感知器实验实验

感知器实验实验
感知器实验实验

信息技术处理技术实验

学生姓名XX

班级电信093

学号094012003XX

成绩

指导教师XXX

电气与信息工程学院

2013年1 月5日

实验一感知器实验

(1)熟悉感知器网络及相关知识。

(2)熟悉matlab相关的知识。

(3)学会利用matlab实现感知器网络,并将输入样本线性划分。

二、实验要求

(1)复习人工智能神经网络中感知器网络的相关内容。

(2)掌握感知器网络的学习算法。

(3)利用matlab建立感知器网络。

三、内容及步骤

设计单一感知器神经元来解决一个简单的分类问题:将4个输入向量分为两类,其中两个输入向量对应的目标值为1,另两个对应的目标值为0。

主要程序程序如下:

P=[-1 -0.5 0.3 -0.1 50;

-0.5 0.5 -0.5 1.0 35];

T=[1 1 0 0 0];

plotpv(P,T);

pause;

net=newp([-1 50; -1 40],1);

watchon;

cla;

plotpv(P,T);

linehandle=plotpc(net.IW{1},net.b{1});

E=1;

net=init(net);

linehandle=plotpc(net.IW{1},net.b{1});

while(sse(E))

[net,Y,E]=adapt(net,P,T);

linehandle=plotpc(net.IW{1},net.b{1});

drawnow;

end;

pause;

watchoff;

p=[0.7;1.2];

a=sim(net,p);

plotpv(p,a);

ThePoint=findobj(gca,'type','line');

set(ThePoint,'Color','red');

hold on;

plotpv(P,T);

plotpc(net.IW{1},net.b{1});

hold off;

disp('End of percept1');

End of percept1

通过实验程序导入后,可得到以下结果:

按任意键!

再按任意键!

就得出了结果。

将上例的输入向量扩充为10组,将输入向量分为4类,即输入向量为:P=[0.1 0.7 0.8 0.8 1.0 0.3 0.0 -0.3 -0.5 -1.5;

1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 -1.5 -1.3]

输出向量为:

T=[1 1 1 0 0 1 1 1 0 0;

0 0 0 0 0 1 1 1 1 1]

输入向量可以改动

程序:

P=[0.1 0.7 0.8 0.8 1.0 0.3 0.0 -0.3 -0.5 -1.5;

1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 -1.5 -1.3];

T=[1 1 1 0 0 1 1 1 0 0;

0 0 0 0 0 1 1 1 1 1];

plotpv(P,T);

net=newp([-1.5 1;-1.5 1],2);

figure;

watchon;

cla;

plotpv(P,T);

linehandle=plotpc(net.IW{1},net.b{1});

E=1;

net=init(net);

linehandle=plotpc(net.IW{1},net.b{1});

while(sse(E))

[net,Y,E]=adapt(net,P,T);

linehandle=plotpc(net.IW{1},net.b{1},linehandle);

drawnow;

end;

watchoff;

figure;

p=[1.7;-1.2];

a=sim(net,p);

plotpv(p,a);

ThePoint=findobj(gca,'type','line');

set(ThePoint,'Color','red');

hold on;

plotpv(P,T);

plotpc(net.IW{1},net.b{1});

hold off;

disp('End of percept2');

End of percept2

运行结果:

按任意键运行!

得出了结果。

当网络的输入样本中存在奇异样本时(即该样本向量相对其他所有样本向量特别大或特别小),此时网络训练时间将大大增加。

程序:

P=[-0.5 -0.5 0.3 -0.1 -40;

-0.5 0.5 -0.5 1.0 50];

T=[1 1 0 0 1];

plotpv(P,T);

net=newp([-40 1; -1 50],1);

pause;

plotpv(P,T);

linehandle=plotpc(net.IW{1},net.b{1});

cla;

plotpv(P,T);

linehandle=plotpc(net.IW{1},net.b{1});

E=1;

net.adaptParam.passes=1

net=init(net);

linehandle=plotpc(net.IW{1},net.b{1});

while(sse(E))

[net,Y,E]=adapt(net,P,T);

linehandle=plotpc(net.IW{1},net.b{1},linehandle);

drawnow;

end;

pause;

p=[0.7;1.2];

a=sim(net,p);

plotpv(p,a);

ThePoint=findobj(gca,'type','line'); set(ThePoint,'Color','red');

hold on;

plotpv(P,T);

plotpc(net.IW{1},net.b{1});

hold off;

pause;

axis([-2 2 -2 2]);

disp('End of percept3');

运行:

按任意键!

