能光伏电池输出特性分析与仿真研究

能光伏电池输出特性分析与仿真研究
能光伏电池输出特性分析与仿真研究

太阳能光伏电池输出特性分析与仿真研究

作者:杜慧, 林永君, 张少伟

作者单位:华北电力大学控制科学与工程学院,河北,保定,071003本文链接:https://www.360docs.net/doc/b15439919.html,/Conference_6731338.aspx

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

光伏发电并网系统Simulink仿真实验

光伏发电并网系统Simulink仿真实验 报告电气工程学院 王安20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 最大功率点跟踪模块:

PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的问题,这让我也明白了合作的重要性。

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

影响光伏电池、组件输出特性的因素概要

由于光伏电池、组件的输出功率取决于太阳光照强度、太阳能光谱的分布和光伏电池的温度、阴影、晶体结构。因此光伏电池、组件的测量在标准条件下(STC进行,测量条件被欧洲委员会定义为101号标准,其条件是:光谱辐照度为1000瓦/平米;光谱 AM1.5;电池温度25摄氏度。 在该条件下,太阳能光伏、电池组件所输出的最大功率被称为峰值功率,其单位表示为瓦(Wp。在很多情况下,太阳能电池的光照、温度都是不断变化的,所以组件的峰值功率通常用模拟仪测定并和国际认证机构的标准化的光伏电池进行比较。 (1温度对光伏电池、组件输出特性的影响 大家都知道,光伏电池、组件温度较高时,工作效率下降。随着光伏电池温度的升高,开路电压减小,在20-100摄氏度范围,大约每升高1摄氏度,光伏电池的电压减小2mV;而光电流随温度的升高略有上升,大约每升高1摄氏度电池的光电流增加千分之一。总的来说,温度每升高1摄氏度,则功率减少0.35%。这就是温度系数的基本概念,不同的光伏电池,温度系数也不一样,所以温度系数是光伏电池性能的评判标准之一。 (2光照强度对光伏电池组建输出特性的影响 光照强度与光伏电池、组件的光电流成正比,在光强由100-1000瓦每平米范围内,光电流始终随光强的增长而线性增长;而光

照强度对电压的影响很小,在温度固定的条件下,当光照强度在400-1000哇每平米范围内变化,光伏电池、组件的开路电压基本保持不变。所以,光伏电池的功率与光强也基本保持成正比。 (3阴影对光伏电池、组件输出特性的影响 阴影对光伏电池、组件性能的影响不可低估,甚至光伏组件上的局部阴影也会引起输出功率的明显减少。所以要注意避免阴影的产生,及时清理组件表面,防止热斑效应的产生。一个单电池被完全遮挡时,太阳电池组件输出减少75%左右。虽然组件安装了二极管来减少阴影的影响,但如果低估局部阴影的影响,建成的光伏系统性能和投资收效都将大大降低。

@探究太阳能电池的输出特性

探究太阳能电池的输出特性 一、引言 能源危机与环境污染是人类正面临的重大挑战,开发新能源和可再生清洁能源是21世纪最具决定影响的技术领域之一。太阳能是一种取之不尽、用之不竭的可再生清洁能源,对太阳能电池的研究与开发也变得日益重要。 二、实验目的 1、在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安特性曲线,并求得电压和电流关系的经验公式。 2、测量太阳能电池在光照时的输出伏安特性,作出伏安特性曲线图,从图中求得它的短路电流 I SC 、开路电压U OC 、最大输出功率Pm 及填充因子 FF , [FF=Pm/(I SC *U OC )]。 三、实验原理 1、太阳能电池工作原理: 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压 U 与通过电流I 的关系式为:(1)式中,o I 和β是常数。 )1e (I I U o -?=β (1) 由半导体理论,二极管主要是由能隙为V C E E -的半导体构成,如图1所示。 C E 为半导体导电带,V E 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的影响而产生光电流。

图1 电子和空穴在电场的作用下产生光电流 假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图2所示。 图2 太阳能电池的理论模型电路图 图2中,ph I 为太阳能电池在光照时的等效电源输出电流,d I 为光照时通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0R )I I I (U IR sh d ph s =---+ (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I )R R 1(I --=+ (3) 假定∞=sh R 和0R s =,太阳能电池可简化为图3所示电路。 图3 太阳能电池的简化电路图

