查找二叉树的节点的父节点

查找二叉树的节点的父节点
查找二叉树的节点的父节点

#include "stdio.h"

#include "malloc.h"

#include "process.h"

#define max 100

typedef struct node{

int data;

struct node *lchild,*rchild;

}Bitree;

Bitree *a[max];

int re[max];

Bitree *Build()

{

int x;

int front,rear;

Bitree *t,*s;

t=NULL;

front=1;rear=0;

printf("请输入树以#结束\n");

scanf("%d",&x);

while(x!=0)

{

s=NULL;

if(x!=-1)

{

s=(Bitree *)malloc(sizeof(Bitree));

s->data=x;s->lchild=s->rchild=NULL;

}

rear++; a[rear]=s;

if(rear==1) t=s;

else {

if(s!=NULL&&a[front]!=NULL)

if(rear%2==0) a[front]->lchild=s;

else a[front]->rchild=s;

if(rear%2==1) front++;

}

scanf("%d",&x);

}

return t;

}

void Output(int i)

{

int j;

printf("祖先节点为: \n");

for(j=0;j

printf("%4d",re[j]);

printf("\n");

getchar();

exit(0);

}

void Find(Bitree *t,int u,int n)

{

if(t==NULL) return;

if (t->data==u) Output(n);

if (t->lchild==NULL&&t->rchild==NULL) return; else re[n]=t->data;

Find(t->lchild,u,n+1);

Find(t->rchild,u,n+1);

}

void main()

{

Bitree *t;

int u;

t=Build();

printf("请输入待查找数字: ");

scanf("%d",&u);

Find(t,u,0);

printf(" 查无此数\n");

}

数据结构习题(三)

数据结构习题(三) 一、填空题 1、一颗深度为6的二叉树总结点数值少为,最多为;一颗深度为6的完全二叉树第5层上的结点数为____,总结点数最小值为,总结点数最多时称为 二叉树。 2、对于一颗具有n个结点的二叉树,当它为一颗完全二叉树时具有最小高度,高度 为,当它为一颗单支树具有最大高度,高度为。 3、一颗完全二叉树第6层有7个结点,则共有个结点,其中度为1的结点有个,度为0的结点有个,若按从上到下,从左到右次序给结点编号(从1开始),编号最大的非叶子结点是,编号最小的叶子结点是。 4、设高度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含的结点数至少为,至多为。 5、对于一颗具有n个结点的二叉树,当进行二叉链表存储时,其指针域的总数为个,其中个用于链接孩子结点,个空闲着。 6、已知二叉树中叶子数为50,仅一个孩子的结点数为30,则总结点数____;在有50个叶子结点的哈夫曼树中,总结点数是_ ___。 7、有5813个结点构成一棵完全二叉树,其叶子结点数为;有5813个结点构成一棵二叉树,已知2度结点数为0,则树高是。 8、先序为a,b,c,且后序为c,b,a,的二叉树有棵。 9、在二叉链表中,数据域值为data,左右子树的指针分别为lchild和rchild,则判断某指针p所指结点为0度结点的条件是;p所指结点为1度结点的条件是;p所指结点为2度结点的条件是。 10、由带权为3,9,6,2,5的5个叶子结点构成一颗Huffman树,则带权路径长度 为。 二、选择题 1、按照二叉树的定义,具有三个结点的二叉树有种形状。 A、3 B、4 C、5 D、6 2、一棵二叉树的叶子结点数为6,则度为1的结点个数为。 A、5 B、7 C、6 D、不能确定 3、在非空二叉树的中序遍历序列中,根结点的右边。 A、只有右子树上的所有结点 B、只有右子树上的部分结点 C、只有左子树上的部分结点 D、只有左子树上的所有结点 4、下列陈述中正确的是。 A、二叉树是度为2的有序树 B、二叉树中结点只有一个孩子时无左右之分 C、二叉树中必有度为2的结点 D、二叉树中最多只有两棵子树,并且有左右之分 5、对有100个结点的完全二叉树按层次依次编号,则编号为49的结点右孩子编号为。 A、98 B、51 C、99 D、97