按任意键!

按任意键!

得出了结果!

五、实验总结

本次实验通过对matlab的操作来完成一系列实验,来设置一个感知器网络,并从中了解其基本的算法。在程序开始编写的过程中,很容易出现某些小错误,而导致程序的结果图无法正常显示,而通过老师指导和检查中,能够顺利的完成此

次实验。

传感器原理及应用实验讲义

传感器原理及应用

CSY-998系列传感器实验台 主要技术参数、性能及说明 CSY系列传感器系统实验仪是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,组成一个完整的测试系统。 实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。传感器位于实验工作台右边,装在圆盘式工作台的四周,依次为(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。光纤传感器的一端已固定在“光电变换器”上,另一端为活动的圆柱形探头,可根据要求加以固定。 一、传感器安装台部分: 双平行振动梁的自由端及振动 圆盘下面各装有磁钢,通过各自测微 头或激振线圈接入低频激振器VO 可做静态或动态测量。 应变梁:应变梁采用不锈钢片, 双梁结构端部有较好的线性位移。 传感器: 1.应变式传感器 箔式应变片阻值:350Ω,应变 系数:2。 2.热电偶(热电式) 直流电阻:10Ω左右,由两个铜 一康铜热电偶串接而成,分度号为T冷端温度为环境温度。 3.差动变压器 量程:≥5mm,直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体。 4.电涡流位移传感器 量程:3mm,直流电阻:1Ω-2Ω,多股漆包线绕制的扁平线圈与金属涡流片组成。 5.霍尔式传感器 日本JVC公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。量程:±1mm。 6.磁电式传感器 直流电阻:30Ω-40Ω,由线圈和动铁(永久磁钢)组成,灵敏度:0.5v/m/s。 7.压电加速度传感器 PZT-5双压电晶片和铜质量块构成。谐振频率:>-10KHz。 8.电容式传感器 量程:+5mm,由两组定片和一组动片组成的差动变面积式电容传感器。 9.压阻式压力传感器

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

传感器实验指导书11

实验平台介绍 传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。 图1 nextboard实验平台 nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。 实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。 图2 模拟插槽和数字插槽

特别需要注意的是: (1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。如果插错插槽,会导致模块工作不正常,甚至损坏模块。 (2)插拔实验模块前关闭nextboard电源。 (3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 Nextboard的连线: (1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。 (2)数据采集卡,将数据采集卡的插头与实验台可靠连接。

神经网络基于BP网络的多层感知器实验报告

神经网络基于BP网络的多层感知器实验报告 二、基于BP网络的多层感知器一:实验目的: 1、理解多层感知器的工作原理 2、通过调节算法参数了解参数的变化对于感知器训练的影响 3、了解多层感知器局限性二:实验原理:BP的基本思想:信号的正向传播误差的反向传播–信号的正向传播:输入样本从输入层传入,经各隐层逐层处理后,传向输出层。 –误差的反向传播:将输入误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号来作为修正各单元权值的依据。 1、基本BP算法的多层感知器模型: 2、BP学习算法的推导:当网络输出与期望输出不等时,存在输出误差E将上面的误差定义式展开至隐层,有进一步展开至输入层,有调整权值的原则是使误差不断地减小,因此应使权值的调整量与误差的梯度下降成正比,即η∈(0,1)表示比例系数,在训练中反应学习速率 BP算法属于δ学习规则类,这类算法被称为误差的梯度下降(Gradient Descent)算法。<实验步骤> 1、用Matlab编程,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差Emin和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小