PSIM 光伏电池板模型的使用介绍

PSIM9.0学习笔记1——光伏电池板模型的使用 今天看了看PSIM9.0里面的光伏板模型,顺带测试了一下,感觉非常简单实用,以后要做光伏这方面研究的童鞋就不用纠结怎么建光伏电池板的模型了,直接拿来用就可以了。1.光伏板模型就在PSIM9.0的elements-power-renewable energy里面,有两种,一种是物理模型的,一种是功能模块的,物理模型更接近于真实的板子,有两个输入,分别对应照度和温度,正负输出端,还有一个可以观测最大功率的接口,如下图所示 功能模块顾名思义就是只用来实现光伏板电池功能的模块了,只有正负端输出,只需要给定他的开路电压,短路电流,最大功率点电压和电流即可,那么在不要看光照温度影响的条件下可以简单的来用,如下图所示 我个人觉得要研究光伏电池特性,最大功率跟踪,以及更实际一点儿的研究的时候就用物理模块,而光伏板只是最为一个输入电压来看的话那就用功能模块应该就能满足了……当然我还没往后做,仅仅是感觉哈…… 同时PSIM9.0里面还有一个计算光伏板物理参数的工具,叫solar module,可以通过电池板的参数,也就是一般电池板所提供的最大功率,开路电压那些参数,计算出那些光伏板等效电路里面的诸如串联电阻、饱和电流,温度系数之类的值,同时能够看到该参数下的电流电压和功率电压关系曲线,方便我们使用物理模块时对参数进行设置,如上图所示 那么基于以上,我把我用的电池板参数填上去,用物理模块测试,同时光强由400-1000每200变化一次做了一下仿真,以下就是测试电路和测试波形。 输出波形 以上就是我刚对PSIM9.0里面的光伏板做的学习,当然只是很简单的学习并且用了一下,各位大侠们看了之后不要鄙视哈……如果有有错的或者理解不对的地方还请各位大侠帮忙指正!~~ 后续继续做MPPT实验和逆变器的实验,慢慢做,然后再发上来大家一起讨论学习哈

光伏电池的仿真及其模型的应用研究

光伏电池的仿真及其模型的应用研究 Study on Simulation of Solar Cell and Its Application 陶海亮夏扬张宁扬州大学能源与动力工程学院,江苏扬州225127 不论是太阳能发电系统还是风光互补发电系统,熟悉光伏电池的输出特性是设计新能源发电系统的基础和前提。根据光伏电池输出特性关系式,利用MATLAB的Simulink模块搭建了参数和工况可调的光伏电池模型,并运用该模型建立了具有最大功率跟踪(MPPT)功能的光伏发电系统的仿真模型,通过仿真结果可以更好地把握光伏电池的特性,为发电系统的设计和优化打好基础。 光伏电池;数学模型;仿真;最大功率跟踪

当电池

率比较

@@[1]苏建徽,于世杰,赵为.硅太阳电池工程用数学模型[J].太阳能学报, 2001,22(4)@@[2]王阳元.绿色微纳电子学[M].北京:科学出版社,2010@@[3]林渭勋.现代电力电子技术[M]北京:机械工业出版社,2007 @@[4]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿 真,2006,23(6) 2011-09-21 @@[1]黄柯棣,张金槐,李剑川,等.系统仿真技术[M].长沙:国防科技大学 出版社,1998 @@[2]Joseph Nalepka,Thomas Dube,Glenn Williams et al. Transi tioning to PC-Based Simulation-One Perspective[R],2005,A IAA-2002-4863@@[3]The Mathworks Inc. Target Language Compiler Reference Guide[M].2004 @@[4]刘德贵,费景高.动力学系统数字仿真算法[M].北京:科学出版社, 2000 2011-08-25

