倒立摆稳定性分析(极点配置)

倒立摆稳定性分析(极点配置)
倒立摆稳定性分析(极点配置)

倒立摆稳定性分析(极点配置)

三、分析系统的稳定性—李雅普诺夫稳定性及其线性定常系统的特征值判据

1. 平衡状态:

李雅普诺夫关于稳定性的研究均针对平衡状态而言,对于所有的t ,满足

(),0e e x f x t ==

的状态称为平衡状态。

对线性定常系统x Ax =,其平衡状态满足0e Ax =,当A 为非奇异矩阵是,系统只有唯一的零解,即只存在一个位于状态空间原点的平衡状态。若A 为奇异矩阵,则系统存在有无穷多个平衡状态。

2. 李雅普诺夫意义下的稳定性:

设系统初始状态位于以平衡状态e x 为球心,δ为半径的闭球域()S δ内,即

00,e x x t t δ-≤=

若能使系统方程的解()00;,x t x t 在t →∞的过程中,都位于以e x 为球心、任意规定的半径为ε的闭球域()S ε内,即

()0000;,,x t x t x t t ε-≤≥

则称系统的平衡状态e x 在李雅普诺夫意义下是稳定的。

3. 渐近稳定性

若系统的平衡状态e x 不仅具有李雅普诺夫意义下的稳定性,且有

()00lim ;,0e t x t x t x →∞

-= 则称此平衡状态是渐近稳定的。这时,从()S δ出发的轨迹不仅不会超出()S ε,且当t →∞时收敛于e x ,显见经典控制理论中的稳定性定义与此处的渐近稳定性对应。对于严格的线性系统,如果它是稳定的,则必定是大范围稳定的。

4. 线性定常系统的特征值判据

定理:对于线性定常系统0,(0),0x Ax x x t ==≥,有

1).系统的每一平衡状态是在李雅普诺夫意义下的稳定的充分必要条件是,A 的所有特征值均具有非正(负或零)实部,且具有零实部的特征值为A 的最小多项式的单根.。

2).系统的唯一平衡状态0e x =是渐近稳定的充分必要条件是,A 的所有特征值

均具有负实部。

由以上定理可知,原倒立摆系统是不稳定的,根据系统的具体要求,将系统的闭环极点配置第一组:

P=[-1+i*3 -1-i*3 -7+i -7-i]

所以程序如下:

A=[0 1 0 0;20.6 0 0 0;0 0 0 1;-0.49 0 0 0]

B=[0; -1; 0; 0.5]

C=[0 0 1 0;1 0 0 0]

D=[0;0]

P=[-1+i*3 -1-i*3 -7+i -7-i]

k=place(A,B,P)

T=0:0.1:10

U=0.25*ones(size(T));

[Y,X]=lsim(A-B*k,B,C,D,U,T)

plot(T,Y)

TITLE('STEP RESPONSE')

XLABEL('TIME-SEC');

YLABEL('STEP RESPONSE')

grid;

运行后的阶跃响应图如下:

然后系统闭环极点配置第二组:

P=[-2+i*2*3^(1/2) -2-i*2*3^(1/2) -10+i -10-i]

所以程序如下:

A=[0 1 0 0;20.6 0 0 0;0 0 0 1;-0.49 0 0 0]

B=[0; -1; 0; 0.5]

C=[0 0 1 0;1 0 0 0]

D=[0;0]

P=[-2+i*2*3^(1/2) -2-i*2*3^(1/2) -10+i -10-i]

k=place(A,B,P)

T=0:0.1:9;

U=0.25*ones(size(T));

[Y,X]=lsim(A-B*k,B,C,D,U,T)

plot(T,Y)

TITLE('STEP RESPONSE');

XLABEL('TIME-SEC');

YLABEL('STEP RESPONSE')

GRID;

运行的系统阶跃响应图像为:

