实用的音频功率放大器检修图解

实用的音频功率放大器检修图解
实用的音频功率放大器检修图解

实用的音频功率放大器检修图解手册

目前流行的功率放大器除采用集成电路功放外几乎都是用分立元件构成的OCL 电路。基本电路由差动输入级、电压放大级、电流放大级(推动级)、功率输出级和保护电路组成。附图A是结构框图B是实用电路例图,有结构简单的基本电路形式,也有增加了辅助电路和补偿电路的复杂电路形式。

本文把常见的OCL电路分解成几块,从电路的简单原理,常见的电路构成,检查时电路的识别,维修的基本方法逐个进行介绍。认识了局部电路拼出整个电路图时功放的维修就相对容易多了。C是电压分布图。电压测量是功放检修中基本方法,电压分布是以输入端到输出端为0V中轴线,越向上红色越深表示正电压越高,越向下兰色越深表示负电压越低。图B这种全对称电路电压也正负对称,是检修测量的主要依据。

全对称OCL功放电路电压分布示意图

一差动输入级

图1是最基本的差动(差分)输入级电路,它由两个完全对称的单管放大器组合而成,两个管的基极分别是正负输入端。一个输入端作为信号输入用,另一个输入端作为反向输入末端负反馈用。因其能有效地抑制输出端的零点漂移而成为OCL电路的输入门户。输入级有单差动和双差动之别,单差动电路简洁,双差动对称性好。从前级送来的信号通过一个电容和电阻所连接的三极管就是差动输入级,相邻的同型号管子就是差动的另一半。输入端接的是一个管的基极则是单差动,如接着两个管的基极,就是双差动。为克服电源波动对电路的影响,图2在差动放大器的发射极增加了恒流源。有的在集电极增加了镜流源如图3,保证了差动两管静态电流的一致性。图4是既有恒流源又有镜流源的高挡机采用的差动输入电路。

图5、6、7 是常见的三种恒流源电路,尤其是图6这种利用二极管箝位方式用的最多,两个二极管将三极管基极稳定在1.4V左右,在电源电压波动时差动级的静态电流保持不变,提高了放大器的稳定性。图8、9镜流源中两个三极管基极相连,发射极电阻相同,流过两管的电流一样,象照镜子一样确保差动两个管的静态电流一致性。这两部分电路的识别方法是差动管两发射极电阻归到一点后所连接的三极管就是恒流源,它最明显的特点就是基极上接有二极管或稳压管。镜流源两管集电极与两个差动管集电极分别相连,因它的两个三极管的连接方式较特别,两个基极和一个集电极连在一起所以识别起来也容易。' |* V2差动级工作在甲类状态,每个三极管都必须良好的导通,检测要点是差动两管的be结电压,用数字表精确测量应在0.63V左右,两管各极对称电压一样。因它的反向输入端接着由末端引过来的反馈网络,后边电路的异常将影响差动管的;静态偏置,常态时差动级各三极管基极对电源地都是0V,如发现电压异常多数是后边电路故障引起反馈输入端电压偏移。该部分电路故障率很低,应先检查后边电路故障。在不加电的状态下可测量差动级各管的PN结是否良

好,因各管各脚都接有电阻,测量时用指针表R×1档,NPN管黑表笔接基极红表笔分别接集电极和发射极都导通,交换表笔再测都不导通,PNP管与之相反。二电压放大级

图10是最简单的电压放大电路,在低档次的功放中广泛应用。由差动级送来的信号经单管放大后从集电极输出,经电阻和二极管分压送往下级。图11是复合管放大方式,图12是差动放大方式。后两种电路都加进恒流源作为集电极负载,提高后级电路的稳定性。这三种电压放大电路都是配合单差动输入电路的。如八达DC-211AK功放就采用图11电路,联声MA-767功放则与图12类似。图13是双差动输入方式电压放大级的基本电路,极性不同的两个三极管分别对来自不同极性的差动级集电极信号进行再度放大。如高士AV-115 功放的电压放大电路就是如此。在一些高档机和专业功放中常采用图14和图15共射共基放大电路,该放大器能改善放大器的线性和展宽频带。如湖山PSM96功放其电压放大如图14所示。DSPPA MP-600P 、ZHONGHE ET-5350 就采用图15电压放大电路。该部分电路也工作在甲类状态,be结电压在0.63V左右。

电压放大级与电流放大级是直接耦合的,电压放大管集电极接着电流放大管基极,电流放大管的偏置就由前边电路提供。图16是最基本的偏置电路,这部分电路本身是电压放大管的集电极负载,通过电阻分压和二极管箝位为后级提供合适的偏置电压。图17、18、19、20、21、22是由三极管构成的恒压偏置电路,确保了后级偏置稳定。六种电路虽然有区别但基本原理一样。恒压管处于良好的导通状态,其be结电压在0.67V左右。较多功放电路采用图19所示恒压偏置电路,调整图中可调电阻可改变后级的偏置电压和静态电流。还有通过调整此可调电阻实现整机由甲乙类向纯甲类的转换。这部分电路有着明显的表识,利用三极管的正温度特性恒压管大多数都贴在功率管散热片上。由它可引出电压放大管。采用图15共射共基放大电路虽然复杂一些,但每侧两个发光二极管明显位置可找到相关元件。该部分电路故障率也很低,恒压偏置的可调电阻接触不良会导致功率管偏置太低的现象,这是因为可调电阻开路将使恒压管失去下偏置电阻,基极电压接近集电极电压而饱和导通。电流放大管和功率管便失去偏置。这也是可调电阻为什么要设在下偏置电阻位置的原因,设想如果将可调电阻放在上偏置电阻位置开路时将造成恒压管的截至,后边功率管会因偏置过高而饱和导通,那将是一个什么样的结局。电压放大级本身故障率并不高,但是当后边电流放大级管子击穿常会烧坏恒压偏置管。该部分检测的要点是连接后级基极的两个输出点A和B(双差动电路是两个电压放大管的集电极,恒压偏置管的集电极和发射极)的电压约是2.2V左右(0.5+0.5+0.6+0.6后四个管子偏置总和)。过高将会使功率管静态电流过大发热。A B两点对地电压应是对称的±1.1V左右,不对称势必会造成中点偏移。

三电流放大和功率输出级

图23、图24是电流放大管射级电阻悬浮方式电路,在强弱信号变化时发射极电位会随之浮动,有利于克服交越失真和削顶失真。图25两个发射极电阻与输出中点连接,有利于中点平衡。三种电路几乎为绝大多数功放采用。发烧级功放电流放大级和功率输出级均处于甲类状态,一般家用OK机和演出专业功放电流放大管be结电压都调整在0.6V左右,功率管则处于乙类状态be结仅有0.5V。图26是末级采用场效应管的功放电路,场效应管属电压驱动器件,可减轻推动管在大功率输出时的负荷。场效应管输出电流大负载能力强也是一些专业功放选用的原因。很多低价功放也使用拆机场效应管装机。场效应管偏置比三极管高,大约在1.8V左右。图27是采用同极性NPN功率管的准互补OCL电路,将标准OCL电路PNP推动管的发射极电阻移到集电极与负电源之间,原发射极电阻处加一个100欧姆左右的反馈补偿电阻,将原图PNP功率管换成NPN管,基极改接在下推动管的集电极,集电极和发射极电阻接人电路的位置互换。这种电路在六七十年大功率PNP管缺乏时很流行,因拆机管中NPN管和N沟道场效应管远比PNP管和P沟道场效应管多得多,所以也是沿海用拆机管打造廉价功

放的常用电路。

图40是基本OCL电路,图41是采用准互补OCL电路的DIEHAO AV-3001功放的电路图,通过对比可看出它们的区别。图28是功率管集电极输出电路,集电极输出具有电压放大作用。在采用OCL电路的新型扩音机中广泛应用,如图42 ET-5350扩音机就是集电极输出经输出变压器后定压110V、70V、16V输出。电流放大管多使用C2073、A940、TIP41、TIP42、D669、B649这类中功率管,在

电路板上其封装和位置是显而易见的。

这两级电路是功放中损坏率最高的部位,当发生故障时首先烧坏功率管,随之殃及推动管,恒压偏置管和推动管射极电阻跟着遭殃,在维修时要把这几处元件都要检查到。在前边电路检查和修复后不要急于装功率管,先通电检测功率管be结空脚时的电压是否是0.5V,输出端是否是0V。此两处电压不对时应回头继续检查前边电路。这是维修中最关键一步也是最难的一步,可采用与另一声道(无故障)对比和本电路上下对照(双差动全对称电路)的方法耐心检查,也许查出的就是损坏电路的元凶。更换功率管要谨防赝品,如常见功放对管中C3280、A1301、C5200、A1943、C3858、A1494等赝品很多,依其封装真假难辨。这里介绍一个鉴别真假功率管的方法,准备两个可调直流电源,两块万用表,一片可固定功率管的散热片。将被测功率管固定在散热片上,一个电源接在基

极和发射极之间,万用表设在100mA挡作基极电流检测。另一电源接在集电极和发射极之间,万用表设在10A挡作集电极电流检测。集电极电源固定在5V 位置,基极电源先调成0V。然后缓慢调整基极电源并记录下基极电流在10mA、20mA、30mA、40mA、50mA几个位置时集电极电流的大小。如对应的集电极电流与基极电流呈线性变化,1A、2A、3A、4A、5A(直流放大倍数=100倍),则该管是正品,如果是1A、2A、2.5A、2.8A、3A(3A以上集电极电流几乎不变)非线性跌落严重则是赝品。5A电流在8欧姆负载上的功率是200W,线性范围只有2A的赝品却只是32W。假管用不住就是因大电流时其管压降增大功耗增大过热而烧毁。