二叉树前序或中序或后序遍历

数学与计算机学院计算机系实验报告 课程名称: 数据结构 年级:2010 实验成绩: 指导教师: 黄襄念 姓名: 实验教室:6A-413 实验名称:二叉树前序或中序或后序遍历 学号: 实验日期:2012/6/10 实验序号:实验3 实验时间:8:00—11:40 实验学时:4 一、实验目的 1. 熟悉的掌握树的创建,和树的前序、中序、后序遍历。 二、实验环境 1. 操作系统:Windows7 2. 开发软件:Microsoft Visual C++ 6.0 三、实验内容 ● 程序功能 本程序完成了以下功能: 1. 前序遍历 2. 中序遍历 3. 后序遍历 ● 数据结构 本程序中使用的数据结构(若有多个,逐个说明): 1. 它的优缺点 1) 可以快速的查找数据。 2) 让数据层次更加清晰。 2. 逻辑结构图 3. 存储结构图

、、、、、、、、、、、、、、、、、、、、 4.存储结构的C/C++ 语言描述 typedef struct node { DataType data; struct node *lchild; struct node *rchild; } BiTNode, *BiTree; typedef BiTree type; ●算法描述 本程序中采用的算法 1.算法名称:递归 2.算法原理或思想 是通过访问结点的左右孩子来进行循环查找的方法,拿中序遍历来说明:先从头结点开始,再去访问头结点的右孩子如果为空就访问头结点的左孩子,依次进行访问当结点的左右孩子都为空时,就访问上一级,到了最后。 3.算法特点 它能将查找进行2分,体现出了更高效快捷的特点,并且层次很清晰。 ●程序说明 1. 2. 1)前序遍历模块:将树进行从头结点开始再左孩子再右孩子。 代码:void InOrder(BiTree root) { Stack S(100); initStack(S); BiTNode *p = root; do { while(p != NULL) { Push(S, p);

二叉树习题(answer)

一、下面是有关二叉树的叙述,请判断正误() (). 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。 ().二叉树中每个结点的两棵子树的高度差等于1。 ().二叉树中每个结点的两棵子树是有序的。 ().二叉树中每个结点有两棵非空子树或有两棵空子树。 ()二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。(应当是二叉排序树的特点) ().二叉树中所有结点个数是2k-1-1,其中k是树的深度。(应2i-1) ().二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。 ().对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。(应2i-1)()用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。 (正确。用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。)即有后继链接的指针仅n-1个。 (√)10.具有12个结点的完全二叉树有5个度为2的结点。 最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5 二、填空() 1.由3个结点所构成的二叉树有5种形态。 2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。 注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。 3.一棵具有257个结点的完全二叉树,它的深度为9。 (注:用 log2(n) +1= +1=9 4.设一棵完全二叉树有700个结点,则共有350个叶子结点。 答:最快方法:用叶子数=[n/2]=350

二叉树习题及答案

1.设一棵完全二叉树共有699个结点,则在该二叉树中的叶子结点数? 1根据“二叉树的第i层至多有2^(i ? 1)个结点;深度为k的二叉树至多有2^k ? 1个结点(根结点的深度为1)”这个性质: 因为2^9-1 < 699 < 2^10-1 ,所以这个完全二叉树的深度就是10,前9层就是一个满二叉树, 这样的话,前九层的结点就有2^9-1=511个;而第九层的结点数就是2^(9-1)=256 所以第十层的叶子结点数就是699-511=188个; 现在来算第九层的叶子结点个数。 由于第十层的叶子结点就是从第九层延伸的,所以应该去掉第九层中还有子树的结点。因为第十层有188个,所以应该去掉第九层中的188/2=94个; 所以,第九层的叶子结点个数就是256-94=162,加上第十层有188个,最后结果就是350个 2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点(叶结点)都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。 比如图: 完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699就是奇数,叶结点层以上的所有结点数为保证就是奇数,则叶结点数必就是偶数,这样我们可以立即选出答案为B! 如果完全二叉树的叶结点都排满了,则就是满二叉树,易得满二叉树的叶结点数就是其以上所有层结点数+1比如图: 此题的其实就是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。 3完全二叉树中,只存在度为2的结点与度为0的结点,而二叉树的性质中有一条就是:n0=n2+1;n0指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349;n0=350 2.在一棵二叉树上第5层的结点数最多就是多少 一棵二叉树,如果每个结点都就是就是满的,那么会满足2^(k-1)1。 所以第5层至多有2^(5-1)=16个结点! 3、在深度为5的满二叉树中,叶子结点的个数为 答案就是16 ~ 叶子结点就就是没有后件的结点~ 说白了~ 就就是二叉树的最后一层~ 深度为K的二叉树~ 最多有2^k-1个结点~ 最多有2^(k-1)个结点~ 所以此题~ 最多有2^5-1=31个结点~ 最多有2^(5-1)=16个叶子结点~ 4、某二叉树中度为2的结点有18个,则该二叉树中有几个叶子结点? 结点的度就是指树中每个结点具有的子树个数或者说就是后继结点数。 题中的度为2就是说具有的2个子树的结点; 二叉树有个性质:二叉树上叶子结点数等于度为2的结点数加1。 5、在深度为7的满二叉树中,度为2的结点个数为多少, 就就是第一层只有一个节点,她有两个子节点,第二层有两个节点,她们也都有两个子节点以此类推,所以到第6层,就有2的5次方个节点,她们都有两个子节点 最后第7层都没有子节点了。因为就是深度为7的。 所以就就是1+2+4+8+16+32了