通过比较分析,明显看出第二种方案的超调量比第一种方案的小,调整时间也比第一种方案小,震荡周期也小,幅值也小,所以第二种方案比第一种方案优越。第二种方案经过大约2.5秒就可以达到稳定,

单级倒立摆系统的极点配置与状态观测器设计

单级倒立摆系统的极点配置与状态观测器设计 14122156 杨郁佳 (1)倒立摆的运动方程并将其线性化 选取小车的位移z ,及其速度z g 、摆的角位置θ及其角速度θg 作为状态变量,即T x z z θθ??=??? ?g g 则系统的状态空间模型为 01000100000010()1000mg M M x u M m g Ml Ml x ????????????-????=+????????+-????????????g []1000y x = 设M=2kg ,m=0.2kg ,g=9.81m/2 s ,则单级倒立摆系统的状态方程为 (1010) 01010 01020.500013030 011040.54x x x x u x x x x ??????????????????-????????=+????????????????-???????????? []12100034x x y x x ???? ??=?????? (2)状态反馈系统的极点配置。 首先,使用MATLAB ,判断系统的能控性矩阵是否为满秩。 MATLAB 程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0]; B=[0; 0.5; 0; -0.5]; C=[1 0 0 0]; D=0; rct=rank(ctrb(A,B)) [z,p,k]=ss2zp(A,B,C,D) MATLAB程序执行结果如下: 系统能控,系统的极点为 1=0 λ 2=0 λ 3=3.3166 λ 4=-3.3166 λ 可以通过状态反馈来任意配置极点,将极点配置在 1=-3 λ* 2=-4 λ* 3=-5 λ* 4=-6 λ*

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

系统稳定性意义以及稳定性的几种定义.

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

实验二 状态反馈与极点配置

实验二 状态反馈与极点配置 一、实验目的 a) 掌握状态反馈极点配置的设计方法。 b) 掌握运用模拟运算放大电路实现状态反馈。 c) 验证极点配置理论。 二、实验仪器 a) TDN —AC/ACS 型自动控制系统实验箱一台 b) 示波器 c) 万用表 三、实验原理和电路 为了更好地达到系统所要求的各种性能指针,需要通过设计系统控制器,改善原有系统的性能。由于系统的性能与其极点分布位置有密切关系,因而极点配置是系统设计的关键。极点配置就是利用状态反馈或输出反馈使闭环系统的极点位于所希望的极点位置。在系统综合设计中,状态反馈和输出反馈是两种常用的反馈形式,而在现代控制理论中系统的物理特性是采用系统内部状态变量来描述的,利用内部状态变量乘以系数(向量)与系统参考输入综合构成的反馈系统,具有更优的控制效果。 1、单输入单输出状态反馈的极点配置 受控系统如图2-1, 图2-1受控系统 其中状态变量1()1/G S S =,2()1/(0.051)G S S =+,状态变量1x 、2x ,对系统进行极点配置,达到系统期望的性能指针:输出超调量5%P M ≤;峰值时间 0.5p t s ≤;系统频宽10b ω≤;跟踪误差0p e =(对于阶跃输入)。 i. 确定受控系统的状态空间模型 211()()x u x G S =-,122()x x G S =,1y x =,系统的状态方程为: .11.2220200101x x u x x ??-?????? ??=+????????-????????? ?;[]1210x y x ??=???? ii. 确定期望的极点 P M = p t = ;b n ωω=可解得0.707ζ≥,选0.707ζ=;9n ω≥由10b ω≤选10n ω=。 这样期望极点为:* 17.077.07j λ=-+

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

全状态反馈系统极点配置的数字仿真(终)