四过流保护和扬声器保护电路+ b" n1 p# v% {! F( O

图29、30、31 是普遍采用的过流保护电路,功率管发射极电阻作为取样电阻,当信号过强输出过大时功率管发射极电阻压降增大,经电阻分压后使保护管开始导通,因其集电极的二极管与电流放大管基极相连,降低了电流放大管基极信号强度,起到限流保护的作用。因该电路与功率管相连。当功率管热击穿后也同时将其摧毁。由于OCL 电路开启瞬间有一个平衡过程,此过程中输出中点有一个从直流电位向零电位过度的时间,此电压有时可能接近电源电压,大有烧毁扬声器音圈之势。在使用中出现故障也会造成输出中点偏移,直流高压也会损坏扬声器。扬声器保护电路是伴随着OCL 功放的应用而诞生的。图32、33 是较流行的扬声器保护电路,具有延迟闭合继电器接通扬声器和中点偏移断开扬声器的功能。在一些大功率专业功放中使用了所谓大水塘的数万微法的滤波电容,当交流关机后电容还有一个放电过程,此过程也伴有中点偏移现象,也对扬声器产生威胁。图33 电路中就增加了交流断电保护功能,当变压器断电后经二极管整流产生的负电压立刻消失,交流保护三极管由截至转为导通,将继电器驱动管基极接地,继电器随之释放断开扬声器。新德克XA8500 就采取如此电路。图34 是用集成电路UPC1237 制作的扬声器保护电路,不少品牌机都采用此电路,它除具有图33 电路所有功能外还有故障解除自动恢复功能。第1 脚是过流检测、第2 脚是中点偏移检测、第3 脚是复位方式选择(接地为自动恢复,接电容是断电恢复)、第4 脚是交流断电检测、第5 脚接地、第6 脚是继电器驱动、第7 脚是RC 延迟、第8 脚是电源(不得超过8V)。扬声器保护电路中继电器是故障率最高的,常有触点接触不良甚至继电器烧变形的。

五拼图当对一块功放主板的各部分认清后,就可以拼出一幅大概的电路图了,按照图35 由图1、图10、图16、图28 组成图40 电路图。图41 是DIEHAO AV-3001 功放电路图,可由图1、11、16、28 拼出。八达211B 功放就与图37 单差动有镜流源的OCL 拼图类似。图39 标准双差动输入OCL 拼图可拼出与湖山BK2X100-01 一样的电路图。当你维修一台没有任何资料的功放经过如此分解拼图而心中有图时,你的感觉会不一样的。

功放设备维修流程

首先,检修功放前,应先弄清功放是在什么情形之下损坏、有何现象出现等,以便初步判断功放损坏的部位及元件,缩小检修范围。笔者曾修过两台高士功放。一台为机主接功放输出时,音箱线裸露部分过长,放音中使其碰极短路而损坏,并有白烟冒出,伴有焦糊味。当即判断损坏部分在功放末级电路。开机查看,功放管发射极电阻及推动管发射极电阻均已烧焦开路,测功放管及推动管,幸未被击穿,将电阻换新后修复。另一台为机主唱卡拉OK时损坏。一般直流功放均有较完善的喇叭保护电路,在与功率偏小的音箱连接而大音量放音或唱卡拉OK时,损坏喇叭的情况较少,大多数情况是导致功放正负电源端的保险管熔断,笔者曾多次遇此情况。因此判断此故障与其一样,开机查看,见负电源保险管已开路,再测其他各元件均正常,换新保险管后修复。?

?其次,修理功放(主要是合并功放或AV功放)时,应把前后级分离开,这样才容易判断问题出在哪部分。如果是后级部分出问题,应先用万用表测功放管及推动管,看是否损坏。如已损坏,先不要急于换上新管。有一台功放就是这样。机主先是自己修,换了两对新管均给击穿,最后笔者为其修复(其末级电流偏置管上的两支1N4148击穿开路,换新后即正常)。正确的检修方法是先取下坏管,只把推动管装上即可。图1和图2是直流功放末级典型电路,在图1中,把Q1、Q2取下,除功放输出功率变小了之外,丝毫不影响电路的性能,所以我们可利用这点,在维修时取掉Q1、Q2,只装Q3、Q4,即推动管,然后检修,待查清问题,通电调试一切正常后,再把功放管装

上,这样就可尽量避免损失。笔者以此法修理过多台功放,均获成功。因此,本人觉得这不失为一安全实用的维修方法。图2电路维修时可改成图1式样,待修复后改回即可。?

?另外,检修时最好换用低电压电源,如±12V~±15V等,这样更安全,待正常后再接回原机电源。?

功放的故障维修的基本方法

修理家庭影院设备中用的A V放大器和Hi-Fi音响中用的放大器,通常是根据故障现象,先分析故障的原因,确定出故障的大概部位,再采取合适的检修方法,逐步缩小检查故障的范围,最后找出故障点并排除故障。??

常用的检修方法有直观检查法、万用表测量法、信号干扰法、短路/断路法、加热/冷却法、代换法等几种。

一、直观检查法??????直观检查法是本着先简后繁的原则,通过眼看、耳听、鼻闻、手摸等手段,对故障机进行大体的检查,以发现产生故障的部位和原因。此方法对处理一些简单而明显的故障十分有效。?? ????用直观检查法检修时,可先查看外部旋钮、开关及各信号线连接是否正确,机内电路中有无明显烧毁、变色、断裂和接触不良的元件与线路。若未见异常,可通电试机。若发现机内有冒烟、跳火,或闻到元器件烧焦的糊味、听到异常的响声时,应立即切断电源,并检查其原因所在,以免扩大故障。??????在检修电子管放大器时,通过观察电子管灯丝是否发亮,可判断灯丝或其供电是否正常。另外,断电后手摸可疑元件,根据该元件是否发烫可判断它是否损坏。??

二、万用表测量法?? ????检修时,在确定了故障发生的大致部位后,可用万用表对故障电路与元器件进行电压、电流或电阻值的测量,再通过与正常工作时的数值相比较,从而判断出故障所在。?? ????其中,电压测量法用来检查电源各输入输出电压及晶体管、电子管、集成电路等元器件的工作电压,根据电压的有无及高低变化,来判断故障是在被测元件本身,还是在其外围元件或供电电路。?? ????电阻测量法用来测量各种电子元件的直流电阻值,看其有无开路、短路或性能变差,还可测量某一线路是否断路。?? ????电流测量法用来测量某—部分电路或电子元件的电流值,推断该电路或元件本身有无故障。通常是把万用表置于适当电流挡,将两表笔串接在电路中,根据表针指示或数字显示值读出电流的大小。也可用电压法测某电阻两端的电压降,然后根据欧姆定律计算出通过该电阻的电流。??

三、信号干扰法?? ????信号干扰法主要用于音频模拟电路的检修。将人体感应信号、直流断续信号或信号发生器的输出信号从放大器某级电路的输入端加入,根据扬声器发声的强弱来判断故障发生的大致部位。??????信号干扰法适用于查找各单元(或各级)电路直流工作状态正常但无声或声小的故障,一般是从后级逐级向前检查。应该注意的是:在检修后级功率放大器(尤其是分立元件放大器)时,应将音量电位器关小,然后在音量电位器前加入干扰信号。若用信号干扰法检查音量电位器以后的放大电路,应将扬声器换成合适的假负载,然

后用直流断续信号(如利用万用表的R×1挡,将红表笔接地,黑表笔点触各信号输入端)去检查。最好不要用人体感应信号,以免损坏功率管或扬声器。用人体感应法检查电子管放大器时,应串入适当电容器,注意安全,以免触电。??

四、短路/断路法?? ????短路检查法是将某元件、某电路直接短路或用电容短接,以快速判断故障部位。如将静噪控制管的基极对地短路,看静噪电路是否误动作;将卡拉OK或音响效果处理电路的输入端与输出端短接,以判断此电路有无故障;用一只电容将某一级放大电路的输入端与地(或输出端)之间短路,可以判断出自激啸叫、交流声等故障是发生在本级电路,还是前级电路。?? ????开路检查法在检查电源电路时尤为实用,如测量出某直流输出电压偏低时,可将其负载电路断开,若电压恢复正常,说明负载电路中存在短路故障。在怀疑某旁路、退耦电容漏电或稳压二极管性能不良而造成某点电压偏低时,可将可疑元件的引脚与电路断开,看该点电压是否恢复正常。??

五、加热/冷却法?? ????有的机器在热机后(即工作一段时间)才出现故障,检修时可用电烙铁或电吹风等热源对可疑元件加温,使故障很快出现。在故障出现后,再用酒精棉球对可疑元件降温,若故障又消失,即可判断是该元件热稳定性不良。??

六、代换法?? ????代换法是用正常的元器件或电路板替换可疑的元器件或电路板,以快速判断故障部位和元件。对于型号不同但性能参数相同的元器件,也可以互换使用。

关于音频功放失真的要点

失真是输入信号与输出信号在幅度比例关系、相位关系及波形形状产生变化的现象。音频功放的失真分为电失真和声失真两大类。电失真是由电路引起的,声失真是由还音器件扬声器引起的。电失真的类型有:谐波失真、互调失真、瞬态失真。声失真主要是交流接口失真。按性质分,有非线性失真和线性失真。?????线性失真是指信号频率分量间幅度和相位关系的变化,仅出现波形的幅度及相位失真,这种失真的特点是不产生新的频率分量。??

????非线性失真是指信号波形发生了畸变,并产生了新的频率分量的失真。音频功放所产生的失真要点如下:??

一、谐波失真??????这种失真是由电路中的非线性元件引起的,信号通过这些元件后,产生了新的频率分量(谐波),这些新的频率分量对原信号形成干扰,这种失真的特点是输入信号的波形与输出信号波形形状不一致,即波形发生了畸变。降低谐波失真的办法主要有:1、施加适量的负反馈。2、选用特征频率高、噪声系数小和线性好的放大器件。3、提高电源的功率储备,改善电源的滤波性能。??