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数 求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/ #include //c语言的头文件 #include//c语言的头文件stdlib.h千万别写错了 #define Maxsize 100 /*创建二叉树的节点*/ typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体) //成员类型可以是基本型或者构造形,最后的为结构体变量。 { char data; struct BTNode *lchild,*rchild; }*Bitree; /*使用先序建立二叉树*/ Bitree Createtree() //树的建立 { char ch; Bitree T; ch=getchar(); //输入一个二叉树数据 if(ch==' ') //' '中间有一个空格的。 T=NULL; else { T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型)) T->data=ch; T->lchild=Createtree(); //递归创建左子树 T->rchild=Createtree(); //地柜创建右子树 } return T;//返回根节点 } /*下面先序遍历二叉树*/

/*void preorder(Bitree T) //先序遍历 { if(T) { printf("%c-",T->data); preorder(T->lchild); preorder(T->rchild); } } */ /*下面先序遍历二叉树非递归算法设计*/ void preorder(Bitree T) //先序遍历非递归算法设计{ Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p; int top=-1; //栈置空 if(T) { top++; st[top]=T; //根节点进栈 while(top>-1) //栈不空时循环 { p=st[top]; //栈顶指针出栈 top--; printf("%c-",p->data ); if(p->rchild !=NULL) //右孩子存在进栈 { top++; st[top]=p->rchild ; } if(p->lchild !=NULL) //左孩子存在进栈 { top++; st[top]=p->lchild ; } } printf("\n"); } }

数据结构第6章二叉树作业及答案教材

数据结构第6章二叉树作业及答案教材

第六章树及二叉树 一、下面是有关二叉树的叙述,请判断正误 (√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。 (×)2.二叉树中每个结点的两棵子树的高度差等于1。 (√)3.二叉树中每个结点的两棵子树是有序的。 (×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。 (×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。(应2i-1) (×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。 (×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。(应2i-1) (√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。 (正确。用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。)即有后继链接的指针仅n-1个。 (√)10.具有12个结点的完全二叉树有5个度为2的结点。 最快方法:用叶子数=[n/2]=6,再求n 2=n -1=5 ( ) 11、哈夫曼树中没有度为1的结点,所以必为满二叉树。 ( )12、在哈夫曼树中,权值最小的结点离根结点最近。 ( )13、线索二叉树是一种逻辑结构。 (√)14、深度为K的完全二叉树至少有2K-1个结点。 (√ )15、具有n个结点的满二叉树,其叶结点的个数为(n+1)/2。 (√ )16、前序和中序遍历用线索树方式存储的二叉树,不必使用栈。 (╳ )17、哈夫曼树是带权路径长度最短的树,路径上权值较大的点离根较远。 二、填空 1.由3个结点所构成的二叉树有5种形态。 2. 一棵深度为6的满二叉树有n 1+n 2 =0+ n 2 = n -1=31 个分支结点和26-1 =32个叶子。 注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。 3.一棵具有257个结点的完全二叉树,它的深度为9。 (注:用? log 2 (n) ?+1= ? 8.xx ?+1=9 4.设一棵完全二叉树有700个结点,则共有 350个叶子结点。 答:最快方法:用叶子数=[n/2]=350 5. 设一棵完全二叉树具有1000个结点,则此完全二叉树有500个叶子结点,有499个度为2的结点,有1个结点只有非空左子树,有0个结点只有非空右子树。

求二叉树的深度叶子结点数总结点数()