实验一 全状态反馈系统极点配置的数字仿真 一、实验目的 1掌握全状态反馈系统的极点配置方法; 2研究不同极点配置对系统特性的影响。 二、实验原理 闭环系统性能与闭环极点(特征值)密切相关,在状态空间的分析和综合中,除了利用输出反馈以外,主要利用状态反馈来配置极点,它能提供更多的校正信息。 利用状态反馈任意配置闭环极点的充要条件是:受控系统可控。 设SIMO (Single Input-Multi Output )受控系统的动态方程为 u A b x x += ,x y C = 状态向量x 通过状态反馈矩阵k ,负反馈至系统参考输入v ,于是有 u v kx =+ 这样便构成了状态反馈系统,其结构图如图1-1所示 图1-1 SIMO 状态反馈系统结构图 状态反馈系统动态方程为 x ()A bk x bv =++,x y C = (1-1) 闭环系统特征多项式为 ()()f I A bk λλ=-+ (1-2) 设闭环系统的期望极点为1λ,2λ,…,n λ,则系统的期望特征多项式为 )())(()(21*n f λλλλλλλ---= (1-3) 欲使闭环系统的极点取期望值,只需令式(1-2)和式(1-3)相等,即 )()(*λλf f = (1-4) 利用式(1-4)左右两边对应λ的同次项系数相等,可以求出状态反馈矩阵 []n k k k 21=k 例如SISO (Single Input-Single Output )受控系统的开环传递函数为 3 1)(s s G = 若采用输出单位反馈构成闭环系统,则该系统显然是不稳定的,若按指定的极点配置,采用

全状态反馈构成闭环系统,则可以满足给定的性能要求。 原系统可控标准形形式的状态方程和输出方程为 u x x x u A ???? ? ?????+????????????????????=+=100000100010321b x x []???? ??????==321001x x x C y x 由于本系统是完全可控的,能够通过反馈向量k 的选择,使闭环系统的极点置于所希望的位置上,以满足系统的性能指标要求。 若根据系统的性能指标,希望配置的极点为31-=p ,2j 23,2±-=p ,则采用状态反馈后系统的特征多项式为 32321()det[I ()]f A bk k k k λλλλλ=-+=--- 希望的系统特征多项式为 *32()(3)(2j2)(2j2)72024f λλλλλλλ=++-++=+++ 比较上述两个多项式得系统状态反馈向量为 [][]123k 24207k k k ==--- 因此,加入状态反馈后,闭环系统的状态方程为 u x x x u A ???? ??????+????????????????????---=+=10072024100010321b x x 其结构图如图1-2所示 图1-2 状态反馈系统结构图 三、实验内容及步骤 实验通过MATLAB 软件实现。 1. 双击MATLAB 图标或单击开始菜单,依次指向“程序”、“MATLAB ”,单击MATLAB ,进入MATLAB 命令窗口。单击MATLAB 工具条上的Simulink 图标 ,运行后出现Simulink 模块库浏览器,并单击其工具条左边的图标,弹出新建模型窗口。

极点及系统稳定性

极点对系统性能影响 一.控制系统与极点 自动控制系统根据控制作用可分为:连续控制系统和采样控制系统,采样系统又叫离散控制系统。通常把系统中的离散信号是脉冲序列形成的离散系统,称为采样控制系统。连续控制系统即指控制量为连续的模拟量如时变系统。 系统的数学模型一般由系统传递函数表达。传递函数为零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z 变换)与激励(即输入)量的拉普拉斯变换之比。记作Φ(s )=Xo (s )/Xi (s ),其中Xo (s )、Xi (s )分别为输出量和输入量的拉普拉斯变换。 特征方程的根称为极点。如试Φ﹙S ﹚= C [∏(S-Pi )/∏(S-Qi) ]中Q1 Q2 Q3 …… Qi ……即为系统的极点。 二.极点对系统的影响 极点--确定了系统的运动模态;决定了系统的稳定性。下面对连续系统与离散系统分别进行分析: ⑴连续系统 理论分析:连续系统的零极点分布有如下几种形式 设系统函数为: 将H(S)进行部分分式展开: 1n a s -+++