二、互调失真??????两种或多种不同频率的信号通过放大器或扬声器后产生差拍与构成新的频率分量,这种失真通常都是由电路中的有源器件(如晶体管、电子管)产生的。失真的大小与输出功率有关,由于新产生的这些频率分量与原信号没有相似性,因此较少的互调失真也很容易被人耳觉察到。??????减少

互调失真的方法:1、采用电子分频方式,限制放大电路或扬声器的工作带宽,从而减少差拍的产生。2、选用线性好的管子或电路结构。??

三、瞬态失真?? ????瞬态失真是现代声学的一个重要指标,它反映了功放电路对瞬态跃变信号的保持跟踪能力,故又称瞬态反应。这种失真使音乐缺少层次或透明度,有两种表现形式:??

A、瞬态互调失真。?? ????在输入脉冲性瞬态信号时,因电路中的电容使输出端不能立即得到应有的输出电压,而使负反馈电路不能得到及时的响应,放大器在这一瞬间处于开环状态,使输出瞬间过载而产生削波,这一削波失真称为瞬态互调失真,这种失真在石机上表现较为严重。??????瞬态互调失真是功放的一个动态指标,主要由功放内部的深度负反馈引起的。是影响石机音质、导致“晶体管声”和“金属声”的罪魁祸首。降低这种失真的方法主要有:1、选择好的器件和调整工作点,尽量提高放大器的开环增益和开环频响。2、加强各放大级自身的负反馈,取消大环路负反馈。??

B、转换速率过低引起的失真。??????以上所述,高电平的输入脉冲使放大器产生削波而造成瞬态互调失真。那么低电平的输入脉冲是否会引起失真呢?这就看放大器的响应时间了,由于放大器的响应时间太长使放大器输出信号的变化跟不上输入信号的迅速变化而引起的瞬态失真,称为转换速率过低失真。它反映了放大器对信号的反应速度,这项失真小的放大器,其重放的音质解析力、层次感及定位感都很好。??

四、交流接口失真??

???交流接口失真是由扬声器的反电动势(扬声器发音振动时,切割磁力线所产生的电势)反馈到电路而引起的。改善方法有:1、减少电路的输出阻抗。2、选择合适的扬声器,使阻尼系数更趋合理。3、减少电源内阻。

由于OCL功放电路优越的性能和较高的稳定性和可靠性,长期以来被各生产厂家广泛采用。但在使用中由于种种原因经常出现烧毁攻放管、复合管及电阻等元件的现象。因 OCL 电路是直接耦合,电路前后相互牵扯,在维修判断故障时存在一些难度。经常造成反复烧管的现象,给维修带来不必要的损失,使不少维修工望而却步。下面是我多年来维修攻放的经验总结,写出来供大家参考,希望能对你有所帮助并为你减少不必要的损失。??

常见的OCL功放电路如下图所示:

因为OCL的电路的工作原理在许多文章中都有介绍,这里就不再叙述了。只在此讲一下具体的维修

方法。

图中Q6、Q7、Q8、Q9、Q10及R12、R13、R14经常同时烧毁。在维修时不要盲目的更换上述元件后

就通电,因为此时故障可能没有彻底排除,可能会再次烧毁。应仔细检查前面的管子及电阻等元件是否

损坏,W1是否开路或阻值变大等。然后再采取下面的方法更安全稳妥:

? ? 将新的测量过的 Q6、Q7、Q9、R12、R13、R14焊好,而 Q8 和 Q10功放管,集电极先不要焊接(这

一点非常重要),只焊接基极和发射极,以保证直流负反馈构成回路(否则差分对管不正常工作),以防止由于输出不平衡时烧毁功放管。这时一定不要接扬声器。通电检测输出端的静态对地电压,正常值为0V≤±20mV,越小越好。如偏差较大应立即关机,重新仔细检查。若测得输出电压正常时,再测量Q7和Q9基极间的电压,预调W1使其在1.5—2V 之间。确认以上电压全都符合要求,再将Q7、Q9的集电极焊好,通电调整W1测量攻放电路部分的总电流为25—30mA。即可接上扬声器试机(主意在接扬声器另外,如果输出端的静态电压偏差大于50mV时,要重点检查Q1、Q2是否配对,R4、R5是否变值重新配对和更换电阻后可排除故障。前要仔细检查其好坏,以有些功放经常莫名其免妙再次烧毁??几次修复都用不了多长??间。其原因大多是印刷电路布线不合理电源线没有按照由后向前的原则布线,使电路在大音量输出产生寄生振荡,严重时就会烧毁攻放。应按照电流由后向前的原则,重新切割布线后面的线要尽量粗短。之后才可照上述方法进行换管和修复。

率放大器在销售时只给使用说明,不附电路原理图。专业功放要达到足够的功率,其正负供电电压都在60V~90V之间。而家用功放虽然标称100W或更大的功率,其供电电压只在25V~45V之间。工作电压高了,出故障时损坏的程度和范围就加深加大了。有些维修人员在初次维修专业功放时,像修家用功放一样只换上几个大功率管就开机送电,结果放炮冒烟新管又烧坏。笔者从实践中总结了一些经验。提供给同行作参考

???? 一、参考草图了解电路专业功率放大器多采用OCL电路,在使用时都与调音台配合,没有家庭影院功放复杂的杜比解码、卡拉OK、音调调整等前置电路,是纯后级功率放大器,分析电路就容易一些。在分析电路前先画一张如图1的草图,它是OCL电路基本结构图。虽然各种功放电路各有千秋,但基本上是由图中几部分组成。差动输入有单差动和双差动之分(也有采用运算放大器输入电路的)。差动管发射极恒流源种类较多,常见有稳压二极管和三极管组成的恒流源和两个三极管组成的镜流源。双差动没有图中双线框内部分,单差动则取掉NPN管一路差动,增加双线框内射随电路。电压放大级各种功放基本一样。电流放大又称推动级,包括恒压偏置电路,各种功放也基本一样。功率输出级一般专业功放都采用多管并联,并管多少随机而异。保护电路有过流保护和扬声器保护,不少机型还有温度保护,虽然保护电路各具特色,但故障率较低,对功放主电路维修影响不大。

??? 二、顺藤摸瓜对号入座??? 大概了解OCL电路的构成后,就可对功放主板进行分析了,一般专业功放左右声道分成两块板,电路完全一样(因通风散热结构不同,部分机型两块板元件布局不一样)。顺大功率管基极找出推动管,推动管多采用中功率对管。恒压偏置管因温度补偿多靠在散热片上。顺推动管基极找电压放大管。音频信号输入插座经阻容所接的是差动输入级。这样顺藤一摸,一张待修功放的电路图就浮现在眼前。

??? 三、检查电路尽除坏件??? 专业功放的损坏多因使用不当所致,如长时间超负荷工作或话筒自激啸叫等。若因过热首先是一个功率管击穿,另一个随之过流损坏。检修时要把所有功率管拆下,用表检查功率管发射极电阻也有可能开路。当功率管b--c结击穿后,较高的电源电压通过坏管基极加到推动级,推动管和发射极电阻往往随之损坏。恒压偏置管也会受到殃及。在这些重点部位检查修复后,再对其余的二极管、三极管在路检查,这些元件虽不会因功率管损坏而受牵连,但不排除由它损坏而引起所有故障。

??? 四、不装大管通电测试??? 电路板检修完后,先不要装大功率管,在确认正负电源正常后,方可通电测试。专业功放属于甲乙类放大器,其功率管工作在乙类状态,其他各级都工作在甲类状态(过流保护管除外)。如果经修的电路已正常,应符合如下三个条件:一、在路三极管其b--e结电压均在0.6V左右(PNP管调换表笔)。二、大功率管基极和发射极间电压应在0.3V~0.5V之间(PNP 管调换表笔)。三、输出点(中点)对地电压基本保持在0V。当这三条都正确后可在大功率管处用一对中功率管代用接入(如再次损坏可减小损失)。接好中功率管再测中点电压,电压仍是0V。再测功率管b--e结电压,应正负对称在0.3V。如大于0.5V,可调整恒压偏置电路中的可调电阻。正常后便可放心接上所有大功率管带负载试听了。

??? 五、疑难故障对称检查??? 在通电测试时如不能满足上述三条,说明电路中还有不良元件,根据OCL电路的对称结构和左右声道电路完全一致的特点进行对称对比检查。如采用双差动输入的OCL电路,从差动输入、电压放大,电流放大、功率输出构成以地为中轴的正负全对称电路。送修的功放大多是一个声道损坏后电路保护无输出而退出使用,从而使另一路电路完好。用脱电电阻测量法或带电电压测量法对一块板关键点进行对称比较。当发现对称点电阻或电压不一样时,再与无故障的那块板同样点进行比较,故障元件就很容易找出。

??? 六、大管选择线性要好??? 专业功放的音响对管要求电流大、线性好,如三肯系列2SA1494、2SC3858,东芝系列2SA1301、2SC3280等。目前市场上销售的音响对管中很多是假货,这些假货用万用表测量PN结是好的,用晶体管挡测放大倍数也很好。装到功放上试机时也不错,一旦投入演出实用,用不了几分钟就损坏。原因就是大电流时线性不好,大电流时管压降增大,功耗过大而烧坏。笔者自作了图4的音响大功率管测试仪,图2和图3是真假三肯管的电流放大线性图。从图中可看出真管集电极电流Ic在5A以内都随基极电流I b 成100倍线性变化,假管在Ic上升到2A以后放大倍数明显减小。按功率计算公式计算,两管在8Ω负载时的输出功率,真管是200W,假管只有32W。正品对管放大倍数在100左右,也好配对。??? 图4为笔者自作大功率音响管测试仪电路图,一个电流表是观查基极电流的,满程50mA,另一电流表是观查集电极电流的,满程5A。只要被测功率管线性好,两表指针摆动就一致(放大倍数100时)。供电用50VA控制变压器6V绕,组半波整流,被测管用一个三孔插头经短线引到散热片上夹紧。K1~K6用六刀二掷波段开关作NPN、PNP极性转换。