#include"malloc.h" #define NULL 0 #include"stdio.h" typedef struct node { char data; struct node *lchild,*rchild; }NODE; int count; NODE *crt_bt_pre()/*二叉树先序创建算法*/ { NODE * bt; char ch; printf("\n\t\t\t"); scanf("%c",&ch); getchar(); if(ch==' ') bt=NULL; else { bt=(NODE*)malloc(sizeof(NODE)); bt->data=ch; printf("\n\t\t\t请输入%c结点的左孩子:",bt->data); bt->lchild=crt_bt_pre(); printf("\n\t\t\t请输入%c结点的右孩子:",bt->data); bt->rchild=crt_bt_pre(); } return(bt); } void Preorder(NODE* bt)/*二叉树先序递归遍历算法*/ { if(bt!=NULL) { printf("\n\t\t\t %c",bt->data); Preorder(bt->lchild); Preorder(bt->rchild); } } void Inorder(NODE* bt) {

if(bt!=NULL) { Inorder(bt->lchild); printf("\n\t\t\t %c",bt->data); Inorder(bt->rchild); } } void Postorder(NODE* bt) { if(bt!=NULL) { Postorder(bt->lchild); Postorder(bt->rchild); printf("\n\t\t\t %c",bt->data); } } int CountLeaf(NODE *bt)/*求二叉树叶子结点数的递归遍历算法*/ { if(bt==NULL) return 0; if(bt->lchild==NULL&&bt->rchild==NULL) count++; CountLeaf(bt->lchild); CountLeaf(bt->rchild); return(count); } int CountNode (NODE* bt)/*求二叉树结点数的递归遍历算法*/ { if(bt==NULL) return 0; else count++; CountNode(bt->lchild); CountNode(bt->rchild); return(count); } int TreeDepth(NODE* bt)/*求二叉树深度的递归遍历算法*/ { int x,y; if(bt==NULL)

C语言实现二叉树的前序遍历(递归)

C语言实现二叉树的前序遍历算法实现一: #include #include typedef struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; void CreateBiTree(BiTree &T) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') T=NULL; else { T=(struct BiTNode *)malloc(sizeof(struct BiTNode)); T->data=ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); } } int print(BiTree T)//前序遍历(输出二叉树) { if(T==NULL)return 0; else if(T->lchild==NULL && T->rchild==NULL)return 1; else return print(T->lchild)+print(T->rchild); } void main()//主函数 { BiTree T; CreateBiTree(T); printf("%d\n",print(T)); } 算法实现二: #include

#include struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }; int num=0; void CreatBiTree(struct BiTNode *&p) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') p=NULL; else { p=(struct BiTNode *)malloc(sizeof(struct BiTNode)); p->data=ch; CreatBiTree(p->lchild); CreatBiTree(p->rchild); } } void print(struct BiTNode *p) //前序遍历(输出二叉树){ if(p!=NULL) { if(p->lchild==NULL&&p->rchild==NULL) else { print(p->lchild); print(p->rchild); } } } void main()//主函数 { struct BiTNode *p; CreatBiTree(p); print(p); printf("%d\n",num); } 供测试使用的数据

实现二叉树中所有节点左右子树的交换

实现二叉树中所有节点左右子树的交换 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数据结构课程设计 实验报告 题目名称:实现二叉树中所有节点左右子树的交换学院:信息科学与工程学院 专业班级:计算机科学与技术1003班 姓名:叶成功 学号: 指导教师:陈国良教授李立三教授 日期:2012年7月3日 目录

一、问题描述 二叉树是一种常见的特殊的树型结构,在计算机领域有着极为广泛的应用。在二叉树的一些应用中,常常要求在树中查找具有某些特征的结点或者对树中全部结点逐一进行某种处理,这就提出了遍历二叉树。根据遍历的方向的不同,有前序遍历、中序遍历、后序遍历以及层序遍历。在本次课程设计中,要求学生通过编写程序完成对二叉树的一些操作,比如可以构造二叉树、打印二叉树、遍历二叉树以及对左右子树进行交换等等。

二、基本要求 要求:。构造一颗20个节点的完全二叉树或者20个节点以上的满二叉树。 实现如下步骤: (1)实现二叉树的构造过程,并打印出二叉树 (2)对该二叉树分别用层序、前序、中序和后序四种不同的方法进行遍历; (3)将该二叉树的所有左右子树进行交换,得到新的二叉树,并打印出该二叉树; (4)对新获得的二叉树分别用层序、前序、中序和后序四种不同的方法进行遍历。 三、数据结构的设计 由数据结构中二叉树的定义可知,二叉树的结点由一个数据元素和分别指向其左、右子树的两个分支构成,所以在本程序二叉树的构造是采用二叉链表的链式存储结构,链表中的结点应包含三个域:数据域和左、右孩子的指针域。这种存储结构可以方便二叉树的建立以及遍历。 1、结点的数据结构 structnode { chardata; structnode*lchild,*rchild; } 2、基本操作 voidCreate(BiTNode**p) 初始条件:按照结点的结构体构造二叉树; 操作结果:构造一棵二叉树。 voidPreOrderTraverse(BiTreeT)