光伏电池贴附模型

太阳能小屋设计 摘要 介绍了浙江省慈溪市天和家园住宅小区43kW.屋顶太阳能并网光伏发电系统的设计思路,以及系统的具体功能与配置,提出了设计中需要注意的问题及具体的解决方案。 包括:①光伏系统提供公用设施用电,在阴雨天时使用城市电网为公用负荷供电; ②光伏系统在小区内局部并网.不考虑将电能输入上级城市电网; ③太阳能电池组件方阵倾角确定为3O。,选用常州天合光能有限公司生产的TSM一175D型高效单晶硅电池组件。分析了组件分组串接原则,确定了布置方案;( 并网逆变器选择德国艾思玛(SMA)公司SMC6o(》0rIL型无变压器集中式逆变器和SB5o0仇1.型无变压器多组串逆变器;( 地下车库照明负荷曲线与日照曲线接近.因此选择地下车库照明和智能化设备用电为光伏系统负荷;⑥简介了防直击雷和防感应雷措施.以及选择电缆和设计支架时应考虑的因素;⑦监控系统选用SMA的Sunny Boy Control Plus产品。 关键词住宅小区并网光伏发电太阳能电池组件多组串逆变器1 项目简介 1.1天和家园住宅小区概况 浙江省慈溪市天和家园住宅小区占地面积64 788m2,总建筑面积13.4万m2。小区住宅整体布置方式为南北朝向,南北均无高大建筑物,无遮阴情况,日照充分。小区建筑住宅以多层为主,屋顶呈人字形,楼高22.2—22.86m。计划在天和家园2O号楼屋顶装设太阳能电池板,建住宅小区太阳能光伏发电示范电站。2O号楼目前处于在建状态,-屋顶可利用面积有:西侧平台,面积87m ;斜屋面,~7共7块,总面积(斜面)113.9m。;露台,厶一厶共5个,总面积233.44m 。 1-2设计要求 a.该项目有一定的公众影响力。美观与否非常重要,要求光伏电池组件的安装应保持屋顶的风格和美观,并与小区及周围环境相协调。 b.该光伏电站主要提供天和家园小区公用设施用电,包括:地下车库西区照明灯35.2kW,地下车库东区照明.灯21.4kW,智能化设备2kW等。要求在阴雨天气时,’应能使用城市电网为公用负荷供电。 c.光伏电站建设费用计入小区开发成本。建成后随小区移交物业管理,要求节省投资。维护管理方便。 2 光伏发电系统运行方式的选择 太阳能光伏发电系统的运行方式可分为两类。即:独立运行和并网运行[1]。 独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区。由于必须有蓄电池储能装置,所以整个系统的造价很高。 在有公共电网的地区。光伏发电系统一般与电网连接,即采用并网运行方式。并网型光伏发电系统的优点是可以省去蓄电池,而将电网作为自己的储能单元。由于蓄电池在存储和释放电能的过程中,伴随着能量的损失,且蓄电池的使用寿命通常仅为5~8年,报废的蓄电池又将对环境造成污染,所以,省去蓄电池后的光伏系统不仅可大幅度降低造价,还具有更高的发电效率和更好的环保性能,且维护简单、方便。在建筑密度很大的城市住宅小区中,能够安装太阳能电池板的面积有限,住宅小区屋顶光伏发电系统的容量通常远远小于其变压器的容量,即光伏系统的发电功率始终小于小区负载的功率,没有剩余电能送入上级城市电网[2】。 综合考虑,该光伏发电系统拟采用并网运行方式.并在小区内局部并网,不考虑将电能输入上级城市电网,系统原理图如图l所示。采取小区内局部并网3 系统设计

光伏组件中电池遮挡与伏安特性曲线变化的关系

体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输 ... 配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 一、模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一下参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组建中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V 特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不大。结果是透过率越低,电流随着电压的升高下降越快。另一方面,开路电压基本上相同。由图可看出:测量结果与计算的结果相吻合。

太阳能电池特性研究_实验报告参考

E I I 圏&全暗吋太阳能电池在外加偏压吋的伏安特性测量电路之二 四、实验步骤 1 ?在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性,用实验测得的正向偏压时I ~ U关

系数据,画出I ~ U曲线并求得常数1和I。的值。 2?在不加偏压时,用白色光源照射,测量太阳能电池一些特性。注意此时光源到太阳能电池距离保持为20cm。 (1 )画出测量实验线路图。 (2)测量太阳能电池在不同负载电阻下,|对U变化关系,画出I ~ U曲线图。 (3)用外推法求短路电流| sc和开路电压U oc。 (4)求太阳能电池的最大输出功率及最大输出功率时负载电阻。 (5)计算填充因子[FF =P m/(l sc ?U°c)]。 五、实验数据和数据处理 1.在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性。 表1 图-(b)全暗情况下太阳能电池外加偏压时的伏安特性半对数曲线 二V ,丨0二mA,相关系数0.9996,电流与电压的指数关系得到验证。