系统冲激响应H(S)的时域特性h(t)随时间衰减的信号分量完全由系统函数H(S)的极点位置决定。每一个极点将决定h(t)的一项时间函数。 稳定性:由上述得知Y(S)= C [∏(S-Pi )/(S-Qi) ]可分解为Y(S)=C1/(S-τ1)+ C2/(S-τ2)+ C3/(S-τ3)+……+ Ci/(S-τi)+…… 则时间响应为 …… 由于特征方程的根不止一个,这时,应把系统的运动看成是多个运动分量的合成。只要有一个运动分量是发散的,则系统是不稳定的。因此,特征方程所有根的实部都必须是负数,亦即所有的根都在复平面的左半平面。 通过复变函数幅角定理将S 由G 平面映射到GH 平面。 如果封闭曲线 F 内有Z 个F(s)的零点,有P 个F(s)的极点,则s 沿 F 顺时针转一圈时,在F(s)平面上,F(s)曲线绕原点顺时针转的圈数R 为z 和p 之差,即R =z -p 。 若R 为负,表示F(s)曲线绕原点逆时针转过的圈数。 F(s)的分母是G0(s)的分母,其极点是G0(s)的极点;其分子是?(s)的分母,即?(s)的特征多项式,其零点是?(s)的极点。 取D 形曲线(D 围线)如图所示,是整个右半复平面。 且设D 曲线不经过F(s)的任一极点或零点。 s 沿D 曲线顺时针变化一周,F(s)顺时针包围原点的周数为: n=z-p=F(s)在右半复平面的零点数(闭环传函在右半复平面极点数) -F(s)在右半复平面的极点数(开环传函在右半复平面极点数) 所以闭环系统稳定的充分必要条件是: n=- p =-开环传函在右半复平面的极点数 1212()n s t s t s t n y t C e C e C e =+++0()0()0()0()t s y t y t Ce y t y t t ααααα=<→?? ===??>→∞? →∞(1)只有一个实根:时,时,恒量时,()()121()0cos()00j t j t t s j y t C e C e C e t t αωαωααωαω?αα+-=±=+? →∞(2)有一对复根:时,收敛时,等幅振荡时,发散

直线一级倒立摆控制器设计 自动控制理论课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书 课程名称:自动控制理论 设计题目:直线一级倒立摆控制器设计院系:电气工程系 班级:0806152 设计者:段大坤 学号:1082710118 指导教师:郭犇 设计时间:2011.6.13-2011.6.20 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

1.1数学模型建立 数学模型的建立过程需要用到以下参数: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下),其中 θπφ=+ 分析小车水平方向所受的合力可得: Mx F bx N =-- (1) 由摆杆水平方向受力分析可得: 2 2(sin )d N m x l dt θ=+ (2) 即 2cos sin N mx ml ml θθθθ=+-(3) 将(3)代入(1)可得系统的第一个运动方程: 2()cos sin M m x bx ml ml F θθθθ+++-= (4) 对摆杆垂直方向的合力进行分析可得: ()2 2cos d P mg m l dt θ-=- (5) 即: 2sin cos P mg ml ml θθθθ-=+(6) 力矩平衡方程如下: sin cos Pl Nl I θθθ--=(7) 将(6)(7)合并可得第二个运动方程:

2()sin cos I ml mgl mlx θθθ++=- (8) 1、微分方程模型 由于θπφ=+,当摆杆与垂直向上方向之间的夹角φ和1(弧度)相比很小时,即1 φ时,可进行如下近似处理:cos 1θ=-,sin θφ=-,2 ( )0d dt θ=。用u 代表被控对象的输入力F ,将模型线性化可得系统的微分方程表达式: 2 ()()I ml mgl mlx M m x bx ml u φφφ?+-=?? ++-=?? (9) 2、传递函数模型 设初始条件为0,,对(9)进行拉普拉斯变换可得: 222 22 ()()()()()()()()() I ml s s mgl s mlX s s M m X s s bX s s ml s s U s ?+Φ-Φ=??++-Φ=??(10) 输出为角度φ,解方程组(10)的第一个方程可得: 22()()[]()I ml g X s s ml s +=-Φ (11) 或2 22(()()s mls X s I ml s mgl Φ= +-)(12) 令小车加速度v x =则有 22()()()s ml V s I ml s mgl Φ=+- 将(11)式代入方程组(10)的第二个方程可得 222 222()()()[]()[]()()()I ml g I ml g M m s s b s s ml s s U s ml s ml s +++-Φ+-Φ-Φ= 以u 为输入量,以摆杆摆角φ为输出的传递函数为: 2 2 432()()()() ml s s q b I ml M m mgl bmgl U s s s s s q q q Φ=+++--