二叉树叶子结点个数计算

计算二叉树叶子结点 1.程序设计简介 已知一棵二叉树,求该二叉树中叶子结点的个数。 2.基本要求 (1)设计二叉树的二叉链表为存储结构 (2)设计求叶子结点个数的递归算法 (3)输入:一颗二叉树 (4)输出:二叉树中叶子结点的个数 3.实现提示 (1)存储设计 二叉树采用二叉链表为存储结构 (2)算法设计 求二叉树中叶子结点个数,即求二叉树的所有结点中左、右子树均为空的结点个数之和。可以将此问题转化为遍历问题,在遍历中“访问一个结点”时判断该结点是不是叶子,若是则将计数器累加。 4.源程序 #include #include using namespace std;

struct BiNode 行与测试 6.调试感想 非递归算法求叶子结点的个数 #include #include using namespace std; struct node { int data; node *lchild; node *rchild; }; node *root=NULL; void mid(node*root,int key=500) { int sum=0; stacks; while(NULL!=root || !()) { if(NULL!=root) {

(root); root=root->lchild; } else { root=(); // cout<data<<" "; if(NULL==root->lchild && NULL==root->rchild) ++sum; (); root=root->rchild; } } cout<data=100; node *a=new node; node *b=new node; node *a1=new node; node *a2=new node; node *b1=new node; node *b2=new node; a->data=200; b->data=300; a1->data=400; a2->data=500; b1->data=600; b2->data=700; root->lchild=a; root->rchild=b; a->lchild=a1; a->rchild=a2;

二叉树习题及答案(考试学习)

1.设一棵完全二叉树共有699个结点,则在该二叉树中的叶子结点数? 1根据“二叉树的第i层至多有2^(i ? 1)个结点;深度为k的二叉树至多有2^k ? 1个结点(根结点的深度为1)”这个性质: 因为2^9-1 < 699 < 2^10-1 ,所以这个完全二叉树的深度是10,前9层是一个满二叉树, 这样的话,前九层的结点就有2^9-1=511个;而第九层的结点数是2^(9-1)=256 所以第十层的叶子结点数是699-511=188个; 现在来算第九层的叶子结点个数。 由于第十层的叶子结点是从第九层延伸的,所以应该去掉第九层中还有子树的结点。因为第十层有188个,所以应该去掉第九层中的188/2=94个; 所以,第九层的叶子结点个数是256-94=162,加上第十层有188个,最后结果是350个 2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点(叶结点)都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。 比如图: 完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699是奇数,叶结点层以上的所有结点数为保证是奇数,则叶结点数必是偶数,这样我们可以立即选出答案为B! 如果完全二叉树的叶结点都排满了,则是满二叉树,易得满二叉树的叶结点数是其以上所有层结点数+1比如图: 此题的其实是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。 3完全二叉树中,只存在度为2的结点和度为0的结点,而二叉树的性质中有一条是:n0=n2+1;n0指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349;n0=350 2.在一棵二叉树上第5层的结点数最多是多少 一棵二叉树,如果每个结点都是是满的,那么会满足2^(k-1)1。 所以第5层至多有2^(5-1)=16个结点! 3.在深度为5的满二叉树中,叶子结点的个数为 答案是16 ~ 叶子结点就是没有后件的结点~ 说白了~ 就是二叉树的最后一层~ 深度为K的二叉树~ 最多有2^k-1个结点~ 最多有2^(k-1)个结点~ 所以此题~ 最多有2^5-1=31个结点~ 最多有2^(5-1)=16个叶子结点~ 4.某二叉树中度为2的结点有18个,则该二叉树中有几个叶子结点? 结点的度是指树中每个结点具有的子树个数或者说是后继结点数。 题中的度为2是说具有的2个子树的结点; 二叉树有个性质:二叉树上叶子结点数等于度为2的结点数加1。 5.在深度为7的满二叉树中,度为2的结点个数为多少, 就是第一层只有一个节点,他有两个子节点,第二层有两个节点,他们也都有两个子节点以此类推,所以到第6层,就有2的5次方个节点,他们都有两个子节点