0.2Ω/5W电阻作发射极保护。1KΩ电位器用作基极电流调整,50Ω电阻为防基极电流过调而设。使用时基极电流由小到大,整个测试时间尽可能短,避免大电流持续时间过长。

音响爱好者朋友们都知道、雅马哈功放以其岀色的音质和频响应而受到音响发烧友和爱好者的喜欢、高质的功放一点电压的改变,会引起多点电压随之改变,这也给故障的判断和检修造成困难。与同行交流时还发现,在检修此类功放时,如果故障排除不彻底,通电试机时往往引起新器件再次损坏,造成经济损失。因此笔者在检修实践中试行了一种安全检修方法,通过实例的形式介绍给大家,以期与同行们交流。

? ? 实例1 一位同事检修一台日产雅马哈EMX2300功放和调音台组合机时,发现两路功放的16只大功率对管、4只推动管全部击穿,两只音箱内的扬声器全部烧毁。按规格全部更换已损坏件后,在没连接前级调音台的情况下,通电试机,仅过几分钟,就见机内冒烟。停机检查,新换的大功率对管又损坏12只,两只音箱内扬声器再次烧毁,损失达两千多元。他不敢再修,求助于笔者修理。? ???有了前车之鉴,笔者经慎重考虑,采取了一种稳妥安全的方法进行检修,排除了故障。

具体检修步骤如下:

(1)对照实物,画出整机(功放部分电原理图(见图1),弄清电路的工作原理和元器件参数

(2)用电阻测量法对电路中所有元件进行一次在路测量,并将左、右电路测量结果对照比较,找出损坏元器件,?为了提高在路测量精确度,测量电阻时用数字式万用表。由于数字万用表内阻大,向被测电路提供的电流小,不能使二极管、三极管PN结导通,相当于开路,可减小对电阻测量的影响。测量二极管、三极管时用指针式万用表。测量PN结正向电阻时用R×1挡,既可向PN结提供较大的正向电流,检查其正向特性,又可减小在路其它元件对测试的影响。正常情况下用1.5V电池供电的电阻挡测量PN结正向电阻时,指针应偏转到电阻量程刻度线的中点(距0Ω1/2左右),如果显示电阻较大,说明PN结正向特性不良。测反向电阻时,用R×100或R×1k挡,显示电阻应略小于测试两点间并联电阻。测量电容器时(特别是电解电容器),也选用指针万用表,并根据容量大小选择相应的量程既可测量电容器在路电阻,又可根据指针摆动情况,估测电容器容量。在上述方法进行在路测量后,该组合机有12只大功率输出管击穿,5只发射极电阻烧断,推动管有两只漏电,扬声器保护电路失效。将上述元件全部更换新件,修复扬声器保护电路后,进入关键的通电试机阶段。

(3)采用三步安全通电试机法进行通电试机。首先为了不损坏扬声器和大功率管,试机前不接扬声器系统,在推挽输出端与地之间(即图1中的C点与D 点之间)接一只20~50Ω/20~50W线绕电阻做假负载。其次,断开末级大功率管的任意两个电极或事先不安装大功率管Q212~Q219。保留推动管 Q210、Q211做互补推挽输出(如果推动管发射极与中点之间无发射极电阻,应临时加装两只100~270Ω、0.5W以上电阻,试机后拆除)。接着在功放电源220V

输入端串接一台调压器,从50V开始向功放供电,并监测输出端中点电压(C点与D点之间的电压)。对OCL电路来说,这一电压应为0V±0.5V,对OTL电路来说应为电源电压的一半。如果中点电压不符合正常值,应立即停机检查。此时由于供电较低,一般不会造成元器件损坏。如果中点电压正常,可逐渐提高电源电压,一边监测中点电压,一边观察有无变色、冒烟元件,同时用手摸推动管温度。如果市电升到正常值,通电半小时输出端电压保持不变,推动管无温度上升或元器件无变质变色,则表明安全通电试机法第一步操作结束,可进行下一步操作。第二步是接入大功率管,保持假负载,降压供电,监测中点。也就是说,装上末级大功率管Q212~Q219,并按照从50V起逐渐升压的方法继续通电试机。必要时,应对整机静态电流、中点电压进行相应的调整。如果中点电压失常,应重点检查末级功放管及外围电路。直到中点电压稳定,功放管不发热为止。第三步是拆去假负载,接入低档扬声器和信号源,正常供电试听。具体说,分别在图1中C、D间和E、D间接入低档扬声器试听。此时,即使电路发生故障,也仅仅是损坏价位较低的低档扬声器。通电试听半小时,中点电压应保持稳定,功放管温度应正常(不烫手)。有条件可进行指标的测试和调整。如果在C、D间试听有声,在E、D间试听无声,则是扬声器保护电路故障,应检查修理相应保护电路。该机采用上述方法第一步通电试机时,发现中点C、D 间电压偏高,且推动管Q210、Q211发热冒烟。立即停机,对电路元件反复进行检测、对比,均未发现损坏变质元件。后来对照原理图仔细核对电路,发现差分输入级Q202的基极上偏流对地电阻R210未与地线直接相接,而是通过插头座与调音台地线相连,再与电源的地端构成回路。而在通电试机时,为了方便,未与调音台相连,致使差分放大级Q202失去偏置电压,差分放大器失去平衡,经直接耦合,造成输出端中点(C、D间)电压偏高,烧毁互补大功率对管Q212~Q219。直接将R210接地线A与功放地线B相连,并对可能假焊虚接的与调音台相连的插座进行补焊后,再按照第一步通电试机,中点电压恢复0V,且调节输入端电压中点电压稳定。接入16只功放管进行第二步通电半小时,无异常现象。最后,去掉假负载,在C、D和E、D间接入低档扬声器和调音台,输入CD信号试听几小时,中点电压不变,功放管无明显温升。一切正常。该机交用户使用已二年,未再出现类似故障。此次安全维修,未损坏一只元件

?功放损坏在末端,管子电阻烧一片。

查完管子查电阻,烧断变值均常见。

查尽坏件别全装,不装大管通电看。

中点电压要零伏,大管偏置是关键。

上下推动发射极,两点一伏是界限。

中点偏置达要求,再装大管保安全。

如果中点漂移大,说明前边有坏件。

差分损坏一个臂,电压放大坏一半。

修到这步最烦人,麻烦也的认真干。

左右声道坏一半,阻值对比是手段。

比好阻值有点大,说明电路有断件。

如果电阻有点小,可能管子有击穿。

大管偏置零点五,中点零伏也不偏。

这时开机带负载,一般试机都灵验

功放静态电流调试中一个问题的探究

有些朋友在刚装好功放准备调试静态电流时,心中无底,担心烧大管,总想不安装大管,先做初步调试。但往往会遇到一大堆问题,各处的电压严重失准。从而极度怀疑自己安装有误。其实很多情况下是自己的调试方法不对造成的。

? ?以下面的两级达林顿输出为例。正确的电压值如图所标,初次安装时可以通过调整VR 达到。但是如果没有安装大管,可能怎么调都不行,电压值相差很多,不能调定,这是为啥呢?? ?我们看图,这个电路的反馈网络是从末级反馈的,当不接大管时,反馈网络不起作用。输入级的差分负端是悬空的,当输入级时场管时,其输入阻抗很高。极易感应杂信。使输入级变得很不稳定,因此整机也处于极不稳定的状态。甚至自激。? ?正确的方法是将输入端接地,将反馈网络的对地电容短接。这样以来输入差分的正负端都接地了,差分级处于

稳定状态。再来测试静态工况,才是比较正确的。?

我觉得应该不装大管时,反馈H处接到F处,就可以

不装大管,F连上H。上大管去掉F到H的连线就OK了。

这样可以的,我经常这样作先做初步调试再装大管非常安全

我的意见是:

第一步,输入端交流接地。一个大电容对地短接了。

第二:断开大环路,用示波器调补偿电容,保证开环稳定和频响。

第三:断开大环路,微调中点。

4:合上大环路,用示波器调整补偿电容,保证闭环稳定。

5,最后调整末级电流

大致这几步,按部就班比较容易调出最佳状态。当然,具体实际操作中有更多细微精到的地方要讲究,不是三言两语说得清楚了。

呵呵,短接反馈端电容恐怕未必能适应所有电路吧。

如输入差分及同相(如47K)端,反相(1K)端,输入阻抗不同,晶体管偏置不同,将导致B 极电阻小的那一个管子电流要比B极电阻大的管子CE极电流大。这点可以通过计算获得。由于反相输入端偏置电流大,第二级获得的偏置电压也大,因此有可能导致第二级电路出现饱和击穿。

我调功放的方法是将所有管装上,包括功率管。第一次上电前,调整好所有可调电阻到安全值,将功率管的发射极电阻(通常都很小,如0.22R)改为10K~15K 1/4W,这样即便前一级有问题,功率管射极电阻很大,也不至于烧毁功率管。二来整个电路处于闭环状态,静态工作点相对好调。

跟正常调功放一样,检测功率管发射机电阻两端电压,比如不超过10V为正常(这个电压可以自己估算)等等。

为了能看明白,我做了个仿真图。可以参考。我想不用怀疑软件吧,很简单的一个差分电路。不装大管,用跳线连通H——F点,调好了装上大管OK

没必要!先在电源回路串灯泡,没有短路、大电流现象就可以进行调试,稳定工作就撤掉灯

泡,绝不会烧大管。

这个图反馈要连接到F,但是很多图是Fy与H是短路的,还是装了大管然后用小电流或串灯泡安全!

中点电压问题

从后向前检查,先查电源电压正;负端对地是否平衡,如果电源正常,检查电压降大的那边的晶体管的直流工作点,NPN管be结的电压不大于0.7V,PNP的不大于0.3V,一般都可很快查出故障

功放中心电压,也就是输出的漂移电压,测量A1941的C极C5198的E极相接的点正常应该为-0.2~0.4左右,也就是输出到喇叭的哪个点.按照你的做法,该功放为正常,你应该检查用户的音箱上的喇叭是否正常;如果用户喇叭正常,那更换了功放管以后,把音量开到总音量的3份之2左右试机4小时,用手测试下左右声道的温度是否一样,如果不一样,检查不正常的那边是否会有刺激或者是干扰了,一般是高频电容失效为多.