状态反馈与极点配置报告

自 动 控 制 原 理 (课程设计)

一、题目 用MATLAB创建用户界面,并完成以下功能: (1)由用户输入被控系统的状态空间模型、闭环系统希望的一组极点; (2)显示未综合系统的单位阶跃响应曲线; (3)显示采用一般设计方法得到的状态反馈矩阵参数; (4)显示闭环反馈系统的单位阶跃响应曲线; (5)将该子系统嵌入到寒假作业中程序中。 分别对固定阶次和任意阶次的被控系统进行设计。分别给出设计实例。 二、运行结果 界面:如图 由用户输入被控系统的状态空间模型、闭环系统希望的一组极点 例如,输入 010 001 034 A ?? ?? =?? ?? -- ?? , 1 B ?? ?? =?? ?? ?? ,[] 2000 C=,0 D=,闭环系统 希望的一组极点:22j -+、22j --、5 -如图所示:

被控系统的单位阶跃响应曲线 闭环系统的单位阶跃响应曲线

状态反馈矩阵显示 三、讨论 该闭环控制系统的状态反馈与极点配置设计系统可用于任意阶次的控制系统。在此之前,我还做了一个固定阶次的控制系统状态反馈与极点配置的Matlab 控制台程序(见附录二)。 该系统的利用状态反馈进行极点任意配置所采用的方法为一般方法,其步骤如下: ①判断受控系统是否完全能控; ②由给定的闭环极点要求确定希望的闭环特征多项式的n个系数 ~ i a; ③确定原受控系统的特征多项式系数i a; ④确定系统状态反馈矩阵 ~ ~~ ~ [,,,] 12n f f f F=的诸元素~~1 1i i i f a a - =- -; ⑤确定原受控系统化为能控标准形的变换阵的逆1 P-, ⑥确定受控系统完成闭环极点配置任务的状态反馈阵 ~ 1 F F P-=。 四、参考文献 [1]黄家英.《自动控制原理》.高等教育出版社,2010.5 [2]唐向红,郑雪峰.《MATLAB及在电子信息类》.电子工业出版社,2009.6 [3]吴大正,高西全.《MATLAB新编教程》.机械工业出版社,2008.4 五、附录 function varargout = tufeiqiang(varargin) %TUFEIQIANG M-file for tufeiqiang.fig % TUFEIQIANG, by itself, creates a new TUFEIQIANG or raises the existing % singleton*. % % H = TUFEIQIANG returns the handle to a new TUFEIQIANG or the handle to % the existing singleton*. % % TUFEIQIANG('Property','Value',...) creates a new TUFEIQIANG using

单级倒立摆控制的极点配置方法

一级倒立摆控制的极点配置方法 摘要 倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。 本文通过极点配置, 实现了用现代控制理论对一级倒立摆的控制。利用牛顿第二定律及相关的动力学原理等建立数学模型,对小车和摆分别进行受力分析,并采用等效小车的概念,列举状态方程,进行线性化处理想, 最后通过极点配置,得到变量系数阵。利用Simulink建立倒立摆系统模型,特别是利用Mask封装功能, 使模型更具灵活性,给仿真带来很大方便。实现了倒立摆控制系统的仿真。仿真结果证明控制器不仅可以稳定倒立摆系统,还可以使小车定位在特定位置。 关键词:倒立摆,数学建模,极点配置

