嘧菌酯及其中间体合成技术研究进展

嘧菌酯及其中间体合成技术研究进展
嘧菌酯及其中间体合成技术研究进展

第七章 费托合成

第七章 F-T合成试题 一、填空题 1、F T合成是和在1925年首先研究成功的。 2、20世纪50年代初期,中国建成了一个F-T合成工厂即。 3、F-T合成可能得到的产品包括和,以及、。 4、F-T合成催化剂分为和。 5、复合催化剂采用制成。 6、沉淀铁系催化剖根据助剂和载体的不同,主要分为、和。 7、液态油通过蒸馏分离可得到和。 8、SASOL一厂工艺经净化后的煤制合成气分两路进入 和。 9、在F-T合成中,反应器类型有多种,在SASOL厂生产中使用了和两种装置。 10、催化剂组成为9.0~Fe;0. 9%K/硅沸石-2,硅沸石-2具有,具有较小的, 有利于。 11、熔铁型催化剂主要应用的装置是。 12、铁催化剂是活性很好的催化剂,用在固定床反麻器的中压合成时,反应温度为。 13、柴油的十六烷值约为,汽油的辛烷值为。 14、F-T合成原料气中新鲜气占,循环气占。 15、SASOL二厂工艺流程中净化后的合成气经反应后,合成产物首先.将反应生成 的和冷凝下来。水经氧化得和,液态油经、 可得汽油。 16、在SMFT合成模试工艺流程中一段反应器为,采用;二段反应器为,采用, 对一段产物进行改质以提高油品质量和收率,简化后处理工序。 17、F-T合成采用沉淀铁催化剂的固定床反应器,空速为;采用熔铁催化剂的气流床 反应器,空速为。 二、名词解释 1、F-T合成法 2、MFT合成

3、SMFT合成 4、担载型催化剂 5、熔铁型催化剂的制备原理 6、积炭反应 三、判断正误 1、单一催化剂主要有钌、镍、铁和钴.其中只有钌被用于工业生产。() 2、SASOL一厂的合成产物中的蜡经减压蒸馏可生产中蜡(370~500℃)和硬蜡(>500℃), 可分别加氢精制。() 3、SASOL一厂工艺的气流床反应器主要产物为柴油。() 4、F-T合成反应温度不宜过高,一般不超过400℃,否则易使催化剂烧结,过早失去 活性。() 5、当合成气富含氢气时,有利于形成烷烃。() 6、用含碱的铁催化剂生成含氧化合物的趋势较大,采用低的V(H2)/V(CO)比,高压和大空 速条件进行反应,有利于醇类生成,一般主要产物为甲醇。() 7、积炭反应为放热反应。() 8、从动力学角度考虑,温度升高,反应速度加快,同时副反应速度也随之加快。() 9、SASOL一厂流程中将冷凝后的余气先脱除C02.二厂流程中将余气直接分离,然后进 行深冷分离成富甲烷、富氢、C2和C3~C4馏分,可以获得高产值的乙烯和乙烷组分。 () 10、浆态床反应器结构复杂,投资费用高。() 11、气流床反应器由反应器和催化剂沉降室组成。() 12、原料气中的(CO+H2)含量高,反应速度快,转化率高,但反应放出的热量少,易使 催化剂床层温度降低。() 四、回答问题 1、简述F-T合成的反应原理。 2、F-T合成应中铁系催化剂包括哪些类型? 3、简述复合催化剂的作用。 4、简述F-T合成反应需在等温条件下进行的原因。

