)关于RAM: 地址线设置成8bits,主存空间为4096words。 三.设计处理器的结构和实现方法: (指令格式) 格式1:寄存器寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP Rx Ry 空白 格式2:寄存器变址寻址方式 OP Ry 空白 格式3:立即数寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP I 空白 格式4:无操作数寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP 空白空白 格式5:直接寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP Addr 内存(2的12次方) 四.模型机的指令系统 CPU的指令集: 操作码OP IR(15..1 2) 指令 格式 指令的助记指令的内容

核数据处理

核数据处理 一、实习目的 1、掌握图形程序的编写技能与技巧; 2、掌握文件读写函数的使用; 3、理解整个谱数据处理的流程; 4、进一步掌握对常用核数据处理的基本方法 5、掌握软件设计所需的基本动手能力,解决实际问题。 二、实习内容 1、读谱数据文件、保存光滑后的谱数据文件,文件名可选 2、显示谱数据,各算法要以函数方式实现 3、显示分析谱段范围内,寻得的各峰位道址、能量、对应的元素名称 4、显示寻峰及峰面积计算结果 5、光滑、寻峰宽度2k+1应在5、7之间可选,讨论最佳参数。 三、需求分析 1、输入、输出的内容和形式 (1)输入: a、打开应用软件,弹出要求输入谱数据文件名对话框。 b、需要刻度谱线时,分别按e键和c键输入元素文件名和能量刻度文件名。 c、人机交互时,采用键盘按键方式将命令传给程序(具体操作:在运行程序后按h键 即可弹出操作说明对话框)。 (2)输出: a、屏幕显示谱线;光标位置及光标处的道址、能量和计数;屏幕上方显示“Software instructions please input 'h'”。 b、当谱线被刻度好后,按n键会弹出相应元素对应的能量、面积和净峰面积。 c、按h键弹出应用程序操作说明对话框。 2、预期功能、界面 (1)显示输入谱文件名对话框;在文件名输入正确时,能够正确读取文件中的数据。 (2)正确显示谱线以及在刻度后显示道址、能量及计数。 (3)显示相应元素对应的能量、面积和净峰面积对话框。 (4)达到谱数据光滑的效果。 (5)采用键盘输入命令,使屏幕: a、即时显示光标的位置以及对应的道址、能量及计数。 b、即时显示不同幅度放大倍数时的谱线形状。 c、即时显示不同光滑次数处理后的谱线微细结构(只有在幅度放大倍数很大时光滑效 果才明显)。 d、即时显示谱线的点和线的切换。 3、测试数据 (1)文件读入是否正确。 (2)谱数据段的选择功能是否实现。 (3)move和curse的边界值是否设置妥当。