2 ?在不加偏压时,用白色光源照射,测量太阳能电池一些特性。

图9恒定光强无偏压时太阳能电池输出功率与负载电阻关系曲线 太阳能电池的最大输出功率 P m 二 ,最大输出功率时负载电阻 R L 二 1. 2 I (inA) 3在恒定光照下太阳能电池不加偏压时的伏安特性曲线

填充因子[FF 二P m/(l sc ?U°c)]= = 。 六.实验结果 - V ' , I o = mA, 短路电流l sc= ,开路电压U OC=。 填充因子[FF =P m/(l sc ?U°c)]= 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题

电池组件技术参数功率输出特性分析

电池组件技术参数功率输出特性分析 1.电池主要参数指标 与硅太阳能电池的主要性能参数类似,太阳能电池组件的性能参数也主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。这些性能参数的概念与前面所定义的硅太阳能电池的主要性能参数相同,只是在具体的数值上有所区别。 (1)短路电流I S 当将太阳能电池组件的正负极短路,使U=0时,此时的电流就是电池组件的短路电流,短路电流的单位是A,短路电流随着光强的变化而变化。 (2)开路电压Uo 当太阳能电池组件的正负极不接负载时,组件正负极间的电压就是开路电压,开路电压的单位是V。太阳能电池组件的开路电压随电池片串联数量的增减而变化。 (3)峰值电流I m 峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池组件输出最大功率时的工作电流,峰值电流的单位是A。 (4)峰值电压U m 峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是V。 (5)峰值功率Pm 峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池组件在正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm =I m×U m。峰值功率的单位是W。太阳能电池组件的峰值功率取决于太阳辐照度、太阳光谱分布和组件的工作温度,因此太阳能电池组件的测量要在标准条件下进行,测量标准为:辐照度lkW/mz、光谱AMl.5、测试温度25℃。 (6)填充因子 填充因子也叫曲线因子,是指太阳能电池组件的最大功率与开路电压和短路电流乘积的比值。填充因子是反应太阳能电池组件所用电池片输出特性好坏的一个重要参数,它的值越高,表明所用太阳能电池组件输出特性越趋于矩形,电池组件的光电转换效率越高。太阳能电池组件的填充因子系数一般在0.5~0.8之间,也可以用百分数表示。

太阳能电池的基本特性与性能参数

1、太阳能电池的基本特性 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3 太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。 2、有关太阳电池的性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。 3、大输出功率

太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最

光伏发电并网系统Simulink仿真实验报告

光伏发电并网系统Simulink仿真实验报告 电气工程学院 王安 20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC 逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块:

最大功率点跟踪模块: PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的

光伏组件问题系列总结——部分遮挡对组件输出特性的影响

光伏组件问题系列总结——部分遮挡对组件输出特性的影响 1.0绪论 众所周知,晶体硅太阳电池组件的表面阴影、焊接不良及单体电池功率不匹配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 2.0模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一些参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。 a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组件中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不

基于Matlab的光伏电池板的建模与仿真

基于Matlab的光伏电池板的建模与仿真 【摘要】对光伏电池板的工作原理进行简要分析并给出了其等效电路,建立了光伏池板的数学模型,在matlab/simulink仿真环境下搭建新的光伏池板的仿真模型。基于该新仿真模型模拟了不同太阳光照强度、不同环境温度下的电流—电压(I-V)、功率—电压(P-V)特性曲线。仿真结果与理论上的I-V、P-V曲线完全吻合,证明了新仿真模型的合理性与实用性。对于光伏电池板在现实中的应用具有重要实际意义并对利用恒压法实现光伏电池板的最大功率点跟踪提供理论依据。 【关键词】光伏;电池板;数学模型;仿真 随着人类社会的发展与进步,全球对能源的需求量越来越大,然而石油、煤炭等能源都是非可再生的,并且大量的化石燃料的使用给人类的生存环境造成的巨大的损耗,如全球变暖、环境污染。因此寻求新的清洁能源以代替上述非可再生能源迫在眉睫,近年来,太阳能作为取之不尽,用之不竭且清洁无污染的能源得到了广泛关注与显现了很好的发展前景[1]。光伏电池板是光伏并网系统中关键部件,但是光伏电池板造价昂贵,对太阳光照强度、环境温度、气候条件等外界条件依赖性较强,而光伏池板的I-V、P-V曲线是随着光照强度、环境温度变化并且此变化时非线性的,所以建立光伏池板的数学模型并在Matlab/simulink 仿真环境下搭建仿真模型,模拟电池板I-V、P-V曲线有重要的实际意义,对于光伏电池板的最大功率点跟踪提供理论依据。 1.光伏电池板的工作原理与等效电路 光伏电池板是利用半导体材料的光伏效应的原理制造的,光伏效应就是半导体在接受光照后,激发出电子空穴对分离从而产生电动势的一种现象。光伏池板是将太阳辐射能转换为电能的器件,当光照射在P-N结时,半导体吸收光能后其内部的原子获得光能后产生电子空穴对,并发生漂移运动而分离,电子进入N 区,空穴进入P区,从而在P-N结附近形成电场,N区因电子带负点,P区因空穴带正电。 由光伏池板的工作原理我们可以得出,光伏电池板实际上是一块面积比较的二极管。在光照不变的情况下,光生电流不变,可以看成恒流源。为了方便等效电路的建立,我们做如下等效:用串联电阻Rs等效池板材料呈现的电阻特性(通常为几Ω)、Cj表示PN结本身的电容特性,用Rsh表示电池板的并联电阻(数量级在103Ω),综上所述光伏池板的等效电路如图1.1所示: 图1.1 光伏池板的等效电路 图中,IL为光生电流(恒流源),I为太阳能电池板输出电流(A),U为电池板的输出电压(V),Id是流过二极管的电流(A),I0为反向饱和电流,Ish 为太阳能电池板的漏电流(A)。