2×50W双差分准互补甲乙类功放

家庭欣赏音乐时,常用功率不过2~3W,已能满足需要。但为了具备爆棚气氛,可以设计成有50W的乙类输出功率。因此,设计一台放大器应具有小信号柔和甜美的音色,还应具备在动态有爆棚威力。甲乙类放大器无疑是最佳选择。甲乙类的切换,由输入信号控制,信号弱时是甲类输出,信号强时自动转为乙类输出。

甲乙类放大器设计要点 1.乙类:额定功率由电源电压V和负载R决定,要在8Ω负载上获得50W功率,根据P=0.75V2/2R,则

V=2PR/0.75=36V,这说明电源电压为±36V,乙类输出功率可达50W。

2.甲类:在功率管散热条件理想情况下,每只功率管静态时发热允许量约

为20~25W左右,从20W考虑要在36V单电压下工作,静态电流应根据下式计算:I=P/V=22/36=0.55,则在甲类状态下,一对互补管输出的额定功率为P=2I2R=2×0.552×8=4.8W。根据上式若要增大甲类输出,势必增大I,由于受到功率管功耗限制,I不能随意增大,因此采用多管并联,增加一对互补管即达1.1A,则P=2×1.12×8=19W,那么,由上式计算可知,一对管工作时,甲类功率可达4.8W,两对管工作时,理论甲类功率达19W。二、电路简介下图为本文要介绍的双声道2×50W 甲乙类功放,为减少失真,输入级采用互补差分输入,由2SC945/2SA733担任,电压放大级由2SA733/2SC945构成,推动级由中功率管

2SC4934/2SA1358担任,功率输出级由大功率东芝管

2SC3281/2SA1302(15A150W200V)担任。为安全工作,本电路设计了集成块CA3046为中心元件构成的开/关机防冲击、零点偏移保护电路。供电由一只300W环牛担任,环牛有双20V主绕组,双12V副绕组,主绕组可供功率放大用电,副绕组可供前级用电。三、制作要点电阻均选0.5W金属膜电阻,滤波电解容量不低于10000μF,整流选用10A 桥堆,2SC3281/2SA1302要装上专业大面积散热器,如有条件,最好装

一只散热风扇。四、调试要点 1.通电前,应先将信号输入端短路,W(2kΩ)调到最小。2.用数字万用表200mV挡,监测0.5Ω5W电阻上电压,调节W(2kΩ),万用表显示50mV,这时静态电流为100mA,此时测量中点电压应小于0.1V,工作30分钟时,再调节W,万用表显示为200mV,静态电流为400mA,工作一段时间后,再监测直流电流看看是否有较大变化,重新复调,如果静态电流随着温度升高而增大,可能是2SC3281/2SA1302热稳定性差,应换新的。五、建议从实际情况看,每声道采用一对功率管输出时,甲类功率管达5W左右,但这时每只功率管功耗大,而当每声道采用二对功率管输出时,甲类功率达20W,但此时为降低每只功率管功耗,可以调节每只功率管电流为0.2A,故为了安全工作,每声道输出级可采用两对管并联工作(图中未画出),双声道采用4对管。为满足各人高、低爱好以及进一步增强本功放的重放效果,本电路之前如果加入BBE1075/1071音效增强器,LM4610/LM1036音调处理器等辅助电路,会使本功放重放效果更出色动听。

功放用伺服电源

功放用伺服电源的电原理图参看下图。图中市电输入端的电容C1、C2和电流互感器L1,用于净化输入的市电,每只整流二极管上各并一只0.039μF的无感电容,旨在提升整流管的开关速度,同时又可有效消除整流管的开关噪声。大功率三极管BG1、BG2用于扩展输出电流。E7、R5和E8、R6两个微分电路恰处在反馈通道上。R7、R8以及R9、R10组成取样电路,取出的误差信号经过微分运算后再反馈回去。而微分调节器对系统误差具有超前校正的特性,能够补偿系统在截止频率附近的相位滞后,提升系统的动态性能,因此加入微分调节器的系统具有很好的频率特性(尤其是在高频段)和动态性能。

该电路调试的关键在于使两个微分电路工作稳定。如果通电后该电源工作不正常(常表现为正负输出不对称或者输出电压漂浮不定),排除接线错误和元器件损坏的原因,一般都是两个微分电路不稳定的缘故,此时应适当调整相位补偿元件C9、R5和C10、R6的值,或者另换一只运放试试。该电路本质上属串联稳压电源,效率相对较低,一般可这样计算变压器T1的容量:假如要求电源输出额定功率为Po,则变压器T1的功率Pt1=Po×25%。三端稳压器和扩流三极管应装上散热片,散热片的大小以长时间工作温度不超过70℃为宜。

音响功放650W高速电源电路图

音响功放650W高速电源电路是用下面的PM4020A?作为驱动源制作的一款高级电子变压器,它有非常快的电流速度,是代替传统笨重工频变压器的新产品。用PM4020A?设计的电源基本不需要调试就会可靠工作。

双声道功率放大器

上传者:葱爆羊肉??浏览次数:343

双声道功率放大器是家庭影院的重要组成部分,也是广大电子爱好者乐此不疲的制作项目。图一是一款适合自制的合并式双声道功率放大器,由于采用了集成运放和集成功放,因此具有电路简洁,功能完备,保护电路齐全,制作调试简单的特点。其主要技术指标是:

1)额定输出功率:每声道20W;

2)输入灵敏度:100mV;

3)输入阻抗:50KΩ;

4)电压增益:40dB;

5)音调控制范围:高音40dB,低音32dB。

电路图的总体分析

合并式功率放大器的特点是将前置放大器与功率放大器组合在一起。图一是合并式双声道功率放大器的电路图,图中只画出了电路的左声道(L声道)和公共部分,右声道(R声道)没有画出。由于双声道设备的左右两个声道的电路完全相同,因此,一般只需画出一个声道,制作时应按电路图制作出相同的两个声道。同理,我们只需分析一个声道电路和公共电路,即可掌握整个设备的电路原理。下面以图一中画出的左声道为例进行分析。

1、电路结构。我们知道,功率放大器的作用是将音源设备提供的徽弱音频信号,放大至足够的电压与电流(即功率),以驱动扬声器或音箱发声。因此可以判断出图一电路中,左边IN-1~IN-4为信号输入端,右边BL1是终端负载,信号流程为从左到右。

图一上部,从左到右依次包括以下单元电路:波段开关S构成输入选择电路;电位器RP1构成平衡调节电路;电位器RP2构成音量调节电路;集成动放IC1构成前置电压放大器;电位器RP3,RP4等构成音调调节电路;集成功放IC2等构成功率放大器。图一下部是晶体管VT1~VT3等组成的扬声器保护电路。图二为电路结构方框图。其中,从平衡调节到功率放大为主电路,输入选择与扬声器保护为附加电路。

2、电路的基本工作原理。音频信号经耦合电容C1、隔离电阻R1、音量电位器RP2进入集成运放IC1的第三脚,由IC1电压放大后,通过音调控制网络,再经C9耦合至集成功放IC2进行功率放大,放大后的功率信号由IC2的第四脚输出,驱动扬声器或音箱。调节RP2即可调节音量。

波段开关S的作用是输入信号的选择,从4个输入端中选择一个。这样就可以将卡座、收音头、录像机、VCD机等音源设备同时接入功率放大器,通过S开关来选择音源,使用方便。

扬声器电路的保护作用有两个:一个是开机延时静噪,避开开机时浪涌电流对扬声器的冲击;二是功放输出中点电位偏移保护,防止损坏扬声器。

主电路分析

1、平衡调节电路。在双声道功率放大器中,为了使左右声道的音量保持平衡,必须设置平衡调节电路,它由电位器RP1与隔离电阻R1、R21组成。其调节原理可用图三来说明。在两个声道信号电平一致的情况下,RP1动臂(接地点)指向中点时,两声道输出相等。当RP1动臂向上移时,L声道衰减增加,输出电平减小;当RP1的动臂指向A点时,L声道输出为0。同理,当RP1动臂向下移时,R声道衰减增

加,输出电平减小;当RP1动臂指向B点时,R声道输出为0。因此,在两声道信号电平不一致的情况下,可通过调节RP1使其达到一致。

2、集成动放电压放大器。前置电压放大器采用了集成动放,电路简单、可靠、无须调试。如图一所示,IC等构成同相电压放大器,信号由同相输入端3脚输入,放大后由输出端1脚输出,输出信号与输入信号同相。在IC输出端1脚与反相输入端2脚之间,接有R2、R

3、C2组成的交流负反馈网络,由于集成动放的开环增益极高,因此闭环增益联决于负反馈网络,放大倍数为R3/R2=10倍(20DB),改变R3与R2的比值即可改变电路的增益。深度负反馈有利于电路稳定和减小失真。

3、音调调节电路。电阻R4~R9、电容C5~C8、电位器RP3~RP4等组成衰减式音调调节电路,平均插入损耗约10DB。左边是低音调节网络,当RP3动臂位于最上端时,低音信号最强;当RP3动臂位于最下端时,低音信号最弱。右边是高音调节网络,当RP4动臂位于最上端时,高音信号最强;当RP4动臂位于最下端时,高音信号最弱。音调调节曲线见图4。

4、集成功率放大器。采用了高保真音频功率功放集成电路TDA2040,具有输出功率大,失真小,内部设有完善的保护电路,外围电路简单的特点。图1中采用了典型的应用形式,闭环放大倍数为

R12/R11=32倍(30DB),在±16V电源电压下,可向4Ω负载提供20W不失真功率,可满足一般家庭的需要。R13与C11组成消振网络,保证电路工作稳定。

扬声器保护电路分析

图1下部为扬声器保护电路,包括电阻R14和R24组成的信号混合电路;二极管VD1~VD4和晶体管VT1组成的直流检测电路;R32、R33、C33和VT2组成延时电路;VT3和继电器K等组成的控制电路,其方框图见图5。