C++二叉树的前序,中序,后序,层序遍历的递归算法55555

#include using namespace std; #define queuesize 100 #define ERROR 0 #define OK 1 typedef struct BiTNode//二叉树 { char data; struct BiTNode *lchild,*rchild; }BinNode; typedef BinNode * BiTree;//定义二叉链表指针类型 typedef struct { int front,rear; BiTree data[queuesize];//循环队列元素类型为二叉链表结点指针 int count; }cirqueue;//循环队列结构定义 void leverorder(BiTree t) { cirqueue *q; BiTree p; q=new cirqueue;//申请循环队列空间 q->rear=q->front=q->count=0;//将循环队列初始化为空 q->data[q->rear]=t;q->count++;q->rear=(q->rear+1)%queuesize;//将根结点入队 while (q->count) //若队列不为空,做以下操作 if (q->data[q->front]) //当队首元素不为空指针,做以下操作 { p=q->data[q->front]; //取队首元素*p cout<data; q->front=(q->front+1)%queuesize;q->count--;//队首元素出队 if (q->count==queuesize)//若队列为队满,则打印队满信息,退出程序的执行cout<<"error,队列满了!"; else {//若队列不满,将*p结点的左孩子指针入队 q->count++;q->data[q->rear]=p->lchild; q->rear=(q->rear+1)%queuesize; } if (q->count==queuesize)//若队列为队满,则打印队满信息,退出程序的执行cout<<"error"; else {//若队列不满,将*p结点的右孩子指针入队 q->count++;q->data[q->rear]=p->rchild;

第6章 树和二叉树练习题及答案

一、判断题 (√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。 (×)2.二叉树中每个结点的两棵子树的高度差等于1。 (√)3.二叉树中每个结点的两棵子树是有序的。 (×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。 (×)5.二叉树中所有结点个数是2k-1-1,其中k是树的深度。(应2i-1) (×)6.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。 (×)7.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i —1个结点。(应2i-1) (√)8.用二叉链表法存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。 (√)9.具有12个结点的完全二叉树有5个度为2的结点。 ( ) 10、哈夫曼树中没有度为1的结点,所以必为满二叉树。 ( )11、在哈夫曼树中,权值最小的结点离根结点最近。 ( )12、线索二叉树是一种逻辑结构。 (√)13、深度为K的完全二叉树至少有2K-1个结点。 (√ )14、具有n个结点的满二叉树,其叶结点的个数为(n+1)/2。 (√ )15、前序和中序遍历用线索树方式存储的二叉树,不必使用栈。 (╳ )16、哈夫曼树是带权路径长度最短的树,路径上权值较大的点离根较远。 (√)17、在二叉树结点的先序序列和后序序列中,所有叶子结点的先后顺序完全相同。(√)18、二叉树的遍历操作实际上是将非线性结构线性化的过程 (√)19、树的先根遍历序列与其所转化的二叉树的先序遍历序列相同。 (╳)20、树的后根遍历序列与其所转化的二叉树的后序遍历序列相同。 二、填空 1.由3个结点所构成的二叉树有 5 种形态。 2. 线索二叉树的左线索指向其_前驱_____,右线索指向其__后继____。 3.一棵具有257个结点的完全二叉树,它的深度为 9 。 4、如某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数 为_69_____。 5. 设一棵完全二叉树具有1000个结点,则此完全二叉树有 500 个叶子结点,有 499 个度为2的结点,有 1 个结点只有非空左子树,有 0 个结点只有非空右子树。答:最快方法:用叶子数=[n/2]=500 ,n2=n0-1=499。另外,最后一结点为2i属于 左叶子,右叶子是空的,所以有1个非空左子树。完全二叉树的特点决定不可能有左空 右不空的情况,所以非空右子树数=0. 6. 一棵含有n个结点的k叉树,可能达到的最大深度为n,最小深度为 2 。

实验报告二叉树求叶子结点数目(内容清晰)

实验叶子结点的计算 姓名:xxx 班级:xxx) 学号:16130xxxxx 时间2017.10.22 1 问题描述 二叉树叶子节点的计算 1.二叉树的创建 2.二叉树的图形显示 3.二叉树叶子节点的计算 2 结构设计 二叉树叶子结点的计算主要是二叉树的创建,在这里选择的存储结构是一个链式存Data lchild rchild struct BTNode{ int data; BTNode*lchild; BTNode*rchild; }; 3 算法设计 在程序正式编写之前我定义了几个功能函数 (1)指针清空函数,预定义一个指针bt 使lchild和rchild的值分别赋予bt并且使其为空 static int clear(BTNode *bt) { if (bt) { clear(bt->lchild ); clear(bt->rchild ); cout<<"释放了指针"<