光伏电池simulink仿真 毕设

摘要 太阳能作为一种新兴的绿色能源,以其取之不竭、用之不尽、无污染等优点,受到人们越来越多的重视。光伏发电是充分利用太阳能的一种有效方式之一。由于目前光伏电池板的价格比较高,转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文光伏发电进行最大功率跟踪显得尤为必要。本文针对如何提高太阳能光伏发电系统的转换效率,从建模仿真方面对具有最大功率点跟踪的控制器进行了研究,提出了一种新的最大功率点跟踪方案。 本文主要任务如下: 首先,本文介绍了论文的相关研究背景、选题意义、以及论文的主要工作。 其次,分析了太阳能电池板的工作原理,利用MATLAB/simulink模块对不同环境及不同日照强度下的太阳能电池输出特性进行了建模、仿真。 再次,介绍并分析了最大功率点跟踪原理,以及常用的几种跟踪方法。介绍了三种常用的DC/DC变换器的工作原理。 紧接着,对干扰观察法和电导增量法进行了建模和仿真,针对电导增量法提出了一种适合车用的改进方案。仿真结果表明新的方案在一定条件下可以显著减小最大功率跟踪系统响应时间。 而后,用CATIA软件对第一代太阳能车进行了设计,建立了蓄电池驱动电机和蓄电池充电系统电路。 最后,针对充电系统的电流、电压开发了一个简单的检测分析软件。关键词:太阳能;最大功率跟踪; MATLAB仿真; DC/DC变换器

Abstract Solar power is a new green power. It is regarded as clean, pollution-free, and inexhaustible. Photovoltaic conversion is an effective way to use solar power. Because the price of photovoltaic cell is expensive and conversion effi-ciency is low presently, the Maximum Power Point Tracking is absolutely ne-cessary, in order to decrease system cost and increase efficiency. Aims at how to increase the efficiency of conversion for the photovoltaic energy system, this paper researches the solar controller with maximum power point tracking (MPPT) and presents a novel MPPT method from the simulation. The main work of this paper is as follows: First, introduces the background, significance, work. Second, analyzing the principle of the solar panel and using the MATLAB software to build the simulation of the output characteristic for the solar cell under different temperature and isolation. Third, introduces the MPPT principle, comparing several common MPPT methods and find out their advantage and disadvantage. Then analysis three DC/DC converters?principles. Forth, using the MATLAB software simulink toolbox to build the simula-tion of the Perturbation And Observation method, Incremental Conductance method and improved the Incremental Conductance method. The result of the simulation demonstrates that the new strategy can reduce the responding time of the system. Fifth,using the CATIA software to build the first generation solar car 3D