1、开机延时静噪。R3

2、R3

3、C33组成延时回路。刚开机(刚接通电源)时,由于电容两端的电压不能突变,C33上电压为0,使VT2、VT3载止,继电器K不吸合,其接点K-L、K-R断开,分别切断了左右声道的输出端与扬声器的连接,防止开机瞬间浪涌电流对扬声器的冲击。随着+12V电源经R32、R33对C33的充电,C33两端上的电压不断上升。经过一段时间延时后,C33上的电压达到VT2导通阀值,VT2导通并使VT3导通,继电器K吸合,其接点K-L、K-R分别接通左右扬声器而进入正常工作状态。开机延时时间与R32、R33、C33的取值有关,本机为1~2秒。

2、功放输出中点电位偏移保护。功放级为OCL电路,如果功放输出端出现较大正或负的直流电压,有烧毁扬声器的可能,因此功放输出中点电位偏移保护是必要的。二极管VD1~VD4构成桥式直流偏移检测电路。左右声道功放的输出端分别通过R14、R24混合后加入桥式检测器,R14、R24同时与C31、C32(两只电解电容反向串联构成无极性电容器)组成低通滤波器,滤除交流成分。在功率放大器工作正常时,其输出只有交流成分而无明显的直流分量,保护电路不启动。

当某种原因某个声道输出端出现直流电压时,如果该直流电压为正,则经R14(或R24)VD1、VT1的B-E结VD4、R31到地,使VT1导通;如果该直流电压为负,则地电平经R31、VD2、VT1的B-E 结VD3、R14(或R24)到功放输出端,同样也使VT1导通。VT1导通后,使因VT2基极失去偏置电压而截止,并使VT3截止,继电器K释放,接点K-L、K-R断开,使扬声器与功放输出端脱离,从而保护了扬声器。VD5是保护二极管,防止VT3截止瞬间,继电器线圈产生反向电动势击穿VT3。

制作

1、双声道的特殊要求。输入选择开关S应选用双刀4掷波段开关,其双刀分别用于左右声道。平衡

调节电位器RP1应选用线性的。音量和音调电位器RP2、RP3、RP4均选用双联同轴电位器。继电器K 选用工作电压12V、具有一对常开接点的即可。

2、配套的电源电路。整机需要±16V、±12V电源,其中±12V为稳压电源。图7为配套电源的电

路图,其分析方法可参考本刊2001年第五期《直流稳压电源》一文。

家用声频功率放大器保护电路及其检修

目前大功率家用声频功率放大器主声道均采用OCI.电路进行功率放大。由于这部份电路工作在高电压、大电流、高温度环境中,因此故障率是非常高的。而这种电路出现故障时.其输出的直流电位常常会偏离零电平而出现较高的正的或负的直流电压。输出的直流电流流过扬声器音圈时.可能会将音圈烧毁。另外.在部份特大功率的功放中,由于输出功率非常强劲,在用户操作不当或卡啦OK音量太大时,该声道的输出功率会远大于它的额定功率,可能会损坏功率放大器。甚至会损坏贵重的扬声器。因此.各种功放机都会设置保护电路。保护功放和音箱免遭损坏,下面介绍市场上常见的保护电路以及它们的修理方法。

1 信号分流式保护电路

图1是CAV-970型功放机电图,这是一个全对称。双差分、双恒流源OC1。功放电路,本文只对其保护电路作一些介绍。

CAV-970的保护电路舍弃了传统的继电器而采用晶体管进行保护。功能有:短路保护、过载保护、开机延时保护。笔者曾对此机作过破坏性试验:加大输入信号幅度、加重负载(例如2 n负载)甚至短路都无法使该机功放后级损坏。可见该机设计者确有过人之处。

1.1 分流式过载保护电路

此处正是该机精华所在。由Q451、R3、C1、D2、Q450、R2、Dl、C2等元件组成,正常工作时,由于取样电阻R4A1、R4A2阻值很小(O.22Ω),输出电流在其上的压降较小,Q450、Q451不导通,对信号没有分流作用。如果由于输入信号增大或负载阻抗减少,输出电流增大,导致取样电阻R4A1、R4A2上的压降增大,Q450、Q45l就会导通。Q450经二极管D1

接于复合管输入端Q465基极,部份信号经二极管Dl、三极管Q450傍路分流,使输入到后级的信号幅度减少。使输出维持一定的水平。同理,Q451导通时,Q467上的信号也会被分流,使输出稳定。这时无论加大输入信号幅度或减少负载,都不能使输出电流增大,总被限定在某个水平之上。

1.2 短路保护电路

该电路由Q1、Q2、QlO及其外围电路组成。当负载短路时,输出电流突然增大、流经R4A1时,Q461发射极电位上升,Q10基极电压上升,Q10导通.导致Q1、Q2导通。输入信号被子傍路到地。切断了信号源,保护了功率放大器和音箱不致损坏。

1.3 开机延时电路

开机延时电路由C3、C4、D6、R7、R12等组成。刚接通电源,C3、C4上电压为O,D6导通,Ql、Q2导通,把输入信号傍路接地,喇叭中没有声音。此外,电流经R7、R12、D6慢慢对C3、C4充电,其上的电压慢慢上升,到达一定程度时D6截止,随后Q1、Q2截止。信号不会被傍路到地。功放进入正常工作状态。

1.4 故障维修

1.4.1 未达额定功率,失真度就很大

这是本机特有的故障。也是分流式保护电路的一个弱点。主要由Q450、Q451不配对引起。当输出达到某一幅度后,Q450、Q45l不是同时导通。而是一个导通另一个还未导通,或两管导通程度不一致。正负半周被分流的程度不同,造成失真。修理方法是更换两个经严格配对的晶体管(Q451、Q450)。

1.4.2 无声

该电路很容易造成无声故障。C3、C4漏电,Q10不良,都会导致Ql、Q2处于导通状态。使信号被短路到地而造成无声。

1.4.3 开机延时时间太长

这个故障其实与“无声”故障检查方法基本相同。根源也是C3、C4漏电。如果C3、C4漏电严重,经R7的充电电流被漏掉,C3、C4的电压升不起来,就会造成“无声”故障,如果漏电不很严重。经R7的充电电流被漏一部份.但C3、C4上的电压经较长时间后能上升,就会造成开机时间太长。此外,R7阻值变大也会造成这个故障。

2 负载切断式保护电路

2.1 奇声Av-2750功放保护电路

图2是奇声AV-2750功放保护电路,该电路结合单片机控制技术,对传统的保护电路进行改进,使电路具有响应速度快,稳定性高,电路简单,容易恢复等优点。主要功能有:直流检出电路,过载检出电路,开机延时电路。电路中Q340、R394、R395、R327、R328、C392组成了过流保护电路。R327、R328的阻值仅为O.25 Ω/5w,非常小,功率放大器正常工作时,对电路的影响也极小。但在出现音量过大使功率放大器长时间处在最大功率输出状态或音箱连接线碰头短路等过载情况时,功率输出管的发射极电流明显增大,电流流过.R327或R328,在其两端产生的电压便升高,经R394、R4.395分压后,只要R395两端的电压大于0.7 V,持续的时间足够使电容C392充满电荷(即延时保护,改变该电容的容量,可改变过载保护的响应速度),Q340便导通,其集电极电位下降,Q342基极电位也被拉低,Q342导通,并输出高电平信号,经.R301、R302输送到微处理器(CPU)的PRO端口。微处理器一检测到表示保护的高电平,立即从MUTEl(静音控制端口1)输出高平的控制电压,控制相关的静音控制电路。其中一路经R303,控制Q345导通,Q343与Q344组成的复合管的基极电位被拉低,复合管截止,继电器RL301失去电流释放,断开功率输出与音箱的连接,从而保护了音箱和功率管。

直流检测电路主要由Q339、Q336、R359、R362及周边元件组成。R355、R356与C317、C318组成低通滤波器。R355、R356是左(L)、右(R)声道的直流取样电阻,兼做直流检测电路的输入限流电阻。C317、C318串接成无极性电容器,用于旁路音频信号。功放正常工作时,左右声道输出的交变信号经R355、R356后,被C317、C318串接成无极性电容耦合到地,直流检测器输入端的电位几乎为O V。

当Q314击穿或其它原因面使功率放大器输出“正”的直流电压时,Q339导通,直流检测器输出低电位;同样,当Q315击穿或其它故障而使功率放大器输出“负”的直流电压时,Q336导通,直流检测器也输出低电位,经Q342倒相成高电平,“通知”微处理器采取保护措施。在这里,微处理器相当于传统保护电路中的触发器;ZD301是为保护微处理器PRO口而设置的,避免Q342输出的电压过高而损坏微处理器的PRO口;C303是延迟电容,用来避免电路因供电变化、电路杂波引起的误保护,它与R301共同决定了保护延迟的时间。

R363、C304、R304组成开机延时接通电路。由于C304两端的电压不能突变,开机时,Q343基极电位为O V,Q343、Q344组成的复合管不工作,继电器不吸合,音箱与功放电路暂时脱离。开机时功放产生的浪涌电流不会冲击音箱中的扬声器。但由于电阻R363的存在,+13 V电源将经R363向C304充电,其充电时间,由R363、C304的值决定.一般有3到4秒的延时时间。随着C343基极电位升到1.3 V,Q343、Q344组成的复合管导通,继电器吸合,音箱与功放电路接通。RL301是继电器;D302可吸收继电器动作时产生的反向电动势.起保护Q343、344的作用。C316是储能电容。由于供电电路到达继电器有一定的距离,使电源内阻增大,C316设计在继电器附近.能在继电器吸合瞬间,提供启动电流。

常见故障的修理:

(1)继电器不吸合

Q343基极是一个关键测试点,正常电压应为1.4 V左右,若此点电压正常而继电器不吸合,则检查Q343、Q344、R36l、及继电器本身是否正常。一般用万用表检查继电器两端的电压,很容易发现问题。

若Q343基极电压偏低,继电器当然不会吸合。一般检查Q345、R363、R304会发现问题所在。修理实践证明:C304漏电引起继电器不吸合的现象屡见不鲜,所以维修时应引起足够的重视。

左右两声道输出端的电压(中点电压)是另一个关键测试点。若有大于0.6 V的直流输出。会引起保护电路正常动作。这时应先修理功率放大部份。使直流电位恢复正常。

若放大器中点电压正常,则要检测Q342基极电压,正常应在13 V以上。若该点电压在13 V以下,说明Q339或Q336击穿或穿流太大,导致PR0端输出高电平。CPU发出静音指令,使继电器释放。

(2)保护电路过于灵敏

功率远未达额定值而继电器就释放。造成这个故障的原因是元件变值,造成保护电路误动作。常见原因有R395阻值变大,C392开路。另外C317或C318容量变小(旧机器常见的现象)造成滤波不良,正半周Q339导通.负半周Q336际通,也会使电路产生误动作。

(3)过载保护失灵

过载检出电路任何元件损坏,都可能会造成上述故障,但修理实践证明:R358阻值变大引发的上述故障,几率最高。该电阻值变大后,过载信号不足以使Q34:2导通.起不到保护作用,烧坏喇叭的现象时有发生。

(4)开机延时时间太长

这种故障多由C304漏电引起,另外R363阻值变大也会发生上述故障。(一般的延时时间是2~4秒,由.R363、C304的时间常数决定)。

(5)开机出现噪声(开机延时时间太短)

刚开机时功放的中点电压尚未建立,一般要1~2秒后才达稳定状态。所以要求功放机延时2~4秒才接通扬声器。过早接入扬声器便会出现开机噪声,常见原因是C304容量变小,使Q343基极电压上升太快,继电器过早吸合。

2.2 奇声AV-388D后级功放电路

图3是奇声AV-388D后级功放的保护触发、驱动电路。直流检出电路由D4~D7组成的桥式整流电路,再由Q15、Q14加以放大,推动施密特触发器工作。无论左右声道出现正的或负的电压都可能使Qi5、Q14导通驱动后级释放继电器,使功放和音箱得到保护。

图中。保护驱动电路是一个以Q13、Q12为核心的施密特触发器。选择合适的R28、R27、R26的电阻值,保证Qi2基极起始状态为高电平,Q12饱和导通。此时,Q12的射极电流流过R26时,在R26两端形成电压,使Q13发射极(即触发器的入端)无高控制电压时.Qi3处于截止状态,实现第一稳态.继电器处于吸合状态,功放进行正常的输出。当检测电路或开机延时电路输出的高电平(此电平必须高于触发器的触发门电平)加到Ot3的基极时,Q13由截止翻转到导通状态,同时出现正反馈过程:UQl3b↑→IQl3b↑→IQl3c↑→UQl3c↓→LIQl2b↓→IQl2e↓→IR26↓→UR26↓→IQl3b↑。Q13迅速地饱和导通,其集电极电压几乎O,使Q12由饱和导通变为截止,触发器的输出翻转为第三稳态,继电器释放,进入保护状态。当触发器输入端的保护电压下降(如:开机延时保护结束或过载状态解除),达到关门电平时,Q13退出饱和,并引发另一次与第一稳态过程相反的正反馈。Q12由截止再次变为饱和导通,电路又返回到第一稳态,继电器吸合,保护取消。

电路中R43为限流电阻,D3为继电器反电动势释放二极管,以防反电动势损坏Q12。另外.由于继电器需要的吸合启动电流较大,该电路在电阻R43两端电路并联了电容C22。继电器吸合启动前,电容被R43放电;Q12饱和导通瞬间,由于C22两端电压不能突变,启动电流绕过R43的阻碍,经C22直通,使继电器迅速吸合。吸合后,C22也被充满电,继电器的维持电流经R43衰减提供。C8为延时电容,R3l是C8的限流电阻。它们与R32、R30、Q13、R26组成延时电路,调整C8、R31值。可以改变延时时间。开机时,电源电压通过C8、R3l提供给Q13、Q12组成的触发器控制端。触发器处在Q12截止状态,继电器不吸合,功率输出电路暂时断开,直到C8被充到一定电荷为止。

故障检修:

当继电器不吸合,先检查输出端的中点电压,若有直流输出,则先检修功放部份。若无直流输出,继电器仍不吸合,则故障在保护电路本身。着重检查C8是否漏电,此电容漏电可能引起开机延时时间太长,或继电器不吸合。其余故障的检修方法可参考AV-2750。

3 维修注意事项

对于保护电路的维修,首行要弄清它的工作原理,找准关键测量点,分清楚是保护电路本身的故障,还是功率放大的故障,不要盲目地给功放通电试机,避免故障扩大。最好是先用调压器由低至高慢慢升高电压,此过程中监测输出端有无直流电压,如果有绝对值大于1V的直流电压,说明可能存在功率管击穿等情况,应立即关闭电源。在没有解决问题之前不要接入音箱,以免损坏。可用假负载代替音箱进行维修,最后才接上音箱。

?清华同方A VP-A188型功放VFD无显示。?

连接音源信号及音箱后试机,发现音频输出及功能操作按键正常,说明主放大电路、CPU工作正常,造成无显示的原因可能是VFD显示屏损坏或供电不正常,首先用万用表检查VFD灯丝电压、栅极控制负压正常,驱动IC?PT6311的电源、时钟、数据传输信号均正常,因此故障原因可能是由于VFD显示屏本身损坏造成,试用同型号VFD更换后,显示正常。?

2、清华同方A VP-A168型功放无输出、无VFD显示。?

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

D 类放大高效率音频功率放大器电路图原理

D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。系统可对功率进行计算显示,具有4位数字显示,精度优于5%。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。 1系统方案论证与选择 1.1整体方案 方案①:数字方案。输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。此种方案硬件电路简单,但会引入较大数字噪声。 方案②:硬件电路方案。三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。 1.2三角波产生电路设计 方案①:利用NE555产生三角波。该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。 方案②:对方波积分产生三角波。积分器与比较器级联,通过对比较器产生的方波积分得到三角波,频率与幅值控制只需调整某些电阻值,控制简单。但考虑积分电路存在积分漂移。 此处采用选择方案①。

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

高效音频功率放大器

高效音频功率放大器 一、设计任务与要求 1、设计任务 设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。 2、设计要求 ⑴基本要求 ①功率放大器 a.3 dB通频带为300~3400Hz,输出正弦信号无明显失真。 b.最大不失真输出功率≥1W。 c.输入阻抗>10kΩ,电压放大倍数1~20连续可调。 d.低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。 e.在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。 ②设计并制作一个放大倍数为1的信号变换电路,将功率放大器双端输出的信号转换为单端输出,经RC滤波供外接测试仪表用,如下图所示。图中,高效率功率放大器组成框图可参见本题第3项“说明”。 图1 系统组成框图 ③设计并制作一个测量放大器输出功率的装置,要求具有3位数字显示,精度优于5%。 ⑵发挥部分 ① 3dB通频带扩展至300Hz~20kHz。 ②输出功率保持为200mW,尽量提高放大器效率。 ③输出功率保持为200mW,尽量降低放大器电源电压。 ④增加输出短路保护功能。 ⑤其他。 1、说明 ⑴采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图2 D类放大原理框图 ⑵效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),不包括“基本要求”中第(2)、(3)项涉及的电路部分功耗。制作时要注意便于效率测试。 ⑶在整个测试过程中,要求输出波形无明显失真。 二、方案论证与比较 根据设计任务的要求,本系统的组成方框图如图1所示。下面对每个框电路的设计方案分别进行论证与比较。 1、高效率功率放大器 ⑴高效率功放类型的选择 方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。 方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。 ⑵高效D类功率放大器实现电路的选择本题目的核心就是功率放大器部分,采用何种电路形式以达到题目要求的性能指标,这是关键。 图3 脉宽调制器电路 ①脉宽调制器(PWM) 方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。 方案二:采用图3所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。 ②高速开关电路

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

音频功率放大器

河南城建学院 《电子线路设计》课程设计说明书 设计题目:音频功率放大器 专业:计算机科学与技术 指导教师:杜小杰 班级:0814141 学号:081414109 姓名:罗含霜 同组人:娄莉娟 计算机科学与工程学院 2016 年6月6日

前言 在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。 THD+N性能指标 THD+N表示失真+噪声,因此THD+N自然越小越好。但这个指标是在一定条件下测试的。同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。 这里指的条件是,一定的工作电压VCC(或VDD)、一定的负载电阻RL、一定的输入频率FIN(一般常用1KHZ)、一定的输出功率Po下进行测试。若改变了其中的条件,其THD+N值是不同的。例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32Ω、Po=25mW条件下测试,其TDH+N=0.003%,若将RL改成16欧,使Po 增加到50mW,VDD及FIN不变,所测的TDH+N=0.005%。 一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般与为10-4;输出功率在1~2W,其THD+N 更大些,一般为0.1~0.5%.THD+N这一指标大小音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。 这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。若FIN改成20Hz-20kHz,,其他条件不变,其THD+N变为小于0.5%。 过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。这话的意思指的是输出的峰峰值没有“削顶”现象出现,即Vout(P-P)=Vcc-(上压差+下压差)这种说法是不科学的。即使不产生削顶,它也有一定的失真。较科学的说法是THD+N在某一指标下可输出的功率是多少。