{ if(p->lchild==NULL&&p->rchild==NULL)count++; Leaf(p->lchild,count); Leaf(p->rchild,count); } return count; } (2)二叉树的创建 同样是利用递归的方式,输入参数包括指针,左右判断,以及判空条件static int create(BTNode *p,int k ,int end) { BTNode *q; int x; cin>>x; if(x!=end) { q=new BTNode; q->data =x; q->lchild=NULL; q->rchild=NULL; if(k==1)p->lchild=q; if(k==2)p->rchild=q; create(q,1,end); create(q,2,end); } return 0; }; (3)类的构造函数创建树并且输入各结点数值 在这里,采用的时先序遍历法依次输入树中的各结点数值 Step 1:定义新的结构体指针, Step 2:申请动态存储空间; Step 3:输入节点元素,并且指针后移到输入结点的后继结点,end作为结点结束标志; Step 4:重复步骤3,直到输入结束; void BinaryTree::CreateBiTree (int end) { cout<<"请按照先序序列的顺序输入二叉树,-1为空指针域标志:"<>x; if(x==end)return; p=new BTNode;

数据结构练习(二叉树)

数据结构练习(二叉树) 学号31301374 姓名张一博班级软件工程1301 . 一、选择题 1.按照二叉树定义,具有3个结点的二叉树共有 C 种形态。 (A) 3 (B) 4 (C) 5 (D) 6 2.具有五层结点的完全二叉树至少有 D 个结点。 (A) 9 (B) 15 (C) 31 (D) 16 3.以下有关二叉树的说法正确的是 B 。 (A) 二叉树的度为2 (B)一棵二叉树的度可以小于2 (C) 至少有一个结点的度为2 (D)任一结点的度均为2 4.已知二叉树的后序遍历是dabec,中序遍历是debac,则其前序遍历是 D 。 (A)acbed (B)decab (C) deabc (D) cedba 5.将一棵有1000个结点的完全二叉树从上到下,从左到右依次进行编号,根结点的编号为1,则编号为49的结点的右孩子编号为 B 。 (A) 98 (B) 99 (C) 50 (D) 没有右孩子 6.对具有100个结点的二叉树,若有二叉链表存储,则其指针域共有 D 为空。 (A) 50 (B) 99 (C) 100 (D) 101 7.设二叉树的深度为h,且只有度为1和0的结点,则此二叉树的结点总数为 C 。 (A) 2h (B) 2h-1 (C) h (D) h+1 8.对一棵满二叉树,m个树叶,n个结点,深度为h,则 D 。 (A) n=h+m (B) h+m=2n (C)m=h-1 (D)n=2h-1 9.某二叉树的先序序列和后序序列正好相反,则下列说法错误的是 A 。 (A) 二叉树不存在 (B) 若二叉树不为空,则二叉树的深度等于结点数 (C) 若二叉树不为空,则任一结点不能同时拥有左孩子和右孩子 (D) 若二叉树不为空,则任一结点的度均为1 10.对二叉树的结点从1开始进行编号,要求每个结点的编号大于其左右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用 A 遍历实现编号。 (A) 先序(B)中序(C)后序(D)层序 11.一个具有1025个结点的二叉树的高h为 C 。 (A) 10 (B)11 (C)11~1025 (D)10~1024 12.设n,m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是 C 。 ( A) n在m右方(B)n是m祖先 (C) n在m左方(D) n是m子孙 13.实现对任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳方案是二叉树采用 C 存储结构。 (A) 二叉链表(B) 广义表(C)三叉链表(D)顺序 14. 一棵树可转换成为与其对应的二叉树,则下面叙述正确的是 A 。 (A) 树的先根遍历序列与其对应的二叉树的先序遍历相同 (B) 树的后根遍历序列与其对应的二叉树的后序遍历相同 (C) 树的先根遍历序列与其对应的二叉树的中序遍历相同 (D) 以上都不对 二、填空题 1.对一棵具有n个结点的二叉树,当它为一棵完全二叉树时具有最小高度;当它为单分支二叉树时,具有最大高度。

二叉树的遍历(先序、中序、后序)