核辐射测量数据处理习题及答案

核数据处理理论知识 核辐射测量数据特征:随机性(被测对象测量过程)局限性混合型空间性 数据分类:测量型计数型级序型状态型名义型 精度:精密度正确度准确度 统计误差:核辐射测量中,待测物理量本身就是一个随机变量。准确值为无限次测量的平均值,实际测量为有限次,把样本的平均值作为真平均值,因此存在误差。 变量分类:(原始组合变换)变量 误差来源:(设备方法人员环境被测对象)误差 误差分类:系统误差随机误差统计误差粗大误差 放射性测量统计误差的规律答:各次测量值围绕平均值涨落二项分布泊松分布高斯分布 精度的计算,提高测量精度的方法?答:采用灵敏度高的探测器增加放射源强度增加测量次数延长测量时间减少测量时本底计数 放射性测量中的统计误差与一般测量的误差的异同点?答:不同点:测量对象是随机的,核衰变本身具有统计性,放射性测量数据间相差可能很大。测量过程中存在各种随机因素影响。相同点:测量都存在误差。 样本的集中性统计量?答:算术平均值几何平均值中位数众数(最大频数) 样本的离散性统计量?答:极差方差变异系数或然系数算术平均误差 单变量的线性变换方法?答:1.标准化变换 2.极差变换 3.均匀化变换 4.均方差变换 单变量的正态化变换方法?答:标准化变化角度变换平方根变换对数变换 数据网格化变换的目的?答:1.把不规则的网点变为规则网点 2.网格加密 数据网格变换的方法?答:1.插值法(拉格朗日插值三次样条插值距离导数法方位法)2.曲面拟合法(趋势面拟合法趋势面和残差叠加法加权最小二乘拟合法) 边界扩充的方法有哪些?答:拉格朗日外推法余弦尖灭法偶开拓法直接扩充法补零法 核数据检验目的:1.帮助检查测量系统的工作和测量条件是否正常和稳定,判断测量除统计误差外是否存在其它的随机误差或系统误差2.确定测量数据之间的差异是统计涨落引起的,还是测量对象或条件确实发生了变化引起的 变量选择的数学方法:几何作图法(点聚图数轴)相关法(简单相关系数逐步回归分析秩相关系数)秩和检验法 谱数据处理—问答题谱的两大特点?答:1.放射性核素与辐射的能量间存在一一对应关系2.放射性核素含量和辐射强度成正比 谱光滑的意义是什么?方法有哪些?答:意义1.由于核衰变及测量的统计性,当计数较小时,计数的统计涨落比较大,计数最多的一道不一定是高斯分布的期望,真正峰被湮没在统计涨落中2.为了在统计涨落的影响下,能可靠的识别峰的存在,并准确确定峰的位置和能量,从而完成定性分析,就需要谱光滑3.由于散射的影响,峰边界受统计涨落较大,需要谱光滑方法算术滑动平均法重心法多项式最小二乘法其他(傅里叶变换法) 寻峰的方法有哪些?答:简单比较法导数法对称零面积变换法二阶插值多项式计算峰位法重心法拟合二次多项式计算峰位法 峰面积计算的意义和方法?答:1)峰面积的计算是定量分析的基础。2)知道了特征峰的净峰面积,就可以计算目标元素的含量线性本底法(科沃尔沃森Sterlinski)峰面积法单峰曲面拟合法 谱的定性分析、定量分析的内容?答:定性:确定产生放射性的核素或元素定量:峰边界的确定峰面积计算重锋分析含量计算 核辐射测量特点:核辐射是核衰变的产物核辐射的能量具有特征性核素的含量与特征辐射的

数据库系统课程设计--实例

摘要 数据库技术是计算机科学技术发展最快,应用最为广泛的技术之一。其在计算机设计,人工智能,电子商务,企业管理,科学计算等诸多领域均得到了广泛的应用,已经成为计算机信息系统和应用的核心技术和重要基础。 随着信息技术的飞速发展,信息化的大环境给各成人高校提出了实现校际互联,国际互联,实现静态资源共享,动态信息发布的要求; 信息化对学生个人提出了驾驭和掌握最新信息技术的素质要求;信息技术提供了对教学进行重大革新的新手段;信息化也为提高教学质量,提高管理水平,工作效率创造了有效途径. 校园网信息系统建设的重要性越来越为成人高校所重视. 利用计算机支持教学高效率,完成教学管理的日常事务,是适应现代教学制度要求、推动教学管理走向科学化、规范化的必要条件;而教学管理是一项琐碎、复杂而又十分细致的工作,工资计算、发放、核算的工作量很大,不允许出错,如果实行手工操作,每月须手工填制大量的表格,这就会耗费工作人员大量的时间和精力,计算机进行教学管理工作,不仅能够保证各项准确无误、快速输出,而且还可以利用计算机对有关教学的各种信息进行统计,同时计算机具有手工管理所无法比拟的优点.例如:检索迅速、查找方便、可靠性高、存储量大、保密性好、寿命长、成本低等。这些优点能够极大地提高员工工资管理的效率,也是教学的科学化、正规化管理,与世界接轨的件。在软件开发的过程中,随着面向对象程序设计和数据库系统的成熟,数据设计成为软件开发的核心,程序的设计要服从数据,因此教学管理系统的数据库设计尤其重要。 本文主要介绍教学管理系统的数据库方面的设计,从需求分析到数据库的运行与维护都进行详细的叙述。本系统利用IBM DB2企业版本开发出来的。DB2是IBM公司开发的关系关系数据库管理系统,它把SQL语言作为查询语言。 本文的分为5章。其中第1章主要是课题简介及设计的内容与目的。第2章是需求分析,此阶段是数据库设计的起点。第3章是概念设计,它是将需求分析的用户需求抽象为信息结构,这是整个数据库设计最困难的阶段。第4章是逻辑结构设计,它将概念模型转换为某个DBMS所支持的数据模型。第5章是数据库的实施与运行,它包括数据的载入及数据库的运行。 关键词:SQL语言;IBM DB2;数据库设计;教学管理系统 I