的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。(要求误差计算使用RME,Emin 设置为0、1)程序如下:function dyb %单样本程序 clc; close all; clear; x0=[1:;-4:0、08:4];%样本个 x0(1,:)=-1; x=x0'; yuzhi=0、1;%阈值 j=input('请输入隐层节点数 j = ');%隐层节点数 n=input('请输入学习效率 n = ');%学习效率 w=rand(1,j); w=[yuzhi,w]; %输出层阈值 v=rand(2,j); v(1,:)=yuzhi;%隐层阈值 err=zeros(1,); wucha=0; zhaosheng=0、01*randn(1,);%噪声erro=[]; ERRO=[];%误差,为画收敛曲线准备 Emin=0、1; d=zeros(1,); for m=1: d(m)=hermit(x(m,2));%期望 end; o=zeros(1,); j=zeros(1,j); =zeros(1,j); p=1; q=1; azc=0; acs=0; for z=1:5 while q<30000 Erme=0; for p=1: y=zeros(1,j); for i=1:j j(1,i)=x(p,:)*v(:,i); y(1,i)=1/(1+exp(-j(1,i))); end; y=[-1 y]; o(p)=w*y'+zhaosheng(p);%噪声 wucha = d(p)-o(p); err(1,p)=1/2*wucha^2; erro=[erro,wucha]; for m=1:j+1 w(1,m)=w(1,m)+n*wucha*y(1,m); end; for m=1:j v(:,m)=v(:,m)+n*wucha*w(1,m)*y(1,m)*(1-y(1,m))*x(p,:)'; end q=q+1; end; for t=1:; Erme=Erme+err(1,t); end; err=zeros(1,); Erme=sqrt(Erme/); ERRO=[ERRO,Erme]; if

传感器力学综合实验

传感器力学综合实验 采用美国PASCO 公司生产的动力学实验系统,该系统利用传感器代替传统测量仪器,配以Datastudio 数据处理软件,用电脑采集和处理数据,满足各种力学物理量的测量需要,能够设计包括冲量,动量,动能,能量守恒,动量守恒,弹性碰撞,非弹性碰撞,简谐振动,摩擦力等多种动力学实验。 加速度和简谐振动实验利用运动传感器和力传感器,对不同倾角的斜面上的弹簧和物体系统的振动周期和运动受力情况进行电脑监控和数据采集,通过“Datastudio ”软件进行分析和处理,根据受力与弹簧形变情况可求出弹簧倔强系数k ,也能根据测量受力和物体运动加速度情况从而验证牛顿第二定律F=ma 。 冲量定理实验是利用运动传感器和力传感器,对光滑导轨上的小车的运动情况和碰撞受力情况进行电脑监控和数据采集,通过“Datastudio ”软件进行分析和处理,给出弹性碰撞前后速度及碰撞过程中力随时间的变化关系,从而在一定精度下验证了冲量定理。 实习1加速度和简谐振动 一、实验目的 本实验目的是测量不同倾角的斜面上的弹簧和物体系统的振动周期和运动受力情况,并验证牛顿第二定律F=ma 。 二、实验仪器 ScienceWorkshop 接口,50N 力传感器,运动传感器,带质量的动力车,弹簧,导轨,底座和支杆 三、实验原理 对于弹簧上的物体,振动的理论周期为 k m T π2= (1) 这里T 是一个周期运动的时间,m 是振动质量,k 是弹簧倔强系数。 根据虎克定律,弹簧产生的力与弹簧被压缩或伸长的距离成正比, F=-kx (2) 这里k 是弹簧倔强系数。这样在实验上,可以通过施加不同的力让弹簧压缩或伸长不同的距离来确定。作力—距离的图,直线的斜率就等于k 。

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29

彩色线阵CCD传感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD的使用、驱动原理和功能特性等。 (二)实验内容: 1.本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD的AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MHz以上)一台, 2.彩色线阵CCD多功能实验仪YHCCD-IV一台 3.实验用PC计算机及A/D数据采集基本软件 (四)实验结果及数据分析: 一、线阵原理及驱动 1)驱动频率与周期 表格 1 驱动频率与周期实验结果

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz; 对应F1,F2频率始终是驱动信号的8分之一,而RS则为F1,F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 表格 2 积分时间测量结果 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验 表格 3 输出信号幅度与积分时间的关系0档

对应曲线: 图表 1 输出信号幅度与积分时间的关系0档 表格 4 输出信号幅度与积分时间的关系 1档

图表 2 输出信号幅度与积分时间的关系1档 表格 5 输出信号幅度与积分时间的关系2档

传感器综合的实验报告

传感器综合实验报告( 2012-2013年度第二学期) 名称:传感器综合实验报告 题目: 利用传感器测量重物质量院系:自动化系 班级:测控1201 班 小组成员:加桑扎西,黄承德 学生:加桑扎西 指导教师:仝卫国 实验周数:1周 成绩:

日期:2015 年7 月12日

传感器综合实验报告 一、实验目的 1、了解各种传感器的工作原理与工作特性。 2、掌握多种传感器应用于电子称的原理。 3、根据不同传感器的特性,选择不同的传感器测给定物体的重量。 4、能根据原理特性分析结果,加深对传感器的认识与应用。 5、测量精度要求达到1%。 二、实验设备、器材 1、金属箔式应变片传感器用到的设备: 直流稳压电源、双平行梁、测微器、金属箔式应变片、标准电阻、差动放大器、直流数字电压表。 2、电容式传感器用到的设备: 电容传感器、电容变换器、差动放大器、低通滤波器、电压表、示波器。 3、电涡流式传感器用到的设备: 电涡流式传感器、测微器、铝测片、铁测片、铜测片、电压表、示波器。 三、传感器工作原理 1、电容式传感器的工作原理: 电容器的电容量C是的函数,当被测量变化使S、d或 任意一个参数发生变化时,电容量也随之而变,从而可实现由被测量到电容量的转换。电容式传感器的工作原理就是建立在上述关系上的,若保持两个参数不变,仅改变另一参数,

就可以把该参数的变化转换为电容量的变化,通过测量电路再转换为电量输出。 差动平行变面积式传感器是由两组定片和一组动片组成。当安装于振动台上的动片上、下改变位置,与两组静片之间的相对面积发生变化,极间电容也发生相应变化,成为差动电容。如将上层定片与动片形成的电容定为C X1,下层定片与动片形成的电容定为C X2,当将C X1和C X2接入双T型桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。依据该原理,在振动台上加上砝码可测定重量与桥路输出电压的对应关系,称未知重量物体时只要测得桥路的输出电压即可得出该重物的重量。 2、电涡流式传感器的工作原理: 电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。依据该原理可制成电涡流式传感器电子称。3、金属箔式应变片传感器工作原理: 应变片应用于测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 实验中,通过旋转测微器可使双平梁的自由端上、下移动,从而使应变片的受力情况不同,将应变片接于电桥中即可使双平衡的位移转换为电压输出。电桥的四个桥臂电阻R1、R2、R3、R4,电阻的相对变化率分别为△R1/R1、△

机器学习入门 - 感知器

机器学习入门- 感知器(PERCEPTRON) POSTED IN 学术_STUDY, 机器学习 本文是基于马里兰大学教授Hal Dame III(Blogger)课程内容的笔记。 感知器(Perceptron)这个词会成为Machine Learning的重要概念之一,是由于先辈们对于生物神经学科的深刻理解和融会贯通。 对于神经(neuron)我们有一个简单的抽象:每个神经元是与其他神经元连结在一起的,一个神经元会受到多个其他神经元状态的冲击,并由此决定自身是否激发。(如下图) Neuron Model (From Wikipedia) 这玩意儿仔细想起来可以为我们解决很多问题,尤其是使用决策树和KNN算法时解决不了的那些问题: ?决策树只使用了一小部分知识来得到问题的答案,这造成了一定程度上的资源浪费。 ?KNN对待数据的每个特征值都是一样的,这也是个大问题。比如一组数据包含100种特征值,而只有其中的一两种是起最重要作用的话,其他的特征值就变成了阻碍我们找到最好答案的噪声(Noise)。 根据神经元模型,我们可以设计这样一种算法。对于每种输入值(1 - D),我们计算一个权重。当前神经元的总激发值(a)就等于每种输入值(x)乘以权重(w)之和。 neuron sum 我们还可以推导出以下几条规则: ?如果当前神经元的某个输入值权重为零,则当前神经元激发与否与这个输入值无关?如果某个输入值的权重为正,它对于当前神经元的激发值a 产生正影响。反之,如果权重为负,则它对激发值产生负影响。