实践三:树的应用 1.实验目的要求 通过本实验使学生深刻理解二叉树的性质和存储结构,熟练掌握二叉树的遍历算法。认识哈夫曼树、哈夫曼编码的作用和意义。 实验要求:建一个二叉树并按照前序、中序、后序三种方法遍历此二叉树,正确调试本程序。 能够建立一个哈夫曼树,并输出哈夫曼编码,正确调程序。写出实验报告。 2.实验主要内容 2.1 对二叉树进行先序、中序、后序递归遍历,中序非递归遍历。 2.2 根据已知的字符及其权值,建立哈夫曼树,并输出哈夫曼编码。 3.实验步骤 2.1实验步骤 ●输入p127二叉链表的定义 ●录入调试p131算法6.4,实现二叉树的构造函数 ●编写二叉树打印函数,可以通过递归算法将二叉树输出为广义表的 形式,以方便观察树的结构。 ●参考算法6.1,实现二叉树的前序、中序和后序的递归遍历算法。 为简化编程,可以将visit函数直接使用printf函数输出结点内容来 代替。 #include #include #include #define OK 1 #define ERROR 0 #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 typedef char TElemType; typedef char Status; // 构造书的结构体

typedef struct BiTNode{ TElemType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; // 构造栈的结构体 typedef BiTree SElemType; typedef struct{ SElemType *base; SElemType *top; int stacksize; }SqStack; Status InitStack(SqStack &S){ //构造一个空栈 S.base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType)); if(!S.base)exit(-2); S.top = S.base; S.stacksize = STACK_INIT_SIZE; return OK; } Status StackEmpty(SqStack S){ //若栈S为空栈,则返回TRUE,否则返回FALSE if(S.top==S.base) return 1; else return 0; }

第5章+树与二叉树习题解析(答)

习题五树与二叉树 一、选择题 1、一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足。 A、所有的结点均无左孩子 B、所有的结点均无右孩子 C、只有一个叶子结点 D、是任意一棵二叉树 2、一棵完全二叉树上有1001个结点,其中叶子结点的个数是。 A、250 B、500 C、254 D、505 E、以上答案都不对 3、以下说法正确的是。 A、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树后序遍历序列中的最后一个结点 B、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树中序遍历序列中的最后一个结点 C、在二叉树中,具有两个子女的父结点,在中序遍历序列中,它的后继结点最多只能有一个子女结点 D、在二叉树中,具有一个子女的父结点,在中序遍历序列中,它没有后继子女结点 4、以下说法错误的是。 A、哈夫曼树是带权路径长度最短得数,路径上权值较大的结点离根较近 B、若一个二叉树的树叶是某子树中序遍历序列中的第一个结点,则它必是该子树后序 遍历序列中的第一个结点 C、已知二叉树的前序遍历和后序遍历并不能唯一地确定这棵树,因为不知道树的根结 点是哪一个 D、在前序遍历二叉树的序列中,任何结点其子树的所有结点都是直接跟在该结点之后

的 5、一棵有124个叶结点的完全二叉树,最多有个结点。 A、247 B、248 C、249 D、250 E、251 6、任何一棵二叉树的叶结点在前(先)序、中序和后序遍历序列中的相对次序。 A、不发生变化 B、发生变化 C、不能确定 7、设a、b为一棵二叉树上的两个结点。在中序遍历时,a在b前面的条件是。 A、a在b的右方 B、a在b的左方 C、a是b的祖先 D、a是b的子孙 8、设深度为k的二叉树上只有度为0和度为2的结点,则这类二叉树上所含的结点总数为。 A、不确定 B、2k C、2k-1 D、2k+1 9、设有13个值,用它们组成一棵哈夫曼树,则该哈夫曼树共有个结点。 A、13 B、12 C、26 D、25 10、下面几个符号串编码集合中,不是前缀编码的是。 A、{0,10,110,1111} B、{11,10,001,101,0001} C、{00,010,0110,1000} D、{b,c,aa,ac,aba,abb,abc} 11、欲实现任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳的方案是二叉树采用存储结构。 A、三叉链表 B、广义表 C、二叉链表 D、顺序表 12、以下说法错误的是。 A、存在这样的二叉树,对它采用任何次序遍历其结点访问序列均相同 B、二叉树是树的特殊情形 C、由树转换成二叉树,其根结点的右子树总是空的 D、在二叉树只有一棵子树的情况下也要明确指出该子树是左子树还是右子树

相关文档
最新文档