(完整版)数据库实验报告

数据库实验报告姓名学号

目录 一.实验标题:2 二.实验目的:2 三.实验内容:2 四.上机软件:3 五.实验步骤:3 (一)SQL Server 2016简介3(二)创建数据库 4 (三)创建数据库表 7(四)添加数据17 六.分析与讨论: 19

一.实验标题: 创建数据库和数据表 二.实验目的: 1.理解数据库、数据表、约束等相关概念; 2.掌握创建数据库的T-SQL命令; 3.掌握创建和修改数据表的T-SQL命令; 4.掌握创建数据表中约束的T-SQL命令和方法; 5.掌握向数据表中添加数据的T-SQL命令和方法三.实验内容: 1.打开“我的电脑”或“资源管理器”,在磁盘空间以自己的姓名或学号建立文件夹; 2.在SQL Server Management Studio中,使用create database命令建立“学生-选课”数据库,数据库文件存储在步骤1建立的文件夹下,数据库文件名称自由定义; 3.在建立的“学生-选课”数据库中建立学生、课程和选课三张表,其结构及约束条件如表所示,要求为属性选择合适的数据长度; 4.添加具体数据;

四.上机软件: SQL Server 2016 五.实验步骤: (一)SQL Server 2016简介 1.SQL Server 2016的界面 2.启动和退出SQL Server 2016 1)双击图标,即出现SQL Server2016的初始界 2)选择“文件”菜单中的“退出”命令,或单击控制按钮中的“×”即可 注意事项: 1.在退出SQL Server 2016之前,应先将已经打开的数据库进行保存, 2.如果没有执行保存命令,系统会自动出现保存提示框,根据需要选择相应的操作

大数据核心课程排行榜

大数据核心课程排行榜? 当前医疗行业、能源行业、通信行业、零售业、金融行业、体育行业等各行业都可以从其数据的采集、传输、存储、分析等各个环节产生巨大的经济价值,而提供大数据基础设施的企业、大数据软件技术服务的企业、行业大数据内容咨询服务的企业都将从大数据的广泛应用而得到快速发展。然而大数据的核心技术你都了解哪些呢?千锋教育大数据培训讲师分享大数据的核心技术。 1、大数据采集与预处理 在大数据的生命周期中,数据采集处于第一个环节。根据MapReduce产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。对于不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。针对管理信息系统中异构数据库集成技术、Web 信息系统中的实体识别技术和DeepWeb集成技术、传感器网络数据融合技术已经有很多研究工作,取得了较大的进展,已经推出了多种数据清洗和质量控制工具,例如,美国SAS公司的Data Flux、美国IBM 公司的Data Stage、美国Informatica 公司的Informatica Power Center。 2、大数据存储与管理 传统的数据存储和管理以结构化数据为主,因此关系数据库系统(RDBMS)可以一统天下满足各类应用需求。大数据往往是半结构化和非结构化数据为主,

结构化数据为辅,而且各种大数据应用通常是对不同类型的数据内容检索、交叉比对、深度挖掘与综合分析。面对这类应用需求,传统数据库无论在技术上还是功能上都难以为继。因此,近几年出现了oldSQL、NoSQL 与NewSQL 并存的局面。总体上,按数据类型的不同,大数据的存储和管理采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。针对这类大数据,通常采用新型数据库集群。它们通过列存储或行列混合存储以及粗粒度索引等技术,结合MPP(Massive Parallel Processing)架构高效的分布式计算模式,实现对PB 量级数据的存储和管理。这类集群具有高性能和高扩展性特点,在企业分析类应用领域已获得广泛应用;第2类主要面对的是半结构化和非结构化数据。应对这类应用场景,基于Hadoop开源体系的系统平台更为擅长。它们通过对Hadoop生态体系的技术扩展和封装,实现对半结构化和非结构化数据的存储和管理;第3类面对的是结构化和非结构化混合的大数据,因此采用MPP 并行数据库集群与Hadoop 集群的混合来实现对百PB 量级、EB量级数据的存储和管理。一方面,用MPP 来管理计算高质量的结构化数据,提供强大的SQL 和OLTP型服务;另一方面,用Hadoop实现对半结构化和非结构化数据的处理,以支持诸如内容检索、深度挖掘与综合分析等新型应用。这类混合模式将是大数据存储和管理未来发展的趋势。 3、大数据分析与可视化 在大数据时代,人们迫切希望在由普通机器组成的大规模集群上实现高性能的以机器学习算法为核心的数据分析,为实际业务提供服务和指导,进而实现数据的最终变现。与传统的在线联机分析处理OLAP不同,对大数据的深度分析主要基于大规模的机器学习技术,一般而言,机器学习模型的训练过程可以归结为