THE POLE PLACEMENT CONTROL TO A SINGLE INVERTED PENDULUM Abstract Inverted pendulum system is multivariable, nonlinear, strong-coupling and instability naturally. The research of inverted pendulum has many important realistic meaning in the research such as, the walking of biped robot, the lunching process of rocket and flying control of helicopter, and many correlative productions has applications in the field of technology of space flight and subject of robot. Through the pole placement method, the control of the inverted pendulum is realized. We get the mathematic model according to the second law of Newton and the foundation of the dynamics, analysis the force of the cart and pendulum, and adopt the concept of "the equivalent cart”. During writing the equitation of the system, the equitation has been processed by linear. At last,we get coefficient of the variability. The simulation of inverted pendulum system is done by the SIMULINK Tool box. Specially Mask function is applied, it makes simulation model more agility, the simulation work become more convenient. The result shows that it not only has quite goods ability, but also is able to make the cart of the pendulum moving to the place where it is appointed by us in advance along the orbit. Key words: inverted pendulum, mathematic model, pole placement

判断系统稳定性

摘要 现今数字信号处理理论与应用已成为一门很重要的高新科学技术学科,通过功能强大的MATLAB软件与数字信号处理理论知识相互融合在一起,既使我们对数字信号处理的理论知识能够有更加深厚的解也提高了动手能力,实践并初步掌握了MATLAB 的使用。 根据本次课题要求,通过使用MATLAB,方便了对系统函数的繁琐的计算,并且直观形象的用计算机进行模拟仿真,通过观察图,由图像的特征从而进一步的对系统进行形象的分析。 本课题中给出了系统函数,对其稳定性进行分析我们可以通过MATLAB画零极图观察极点的分布,另外还可以通过MATLAB分析系统的单位阶跃响应、单位脉冲响应、幅频相频特性的图形更加具体的对系统进行分析。 关键字:离散系统函数、MATLAB、零极点分布、系统稳定性。

一、设计原理 1.设计要求 (1):根据系统函数求出系统的零极点分布图并且判断系统的稳定性。 (2):求解系统的单位阶跃响应,并判断系统的稳定性。 (3):求系统的单位脉冲响应,并判断系统的稳定性 (4):求出各系统频率响应,画出幅频特性和相频特性图(zp2tf,zplane,impz等) 2、系统稳定性、特性分析 进行系统分析时我主要利用MATLAB软件绘制出系统零极点的分布图、单位脉冲响应图、单位阶跃响应图等。采用MATLAB 软件进行设计时我调用了软件本身的一些函数来对课题进行绘图和分析。诸如zplane、impz、stepz、freqz等。 对系统函数的零极图而言:极点在单位圆内,则该系统稳定,极点在单位圆外,则该系统为非稳定系统。 当极点处于单位圆内,系统的冲激响应曲线随着频率的增大而收敛;当极点处于单位圆上,系统的冲激响应曲线为等幅振荡;当极点处于单位圆外,系统的冲激响应曲线随着频率的增大而发散。 系统的单位阶跃响应若为有界的则系统为稳定系统。由以上的判据配合图形对系统的稳定性进行分析,达到我们的课程要求。 系统函数H(z)的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。 因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性: (1)系统单位样值响应h(n)的时域特性; (2)离散系统的稳定性; (3)离散系统的频率特性;