接下来我们要将偏移量(bias)的概念加入这个算法。有时我们希望我们的神经元激发量a 超过某一个临界值时再激发。在这种情况下,我们需要用到偏移量b。 neuron sum with bias 偏移量b 虽然只是附在式子后面的一个常数,但是它改变了几件事情: ?它定义了神经元的激发临界值 ?在空间上,它对决策边界(decision boundary) 有平移作用,就像常数作用在一次或二次函数上的效果。这个问题我们稍后再讨论。 在了解了神经元模型的基本思路之后,我们来仔细探讨一下感知器算法的具体内容。 感知器算法虽然也是二维分类器(Binary Classifier),但它与我们所知道的决策树算法和KNN都不太一样。主要区别在于: ?感知器算法是一种所谓“错误驱动(error-driven)”的算法。当我们训练这个算法时,只要输出值是正确的,这个算法就不会进行任何数据的调整。反之,当输出值与实际值异号,这个算法就会自动调整参数的比重。 ?感知器算法是实时(online)的。它逐一处理每一条数据,而不是进行批处理。 perceptron algorithms by Hal Dame III 感知器算法实际上是在不断“猜测”正确的权重和偏移量: ?首先,感知器算法将所有输入值的权重预设为0。这意味着,输入值预设为对结果不产生任何影响。同时,偏移量也被预设为0。 ?我们使用参数MaxIter。这个参数是整个算法中唯一一个超参数(hyper-parameter)。 这个超参数表示当我们一直无法找到准确答案时,我们要最多对权重和偏移量进行几次优化。

传感器实验报告

33传感器原理及应用实验报告 实验人:程昌 09327100 合作人:雷泽雨 09327104 理工学院光信息科学与技术 实验时间:2011年5月20日,5月27日 实验地点:1号台 【实验目的】 1.了解传感器的工作原理。 2,掌握声音、电压等传感器的使用方法。 3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。 【实验仪器】 PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。 【安全注意事项】 1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。 2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出 端,使用时必须串联300欧姆以上的电阻。由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。 3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电 流很大,容易烧毁,也易损坏电流传感器。 【原理概述】 传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。

感知器的学习算法

感知器的学习算法 1.离散单输出感知器训练算法 设网络输入为n 维向量()110-=n x x x ,,, X ,网络权值向量为()110-=n ωωω,,, W ,样本集为(){}i i d ,X ,神经元激活函数为f ,神经元的理想输出为d ,实际输出为y 。 算法如下: Step1:初始化网络权值向量W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()d ,X ,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =WX f y ; (2.1.3)若d y ≠,则当0=y 时,X W W ?+=α;否则X W W ?-=α。 2.离散多输出感知器训练算法 设网络的n 维输入向量为()110-=n x x x ,,, X ,网络权值矩阵为{}ji n m ω=?W ,网络理想输出向量为m 维,即()110-=m d d d ,,, D ,样本集为(){}i i D X ,,神经元激活函数为f , 网络的实际输出向量为()110-=m y y y ,,, Y 。 算法如下: Step1:初始化网络权值矩阵W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()D X ,,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =XW Y f ; (2.1.3)对于输出层各神经元j (110-=m j ,,, )执行如下操作: 若j j d y ≠,则当0=j y 时,i ji ji x ?+=αωω,110-=n i ,,, ; 否则i ji ji x ?-=αωω,110-=n i ,,, 。

传感器心得体会

传感器心得体会

传感器心得体会 【篇一:传感器实验总结】 《传感器及检测技术》教学实践工作总结 本学期,担任《传感器及检测技术》课程的理论和实践教学内容。本课程的实践教学主要是教学实验,在全体同学的大力配合下,比较圆满的完成了实践教学任务,达到了实验的预期目的。现将此课程的实践教学工作总结如下: 1、实验计划的制定 为更好的完成实践教学环节,使学生能够真正的在实践环节学到更多的东西,在学期初我就认真研究教材内容和教学大纲要求,针对教学内容和学生特点制定了详细的实验安排,并与实验室老师进行了认真的沟通,充分做好教学实践前的各项准备工作。 2、注重理论和实践的结合 每讲授一段内容,就组织同学们做一次实验,让学生把课堂上获得的理论知识及时的得到验证和应用,从而加深对所学内容的理解。同时鼓励同学们利用课余时间多到实验室做一些创造性的实验,提高他们的知识迁移能力和思维能力。 3、实验过程的安排 (1)每次实验前,提前下达实验任务,让学生做好实验前的各种准备工作。由班长做好分组工作,每组指定一名组长,实行组长负责制,负责本组的组织和协调工作,。 (2)进实验室时,讲清实验室纪律,不得随意摆弄实验用品,要严格遵守实验章程,在老师的指导下进行各种实验。