光伏组件测试标准内容对比

光伏组件测试标准内容对比 郭素琴李娜武耀忠傅冬华 (阿特斯阳光电力科技有限公司测试中心,常熟215562 )摘要:对光伏行业内主要的组件测试标准中预处理试验、基本检查试验、电击危害试验、火灾试验、机械应力试验、结构试验和性能测试的试验内容进行对比总结,包括IEC 61215:2005地面用晶体硅光伏组件设计鉴定和定型、UL1703:2004平板组件安全测试、IEC 61730-2:2004 光伏组件安全鉴定。 关键词:组件测试标准IEC 61215 IEC 61730 UL1703 Comparison of PV module test standards Suqin Guo, Na Li, Willon Wu, Albert Fu (Changshu CSI Advanced Solar Inc,Changshu 215562 ) Abstract:According to PV module test standards including IEC 61215:2005, UL1703:2004 and IEC 61730-2:2004 Comparation of the Preconditioning tests, General inspection test, Electrical shock hazard tests, Fire hazard tests, Mechanical stress tests, Component tests and performance test were studied in this paper. Keywords:Photovoltaic modules, Test standards, IEC 61215, IEC 61730, UL 1703 1.引言 在低碳经济成为热点,节能减排成为目标时,使用光伏组件的进行发电能大量减少温室气体的排放。随着光伏电站建设的增多与光伏组件应用领域的扩大,越来越多的客户和光伏组件生产厂商认识到光伏组件使用时安全性能的重要性。现在已有很多国际知名的认证机构开展了对光伏组件的可靠性检测,而且也有很多的生产厂商在公司内部建立实验室对光伏组件进行可靠性检测。故本文对IEC 61215:2005、IEC 61730-2:2004、UL 1703:2004三份光伏组件测试标准的内容进行对比。 2.标准介绍 2.1 IEC 61215:2005《地面用晶体硅光伏组件:设计鉴定和定型》,该标准规定了地面用光伏组件设计鉴定和定型的要求,表明组件能够在规定的气候条件下长期使用。 2.2 IEC 61730-2:2004《光伏(PV)组件安全鉴定 第二部分:试验要求》,IEC 61730-2部分规定了光伏组件的试验要求,以使其在预期的使用期内提供安全的电气和机械运行。对由机械或外界环境影响造成的电击、火灾和人身伤害的保护措施进行评估。 2.3 UL 1703:2004《平面组件安全测试》,该标准适用于安装在建筑物或与建筑物连为一体的平面光伏电池板,也适用于独立应用的太阳能电池平板。适用于在电压小于等于1000伏的系统中应用的光伏电池板,还适用于连接在或是装置在光伏电池板上的设备部分。不适于从组件中获得电压、电流的输出设备,任何追踪装置,在强光下照射下的应用的电池组件,光学集中器,光电热结合的模块及面板。 3.预处理试验对比 3.1 IEC 61215:2005有温度循环(50或200次循环、-40℃至+85℃)、湿冻试验(10次循环、-40℃至+85℃、85%RH)、湿热试验(1000小时、85℃,85%RH)、紫外预处理试验(15KWh/m2)、室外曝晒试验(60KWh/m2)。 作者简介:郭素琴(1979-),女,江西兴国人,阿特斯光伏测试中心质量监督员,主要从事太阳能 光伏组件可靠性检测室的监督工作。

太阳能电池特性测量

太阳能电池特性实验仪 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO 2、SO 2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO 2已经超过500亿吨。我国能源消费以煤为主,CO 2的排放量占世界的15%,仅次于美国,所以减少排放CO 2、SO 2广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。太阳的光辐射可以说是取之不尽、用之不竭的能源。太阳与地球的平均距离为1亿5千万公里。 在地球大气圈外,太阳辐射的功率密度为1.353kW /m 等温室气体,已经成为刻不容缓的大事。推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。 2 ,称为太阳常数。到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。在地球海平面上,正午垂直入射时,太阳辐射 的功率密度约为1kW /m 2 太阳能发电有两种方式。光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成蒸气,再驱动汽轮机发电,太阳能热发电的缺点是效率很低而成本很高。光—电直接转换方式是利用光生伏特效应而将太阳光能直接转化为电能,光—电转换的基本装置就是太阳能电池。 ,通常被作为测试太阳电池性能的标准光辐射强度。太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。每年到达地球的辐射能相当于49000亿吨标准煤的燃烧能。太阳能不但数量巨大,用之不竭,而且是不会产生环境污染的绿色能源,所以大力推广太阳能的应用是世界性的趋势。 与传统发电方式相比,太阳能发电目前成本较高,所以通常用于远离传统电源的偏远地区,2002年,国家有关部委启动了“西部省区无电乡通电计划”,通过太阳能和小型风力发电解决西部七省区无电乡的用电问题。随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 实验内容 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量

相关文档
最新文档