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

二阶系统性能改善与稳定性

例1 系统结构图如图所示。求开环增益K分别为10,0.5,0.09时系统的动态性能指标。 计算过程及结果列表 K 计算 10 0.5 0.09 开环 传递 函数 )1 ( 10 ) ( 1+ = s s s G )1 ( 5.0 ) ( 2+ = s s s G )1 ( 09 .0 ) ( 3+ = s s s G 闭环 传递 函数10 10 ) ( 2 1+ + = Φ s s s 5.0 5.0 ) ( 2 2+ + = Φ s s s 09 .0 09 .0 ) ( 2 3+ + = Φ s s s 特征 参数 ? ? ? ?? ? ? ? = = = ? = = = 81 arccos 158 .0 16 .3 2 1 16 .3 10 ξ β ξ ω n ? ? ? ?? ? ? ? = = = ? = = = 45 arccos 707 .0 707 .0 2 1 707 .0 5.0 ξ β ξ ω n ?? ? ? ? = ? = = = 67 .1 3.0 2 1 3.0 09 .0 ξ ω n 特征 根 12 .3 5.0 2,1 j ± - = λ5.0 5.0 2,1 j ± - = λ ? ? ? - = - = 9.0 1.0 2 1 λ λ ? ? ? = = 11 .1 10 2 1 T T 动态 性能 指标 2 2 1 00 00 1.01 1 60.4 3.5 3.5 7 0.5 p n s n t e t ξπξ π ξω σ ξω -- ? == ? - ? ? == ? ? ?=== ? ? ? ? ? ? ? ? ? ? ? = = = = = - = - - 7 5.3 5 238 .6 1 1 2 2 n s n p t e t ξω σ ω ξ π ξ ξπ() 1221 11 9 31 ,0 s s p T T t t T T t λλ σ ?== ? =?= ? ?=∞= ?

信号与系统_——零极点及稳定性响应

实验七、系统极零点及其稳定性 三、已知下列传递函数H(s)或H(z),求其极零点,并画出极零图。 1. b=[3 -9 6]; a=[1 3 2]; zplane(b,a) 2. b=[1]; a=[1 0]; zplane(b,a)

3. b=[1 0 1]; a=[1 2 5]; zplane(b,a)

4. b=[1.8 1.2 1.2 3]; a=[1 3 2 1]; zplane(b,a) 五、求出系统的极零点,判断系统的稳定性。 5、先求出分子分母多项式系数 >> syms s >> zs=100*s*(s+2)^2*(s^2+3*s+2)^2; >> expand(zs) ans = 100*s^7+1000*s^6+4100*s^5+8800*s^4+10400*s^3+6400*s^2+1600*s >> syms s >> ps=(s+1)*(s-1)*(s^3+3*s^2+5*s+2)*((s^2+1)^2+3)^2; >> expand(ps) ans = -32-80*s-48*s^2+8*s^4-16*s^3+28*s^6+20*s^5+44*s^7+30*s^8+s^13+8*s^11+23*s^9+3*s^12 +11*s^10 再求出极零点 b=[100 1000 4100 8800 10400 6400 1600 0]; a=[1 3 8 11 23 30 44 28 20 8 -16 -48 -80 -32];

[z,p]=tf2zp(b,a) 求解结果: z = -2.0005 + 0.0005i -2.0005 - 0.0005i -1.9995 + 0.0005i -1.9995 - 0.0005i -1.0000 + 0.0000i -1.0000 - 0.0000i p = 1.0000 0.7071 + 1.2247i 0.7071 - 1.2247i 0.7071 + 1.2247i 0.7071 - 1.2247i -1.2267 + 1.4677i -1.2267 - 1.4677i -0.7071 + 1.2247i -0.7071 - 1.2247i -0.7071 + 1.2247i -0.7071 - 1.2247i -1.0000 -0.5466 极点不是都在左半平面,因此系统不稳定。 6、clear all; clc; num=conv([1 -1.414 1],[1 1]); den=conv([1 0.9 0.81],[1 -0.3]); [z,p]=tf2zp(num,den) zplane(z,p); z = -1.0000 0.7070 + 0.7072i 0.7070 - 0.7072i

一阶倒立摆课程设计报告

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系):英才学院专业:自动化班号: 任务起至日期: 2011 年8 月22 日至 2011 年9 月9 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)的超调量小于20度(0.35弧度) (4)稳态误差小于2%。