核磁共振实验报告及数据

核磁共振实验报告及数据核磁共振实验报告及数据 2011年04月20日核磁共振1了解核磁共振的基本原理教学目的2学习利用核磁共振校准磁场和测量g因子的方法3理解驰豫过程并计算出驰豫时间。重难点1核磁共振的基本原理2磁场强度和驰豫时间的计算。教学方法讲授、讨论、实验演示相结合。学时3个学时一、前言核磁共振是重要的物理现象。核磁共振技术在物理、化学、生物、医学和临床诊断、计量科学、石油分析与勘探等许多领域得到重要应用。自旋角动量P不为零的原子核具有相应的磁距μ而且其中称为原子核的旋磁比是表征原子核的重要物理量之一。当存在外磁场B时核磁矩和外磁场的相互作用使磁能级发生塞曼分裂相邻能级的能量差为其中hh/2πh为普朗克常数。如果在与B垂直的平面内加一个频率为ν的射频场当时就发生共振现象。通常称y/2π为原子核的回旋频率一些核素的回旋频率数值见附录。核磁共振实验是理科高等学校近代物理实验课程中的必做实验之一如今许多理科 院校的非物理类专业和许多工科、医学院校的基础物理实验课程也安排了核磁共振实验或演示实验。利用本装置和用户自备的通用示波器可以用扫场的方式观察核磁共振现象 并测量共振频率适合于高等学校近代物理实验基础实验教 学使用。二、实验仪器永久磁铁含扫场线圈、可调变阻器、探头两个样品分别为、和、数字频率计、示波器。三、实

验原理一核磁共振的稳态吸收核磁共振是重要的物理现象核磁共振实验技术在物理、化学、生物、临床诊断、计量科学和石油分析勘探等许多领域得到重要应用。1945年发现核磁共振现象的美国科学家Purcell和Bloch1952年获诺贝尔物理学奖。在改进核磁共振技术方面作出重要贡献的瑞士科学家Ernst1991年获得诺贝尔化学奖。大家知道氢原子中电子的能量不能连续变化只能取分立的数值在微观世界中物理量只能取分立数值的现象很普通本实验涉及到的原子核自旋角动量也不能连续变化只能取分立值其中I称为自旋量子数只能取0123?6?7等整数值或1/23/25/2?6?7等半整数值公式中的h/2π而h为普朗克常数对不同的核素I分别有不同的确定数值本实验涉及质子和氟核F19的自旋量子数I 都等于1/2类似地原子核的自旋角动量在空间某一方向例如z方向的分量也不能连续变化只能取分立的数值Pzm 。其中量子数m只能取II-1?6?7-II-I等2I1个数值。自旋角动量不为零的原子核具有与之相联系的核自旋磁矩其大小为 1 其中e为质子的电荷M为质子的质量g是一个由原子核结构决定的因子对不同种类的原子核g的数值不同g称为原子核的g因子值得注意的是g可能是正数也可能是负数因此核磁矩的方向可能与核自旋动量方向相同也可能相反。由于核自旋角动量在任意给定z方向只能取2I1个分立的数值因此核磁矩在z方向也只能取2I1个分立的数值。2 原子核的磁

《核反应物理分析》课程设计课件资料

目录 题目1 (2) 1.1 问题描述 (2) 1.2 输入卡描述 (2) 1.3 运行结果 (4) 题目2 (5) 2.1 问题描述 (5) 2.2 输入卡描述 (5) 2.3 运行结果 (7) 题目3 (8) 3.1 问题描述 (8) 3.2 输入卡描述 (8) 3.3 运行结果 (10) 题目4 (11) 4.1 问题描述 (11) 4.2 输入卡描述 (12) 4.3 运行结果与分析 (15) 贡献及心得体会 (17)

题目1 1.1问题描述 试对下面描述的问题进行5000个中子,100次循环的临界计算。 1.如下图所示(注意坐标,可自行改变坐标),中间黑色部分为Pu239(100%)圆筒,外围包着的是天然U反射层,初始燃料源处于(3.5, 0, 0)点。 其数据如下: Pu: ρ=15.8g/cc U: ρ=18.8 g/cc 质量百分比:U-238 99.2745%U-235 0.72% 1.2 输入卡描述 1.2.1 几何描述

1.2.2 材料描述 1.2.3源描述 100 5 5000

相关文档
最新文档