(3)实验过程中,认真抓好学生的纪律,不得无故迟到、早退,杜绝做与实验无关的事情。实验过程中教师要不断巡 视及时发现学生们遇到的各种问题,并给与指导或启发。尽量多鼓励、少批评,培养学生的自信心,提高学生学习的积极性。 (4)实验完毕,及时清查实验物品,并督促学生摆放好实验物品,做到物归原位。另外,每组展示实验成果,并派代表做出总结,谈谈实验中遇到的各种问题,并说明做出了怎样的处理,有哪些收获。小组成员之间先进行互评,然后由教师作出补充,并适当给与鼓励。同时督促同学课下认真完成实验报告。 4、反思改进 在每次实验完毕后,我都把实验中发现的问题进行归纳整理,进行反思,同时向有经验的教师请教,争取在下次实践课中加以改进。 总之,这一个学期的实践教学,总的来说基本上能够按照要求保质保量的完成教学任务,但从中我也发现了一些问题,在今后的教学工作中,我会努力的改进不足的地方,争取把以后的实践教学工作做得更好。 【篇二:实验心得体会】 实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样, 做完实验,然后两下子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄

CSY-2000系列传感器与检测技术实验台

CSY-2000系列传感器与检测技术实验台 编写:吴爱平审核:孙士平 一、设备名称: 传感器与检测技术实验台 二、型号/规格: CSY-2000 三、生产厂家: 浙江高联科技开发有限公司 杭州高联信息技术有限公司 四、操作面板: 五、功能说明: CSY2000系列传感器与检测技术实验台,主要用于各大专院校开设的“自动检测技

术”“传感器原理与技术”“工业自动化控制”“非电量电测技术”等课程的教学实验。CSY2000系列传感器与检测技术实验台上是采用最新推出的模块化结构的产品。希望通过实验能让学生加强对书本知识的理解,并在实验进行的过程中,通过信号的拾取、转换、分析掌握作为一个科技工作者应具备的基本的操作技能与动手能力。 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、传感器(基本型18个、增强型23个)、相应的实验模板等四部分组成。 (1) 主控台部分,提供高稳定直流稳压电源、音频信号源、低频信号源、气压源,其中电源、音频、低频均具有断路保护功能;主控台面板上还装有电压、气压、 频率、转速的3位半数显表及计时表、RS232计算机串行接口、流量计、漏电 保护器。高精度温度转速两用仪表,调节仪置内为温度调节、置外为转速调节。 (2) 三源板提供振动源、转动源、加热源。 (3) 传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式传感器、霍尔式转速传感器、磁电式传感器、压 电式传感器、电涡流传感器、光纤传感器、光电转速传感器、集成温度传感器、 100铂电阻、Cu铜电阻、湿敏传感器、气敏传感器K型热电偶、E型热电偶、P t 共十八个。 (4) 实验模块部分提供相应的实验电路。普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个 模块。 六、参数指标: 直流电源: ±15V、+5V、±2V±4V±6V±8V±10V +2V∽+24V连续可调 音频信号源(音频振荡器):1KHZ∽10KHZ 低频信号源(低频振荡器):1HZ∽30HZ 气压源:0∽20kpa 振动频率:1HZ∽30HZ 转速:0-2400转/分 加热源:常温∽150℃(可调)

传感器综合实验仿真报告

综合实验报告 ( 2015 -- 2016年度第一学期) 名称:传感器原理与应用题目:综合实验—仿真部分院系:控制与计算机工程班级:测控1303 学号:1131160318 学生姓名:魏更 指导教师: 设计周数:一周 成绩: 日期:2016 年1月15日

一、课程设计(综合实验)的目的与要求 1、本实验的目的是配合《传感器原理与应用》课程的传感器静态特性与动态特性相关部分的内容,利用Matlab/Simulink 进行仿真验证。培养学生利用计算机进行数据处理和模型仿真的能力,为今后从事相关领域的工作打下基础。 2、要求学生了解传感器静态和动态特性的基础知识,掌握Matlab/Simulink 进行数据分析和仿真的基本方法。具体要求为:掌握基于最小二乘法的数据处理方法,能够进行简单的数据处理;掌握传感器动态特性的分析手段,了解不同阶次特性的基本性质,并能够进行相应的仿真实验,对传感器动态特性有感性认识。 二、实验正文 1、学习使用Matlab 进行最小二乘法数据处理,分别通过自己编写函数和使用Matlab 提供的函数实现相同功能。 ①按照最小二乘法原理编写Matlab 程序。 程序如下: x=(-200:100:1300); y=[-5.8914,-3.5536,0,4.0962,8.1385,12.2086,16.3971,20.6443,24.9055,29.129,33.2754,37.3259,41.2756,45. 1187,48.8382,52.4103]; z1=sum(x); z2=z1^2; z3=sum(power(x,2)); z4=sum(x.*y); z5=sum(y); n=length(x); k=(n*z4-z1*z5)/(n*z3-z2); a0=(z3*z5-z1*z4)/(n*z3-z2); fprintf('k=%f\n',k); fprintf('a0=%f',a0); y1=k*x+a0; plot(x,y1,'-b',x,y,'*r'); 输出结果: k=0.040274 a0=0.619114 拟合直线和各点的分布图见下图:

电涡流传感器系列实验

电涡流传感器系列实验 实验一:电涡流传感器的静态标定 摘要:电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率,导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。① 1实验目的 了解电涡流式传感器的原理及工作性能 2实验所用仪器设备 涡流变换器、F/V表、测微头、铁测片、涡流传感器、示波器、振动平台、主副电源② 3实验原理 通以高频电流的线圈产生磁场,当有导体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体的材料以及和线圈的距离有关,因此可以进行位移测量。② 4实验步骤 (1)装载好传感器 (2)连接电路,电压表置于20V档,开启主副电源 (3)用示波器观察涡流变换器的输入端波形 (4)调节传感器的高度值,改变高度,记下示波器及电压表的示数 5实验结果与分析 (1)涡流变换器输入端的波形为正弦波,示波器的时基为0.2μs/cm (2)改变传感器的高度值,记录电压表示数,记录如下表 X(mm) 16.150 16.050 15.950 15.850 15.750 15.650 15.550 15.450 Vp-p(v) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 V(v) -4.10 -4.14 -4.18 -4.21 -4.24 -4.27 -4.31 -4.33 V—X曲线如下图所示

感知器算法实验--1

感知器算法实验--1

一.实验目的 1.理解线性分类器的分类原理。 2.掌握感知器算法,利用它对输入的数据进行 分类。 3.理解BP算法,使用BP算法对输入数据进 行分类。 二. 实验原理 1.感知器算法 感知器算法是通过训练模式的迭代和学习算法,产生线性可分的模式判别函数。感知器算法就是通过对训练模式样本集的“学习”得出判别函数的系数解。在本次实验中,我们主要是采用硬限幅函数进行分类。 感知器的训练算法如下: 设输入矢量{x1,x2,…,x n}其中每一个模式类别已知,它们分别属于ω1类和ω2类。 (1)置步数k=1,令增量ρ为某正的常数,分别赋给初始增广权矢量w(1)的各分量较小的任意值。 (2)输入训练模式x k,计算判别函数值 w T(k) x k。 (3)调整增广权矢量,规则是:

a.如果x k ∈ω1和w T (k) x k ≤0,则w(k+1)=w(k)+ ρx k ; b.如果x k ∈ω2和w T (k) x k ≥0,则w(k+1)=w(k)-ρx k ; c.如果x k ∈ω1和w T (k) x k >0,或x k ∈ω2和w T (k) x k <0,则w(k+1)=w(k) (4)如果k 0分类正确,则为第一个表达式,如果w T (k) x k ≤0错误分类则为第二个表达式。 在全部模式训练完一轮之后只要还有模式分类错误,则需要进行第二轮迭代,再用全部训练模式训练一次,建立新的权矢量。如果对训练模式还有错分,则进行第三轮迭代依此类推,直

传感器综合实验报告

传感器综合实验报告 ( 2012-2013年度第二学期) 名称:传感器综合实验报告 题目: 利用传感器测量重物质量院系:自动化系 班级:测控1003 班 小组成员: 指导教师:仝卫国 实验周数:1周 成绩: 日期:2013 年7 月7日

目录 一、实验目的 (2) 二、实验设备、器材 (2) 三、传感器工作原理 (2) 1、电容式传感器的工作原理 (2) 2、电涡流式传感器的工作原理 (3) 3、金属箔式应变片传感器工作原理 (3) 四、传感器特性测试 (3) (一)电容式传感器特性分析 (3) (二)电涡流传感器特性分析 (8) 五、实际测试与实验数据处理 (10) (一)电容传感器测重物质量 (10) (二)电涡流式传感器测质量(用于验证) (12) 六、实验结果分析 (14) 七、结论 (14) 1、数据结论 (14) 2、心得体会 (15) 八、参考文献 (16) 相敏检波器实验 (17) 一、实验目的 (17) 二、实验设备、三实验原理 (17) 四、实验步骤 (17)