工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。 工作计划安排: 第3周:(1)建立直线一级倒立摆的线性化数学模型; (2)倒立摆系统的PID控制器设计、Matlab仿真; (3)倒立摆系统的极点配置控制器设计、Matlab仿真。 第4周:实物调试; 撰写课程设计论文。 同组设计者及分工: 各项工作独立完成 指导教师签字 年月日教研室主任意见:

实验二:系统稳定性和稳态性能分析

实验二:系统稳定性和稳态性能分析 主要内容: 自动控制系统稳定性和稳态性能分析上机实验 目的与要求: 熟悉 MATLAB 软件对系统稳定性分析的基本命令语句 熟悉 MATLAB 软件对系统误差分析的 Simuink 仿真 通过编程或 Simuink 仿真完成系统稳定性和稳态性能分析 一 实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二 实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用 MA TLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 (2)已知单位负反馈控制系统的开环传递函数为( 2.5)()(0.5)(0.7)(3)k s G s s s s s +=+++,当取k =1,10,100用MA TLAB 编写程序来判断闭环系统的稳定性。 只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。 2、稳态误差分析 (1)已知如图所示的控制系统。其中2(5)()(10) s G s s s +=+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。 从 Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)模块、Scope (示波器)模块到仿真操作画面,连接成仿真框图如右上图所示: (2)若将系统变为I 型系统,5()(10) G s s s =+,在阶跃输入、斜坡输入和加速度信

基于输出反馈的区域极点配置

第22卷第2期南 京 理 工 大 学 学 报Vol.22No.21998年4月 Journal of Nanjing University of Science and Technology Apr.1998 基于输出反馈的区域极点配置 X 王子栋X X 郭 治 (南京理工大学信息学院,南京210094)摘要 该文研究输出反馈情形下线性定常连续及离散系统区域极点配置的统一代数刻划问题,即利用完全参数化方法,设计输出反馈控制器,使闭环极点配置于指定圆形区域内。文中导出了期望输出反馈控制器存在的充要条件,并进一步给出了这类控制器的全部参数化刻划。最后,得到了若干有益的推论,包括线性离散及连续系统稳定化控制器的统一代数表示等。 关键词 线性系统,输出反馈,极点配置,参数法,代数刻划 分类号 TP 202.1,T P 214.1 众所周知,线性定常系统的稳态及动态特性直接受其极点所在位置的影响,因而极点配置问题一直是控制理论研究中基本而重要的课题之一,其在工程实践中也具有明显的应用背景,如飞行控制系统的设计以及柔性结构的振动控制等[1]。迄今为止,精确极点的配置问题已得到了很好的研究。在过去的十年中,区域极点的配置问题也开始受到充分的注意,涌现出一批成果[2][3]。 目前,区域极点配置的相关文献中的大部分均是针对某性能指标给出具体的设计方法,且均集中于状态反馈情形,缺乏一定的通用性。本文对连续及离散线性定常系统使用统一的代数方法,给出了配置闭环极点至给定圆形区域的输出反馈控制器的全部参数化刻划,为区域极点配置问题提供了一条具有理论意义及应用价值的新途径。 1 问题的描述 考虑线性定常连续系统x a (t )=A x (t )+B u (t ),y (t )=Cx (t )及线性定常离散系统x (k +1)=A x (k )+Bu (k ),y (k )=Cx (k ),其中x ∈R n 为状态,u ∈R m 为控制输入,y ∈R p 为测量输出,A 、B 、C 为适维已知常数阵。(A ,B )及(A ,C )分别为可控和可观的。 考虑圆形区域D (A ,r ),其中在连续时间情形D (A ,r )表示圆心在A +j 0(A <0)处、半径为r (r <-A )的圆,在离散时间情形D (A ,r )表示单位圆内圆心位于A +j 0、半径为r 的圆。这里均考虑复平面。 X X XX 王子栋 男 32岁 副教授 国家自然科学基金及高校博士学科点专项科研基金资助项目 本文于1997年1月14日收到

相关文档
最新文档