高保真音频功率放大器设计

电子技术课程设计报告——高保真音频功率放大器 上海大学机自学院自动化系 自动化 姓名:吴青耘 学号:16121324 指导老师: 李智华 2018年6月29日

一、项目名称 高传真音频功率放大器 二、用途 家庭、音乐中心装置中作主放大器 三、主要技术指标 1. 正弦波不失真输出功率Po>5W (f=1kHz,RL=8Ω) 2. 电源消耗功率P E<10W ( Po>5W ) 3. 输入信号幅度VS=200~400mV (f=1kHz,RL=8Ω, Po>5W ) 4. 输入电阻Ri>10kΩ( f=1kHz ) 5. 频率响应BW=50Hz~10kHz ( R L=8Ω,Po>5W) 四、设计步骤 1.电路形式

电路特点分析: 较典型的OTL 电路,局部反馈稳定了工作点,总体串联电压负反馈控制了放大倍数并提高输入电阻和展宽频带,退耦滤波电容及校正电容是为防止寄生振荡而设。 功率放大器通常由功率输出级、推动级(中间放大级)和输入级三部分组成。 功率输出级由互补对称电路组成。推动级(中间放大级)一般都是共射极放大电路,具有一定的电压增益。输入级的目的是为了增大开环增益,以便引入深度负反馈,改进电路的各项指标。 2.设计计算: 设计计算工作由输出级开始,逐渐反推到推动级、输入级。 (1) 电源电压的确定 输出功率 W P 50> )(228588 .01 V V cc =??= (2) 输出级(功率级)的计算 W P P V Vcc V A RL V I M M C ce cc CM 12.0112 1 375.18/112/0======= 功率管需推动电流:mA I I CM M b 5.2750/375.1/3===β 耦合电容:uF R f C L L 200021 ) 5~3(6≈=π,现取2200uF/25V 稳定电阻R 12:过大则损失功率过大,过小温度稳定性不良,通常取0.5~1欧姆。

简易音频功率放大器

闽南师范大学《模拟电子技术》课程设计 设计题目:简易音频功率放大器 姓名:庄伟彬 学号:1205000425 系别:物理与信息工程学院 专业电气工程及其自动化 年级:12级 指导教师:周锦荣老师 2014年 5月 1 日

目录 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10 四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12 3.实验结果分析及与理论对比┄┄┄┄┄ 15 五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15 1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16

摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。 关键词:LM358;LM386;音频放大 一系统设计 1 设计任务 利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。 2 设计要求 设计一个简易的音频功率放大器,要求如下: (1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调; (2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成; (3)要求输入音频信号在10mV/1kHz时,输出功率1 (负载:8Ω),输出音频信号无 Po W 明显失真,输出功率大小可调; (4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供; (5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试; (6)完成课程设计报告撰写。

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

音频功率放大电路课程设计报告

, 课程设计 课程名称_模拟电子技术课程设计 题目名称音频功率放大电路 $ 学生学院 专业班级 学号 学生姓名__ 指导教师 : 2010 年 6 月 20 日

— 音频功率放大电路课程设计报告 一、设计题目 题目:音频功率放大电路 二、设计任务和要求 ` 1)设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。 2)设计要求 频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路设计 功率放大电路: % 功率放大电路通常作为多级放大电路的输出级。功率放大器的常见电路形式有OTL电路和OCL电路。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。也就是把输入的模拟信号经被放大后,去推动一个实际的负载工作,所以要求放大电路有足够大的输出功率,这样的放大电路统称为功率放大电路。而音频功率放大器的作用就是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能地小,效率尽可能的高。随着半导体工艺,技术的不断发展,输出功率几十瓦以上的集成放大器已经得到了广泛的应用。功率VMOS管的出现,也给功率放大器的发展带来了新的生机。总之,功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下几个主要特点: 1. 输出功率要足够大 工作在大信号状态下,输出电压和输出电流都很大.要求在允许的失真条件下,

完整word高效率PWM音频功率放大器

高效率PWM 音频功率放大器 本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放 大器部分采用D 类功率放大器确保高效,在 5V 供电情况下输出功率大于 1W ,且输出波形 无明显失真,低频输出噪声电压很低 (输出频率为20kHz 以下时,低频噪声电压约 1mV ); 信号变换部分采用差分放大电路,将双端输出信号变为 1 : 1的单端输出信号;输出功率显 1、题目分析及设计方案论证与比较 根据题目要求,整个系统由D 类PWM 功率放大器、信号转换电路及功率测量显示装置 组成。其中核心部分为 D 类PWM 功率放大器。之所以选择此方案是因为 D 类PWM 功放 能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高 频干扰, 从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图 3.1 所示。下面我们分别论述框图中各部分设计方案。 图3.1系统组成框图 2、总体设计思路 根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器 (即D 类功 率放大器)。脉宽调制电路(PWM )的脉宽调制原理 如图3.2所示。 图3.2脉宽调制原理图 一般的D 类放大器电路的工作原理是用 “振荡发生器”输出的三角波与来自外部的模拟 音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正 比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。 在音频信号的前半周 (正电压),脉宽调制方波的占空比小于 50%,使高端MOS 管饱和导通,输出瞬间脉冲电压 V ec — 0=V cc 。在音频信号的后半周(负电压),低端MOS 饱和导通,电压 0— V ec = — V cc o 将输 亠 PWM — 高速开关电路 及滤波网络 D 类功率放大器 796D Vin=O,占空比-50%

音频功率放大器_(规范排版)

摘要 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 音频放大电路是典型应用电路,由一块TDA 2030和较少元件组成的音频放大电路、装置调整方便、性能指标好等突出的优点。特别是集成块内部设计有完整的保护电路,能自我保护。 TDA 2030是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030A功率放大管利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。

高效率音频功率放大器设计【开题报告】

开题报告 高效率音频功率放大器设计 专业:电子信息工程 一、综述本课题国内外研究动态,说明选题的依据和意义: 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获得了良好的效果。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%,考虑到晶体管的饱和压降及穿透电流造成的损耗,A类功率放大器的最高效率仅为45%左右。B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率。一般的功放电路可以由两种方式实现:用分离元件组成或用集成器件实现。分立元件是电子电路的基础,一般的功放电路都能用分立元件实现,但由于使用分立元件所用的单个器件比较多,从而考虑的各种反馈电路和保护电路会比较多,实现起来会相对复杂。由于电子技术的日益更新,集成器件发展的比较快,在一定程度上已经可以代替分立元件。 二、功率放大电路的特殊问题

音频功率放大器的设计毕业论文

音频功率放大器的设计毕业论文

单刀音频功率放大器的设计 摘要 本次课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放。 设计中主要采用OP07进行音频放大器的设计,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。设计中的音频功率放大器主要由直流稳压电源、前置放大电路、二级放大电路和功率放大电路组成。前置放大电路采用了反相比例运算放大器,二级放大电路用一个低通滤波器和一个高通滤波器组成一个带通滤波器,功率放大电路采用了OCL电路。直流电源采用桥式电路进行整流,输出则采用了三端集成稳压器。 对前置放大电路和二级放大电路进行了输入、输出分析和频率响应分析。对功率放大电路进行了输入和输出功率分析。对直流电源进行了输出电压验证。最后对总电路进行了输入、输出

分析、频率响应分析、噪声分析。 关键词: OP07 音频功率放大器

目录 摘要................................................................ I Abstract.......................... 错误!未定义书签。第一章音频放大器的概述.. (1) 1.1音频放大电路的回顾 (1) 1.2音频功率放大器的介绍 (2) 1.2.1 A类(甲类)功率放大器 (3) 1.2.2 B类(乙类)功率放大器 (3) 1.2.3 AB类(甲乙类)功率放大器 (4) 1.2.4 C类(丙类)功率放大器 (4) 1.2.5 D类(丁类)功率放大器 (5) 1.3放大器的技术指标 (5) 第二章音频功率放大器的设计 (11) 2.1设计方案分析 (11) 2.2前置放大电路设计 (11) 2.3二级放大电路设计 (15) 2.2.1 低通滤波器设计 (15) 2.2.2 高通滤波器设计 (17) 2.2.3 二级放大电路电路设计 (20) 2.4功率放大器设计 (21) 2.5 直流稳压电源设计 (23)

基于Multisim的音频功率放大器设计与仿真

信息工程学院 课程设计报告书 题目: 基于Multisimde 音频功率放大器设计与仿真 课程:电子线路课程设计 专业: 班级: 学号: 学生姓名: 指导教师: 2015 年 1 月 3 日

信息工程学院课程设计任务书 学号学生姓名专业(班级) 设计题 目 基于Multisimde 音频功率放大器设计与仿真 设计技术参数电源电压:Vs (22) 输入电压:VIN ........................±V 电源V 差分输入电压:VDIFF (5) 工作温度范围:TA …………………… 0℃~70℃存贮温度:TSTG …………………… -65℃~150℃结温:Tj …………………… 150℃ 功耗(5532FE):PD …………………… 1000mW 引线温度(焊接,10S)…………………… 300℃ 设计要求1 输出功率10W/8Ω;频率响应20~20KHz;效率>60﹪;失真小。 2 选择电路方案,完成对确定方案电路的设计。 3 利用Multisim仿真设计电路原理图,确定电路元件参数、掌握电路工作原理并 仿真实现系统功能。 4 安装调试并按规范要求格式完成课程设计报告书。 参考资料1. 谢自美.电子电路设计.实验.测试.武昌:华中理工大学出版社,1994. 2. 童诗白.模拟电子技术基础.第二版.北京:人民邮电出版社,1999. 3. 康华光主编,电子技术基础(数字部分、模拟部分),高等教育出版社,1998. 4.周泽义.电子技术实验。武汉:武汉理工大学出版社,2001.5 5.梁宗善.《新型集成电路的应用-电子技术基础课程设计》.华中科技大学,2004 6.孙梅生.《电子技术基础课程设计》.高等教育出版社,2005 7.黄继昌,张海贵.《实用单元电路及其应用》.人民邮电出版社,2006 8.王卫东,江晓安.《模拟电子电路基础》.西安电子科技大学出版社,2003 9.华成英、童诗白.模拟电子技术基础.第四版.北京:高等教育出版社,2006.5 2015 年 1 月 3 日

相关文档
最新文档