传感器综合实验报告 一、实验目的 1、了解各种传感器的工作原理与工作特性。 2、掌握多种传感器应用于电子称的原理。 3、根据不同传感器的特性,选择不同的传感器测给定物体的重量。 4、能根据原理特性分析结果,加深对传感器的认识与应用。 5、测量精度要求达到1%。 二、实验设备、器材 1、金属箔式应变片传感器用到的设备: 直流稳压电源、双平行梁、测微器、金属箔式应变片、标准电阻、差动放大器、直流数字电压表。 2、电容式传感器用到的设备: 电容传感器、电容变换器、差动放大器、低通滤波器、电压表、示波器。 3、电涡流式传感器用到的设备: 电涡流式传感器、测微器、铝测片、铁测片、铜测片、电压表、示波器。 三、传感器工作原理 1、电容式传感器的工作原理: 电容器的电容量C是的函数,当被测量变化使S、d或 任意一个参数发生变化时,电容量也随之而变,从而可实现由被测量到电容量的转换。电容式传感器的工作原理就是建立在上述关系上的,若保持两个参数不变,仅改变另一参数,就可以把该参数的变化转换为电容量的变化,通过测量电路再转换为电量输出。 差动平行变面积式传感器是由两组定片和一组动片组成。当安装于振动台上的动片上、下改变位置,与两组静片之间的相对面积发生变化,极间电容也发生相应变化,成为差动电容。如将上层定片与动片形成的电容定为C X1,下层定片与动片形成的电容定为C X2,当将C X1和C X2接入双T型桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。依据该原理,在振动台上加上砝码可测定重量与桥路输出电压的对应关系,称未知重量物体时只要测得桥路的输出电压即可得出该重物的重量。

传感器系列实验讲义

请勿带走!!! 传 感 器 系 列 实 验 讲 义 中国科学技术大学物理实验教学中心 2015-09

目录 实验一电阻应变片传感器DIY电子秤 ................................................................... 实验二DIY温度控制系统&测记忆合金的恢复温度 ............................................. 实验三压力传感器..................................................................................................... 实验四气敏传感器..................................................................................................... 实验五热释电传感器.................................................................................................

实验要求 目前传感器实验有5个系列实验(见下表),共30套设备,实验时要求每人操作一套设备。实验课的基本任务是每人至少要完成2个实验,其中标“★”号是要求必做的实验,可以完成多于2个实验。为了确保实验课程的顺利运行,超过16:30或者21:30后,原则上不安排基本任务之外的实验。

实验一电阻应变片传感器DIY电子秤 实验目的 1、了解电阻应变片的组成、结构 2、了解直流电桥的应用 3、DIY电子秤称重的原理 实验仪器 直流电源悬臂梁(已贴应变片)电子秤底座(已焊好接线柱) 托盘1个1000 Ω电阻3个C形砝码6个 待测物1个香蕉插头6个螺丝刀1把 导线2根万用表1台(公用) 实验原理 1、电阻应变式传感器的结构 右图中的1是敏感栅,它用厚度为0.003~0.101mm的金属箔栅状或用金属线制作。 2、电阻应变式传感器的原理 金属箔电阻应变片贴牢在悬臂梁上下表面,悬臂梁远端加砝码使它弯曲,有的表面受到拉伸,有的表面受到压缩。所以受到拉伸的电阻阻值变大,受到压缩电阻阻值变小。分别将一个、两个或四个电阻应变片与固定电阻组成电桥(所谓单臂、半桥或全桥),以电压表为平衡检测器。未加砝码时,调节电桥平衡,输出电压为零。随着负载增加,电桥不平衡性加大,电压表读数越大。做M-U图,是线性关系。对应三种情况,分别求出电桥灵敏度(单位质量变化引起电压的变化ΔU/ΔM)。 实验中采用如下图的电桥电路,电源电压为E,桥臂电阻均取1000.0Ω,悬臂梁未受力时应变片阻值R=1000.0Ω。根据伏安关系可求得桥电压U与应变片电阻R之间近似满足以下关系:

相关文档
最新文档