头孢克肟中间体合成工艺的改进研究

第40卷第2期2010年4月 精细化工中间体 FINE CHEMICAL INTERMEDIATES Vol.40No.2APRIL 2010 作者简介:李爱军(1968-),男,河北石家庄人,教授,博士,从事药物及精细化学品研究。(E-mail :liaj@https://www.360docs.net/doc/b16518434.html, )收稿日期:2010-03-15 !!!!!!!!!!! !! !!!!!!!!!!! !! 医药及中间体 头孢克肟中间体合成工艺的改进研究 李爱军,冯宝,刘倩春 (河北科技大学化学与制药工程学院,河北石家庄3050068)摘 要:对头孢克肟中间体2-(2-氨基-4-噻唑基)-2-[[(Z )-(叔丁氧羰基)甲氧]亚胺基]乙酸-2-苯并噻唑硫酯(1)的合成工艺进行了改进研究,即以廉价的乙酰乙酸甲酯为原料,经溴化、亚硝化、环合、醚化、水解、硫酯化6步反应制备1,总收率17.9%。其中2-(2-氨基-4-噻唑基)-2-(Z )-羟亚胺基乙酸甲酯采用了一锅合成法,简化了操作。 关键词:头孢克肟;乙酰乙酸甲酯;中间体;合成中图分类号:R978.1+1 文献标志码:A 文章编号:1009-9212(2010)02-0048-03 Improvement on the Synthesis of an Intermediate for Cefixime LI Ai-jun ,FENG Bao ,LIU Qian-chun (College of Chemical and Pharmaceutical Engineering ,Hebei University of Science and Technology , Shijiazhuang 050018,China ) Abstract :2-(2-Amino-4-thiazolyl )-2-[[(Z )-(t-butoxycarbonyl )methoxy ]imino ]-acetic acid 2-benzothiazolyl thioester (1),an intermediate for cefixime ,was synthesized from methyl acetoacetate via 2-(2-amino-4-thiazolyl )-2-(Z )-hydroxy imino methyl acetate (4)in 17.9%overall yield.4was prepared in one-pot synthesis.Key words :cefixime ;methyl acetoacetate ;intermediate ;synthesis 1 前言头孢克肟为藤泽药品工业株式会社1987年开 发的第二代口服广谱头孢类抗生素[1] ,是临床应用于治疗感染性疾病的重要抗生素类药物,在国内外得到了广泛的应用,目前头孢类抗生素药物的研究开发已是中国医药发展的重点,2-(2-氨基-4-噻唑基)-2-(Z )-叔丁氧羰基甲氧亚胺基乙酸活性硫酯(1)是合成头孢克肟的重要侧链,因此对1的合成研究具有较重大的意义。 1的合成方法有多种[2-6],主要是以乙酰乙酸丙 烯酯为原料,或以2-(2-氨基噻唑-4-基)-2-(Z )-羟亚胺基乙酸为原料,与对硝基苄溴,溴乙酸叔丁酯反应水解,这些方法,有的原料难以制备,有的需用到钯盐,价格昂贵,因此不适合工业生产。笔 者综合考虑文献方法的优缺点,以乙酰乙酸甲酯为原料,经溴化、亚硝化、环合、醚化、水解、硫酯化6步反应制备1,方法无特殊反应,易操作,所得产品质量较好。 2实验部分2.1 反应方程式

嘧菌酯中间体合成新工艺及市场分析

嘧菌酯中间体合成新工艺及市场分析(下) 李强雷青菊 摘要:介绍了嘧菌酯原药市场行情及国内主流生产商,以及新中间体的合成工艺技术。 关键词:中间体合成工艺嘧菌酯市场分析杀菌剂 全球销量最大的杀菌剂嘧菌酯,2014年的销售额突破15亿美元,且需求量以15%左右的增幅持续增长。嘧菌酯原药及复配制剂均已过专利期,国内已有大量厂家进行生产。目前,国内原药产量约6000吨,其中88%销往国外。2016年,全球嘧菌酯原药产量有望突破1万吨。 一、工艺简介 目前国内现有和正在建设中的装置,合成技术都采用邻羟基苯乙酸、4,6-二羟基嘧啶、水杨酰胺为原料经过七步反应合成嘧菌酯,中间涉及20多种化学品,其中包括大量酸、碱和有机溶剂,反应及溶剂回收采用间歇操作,每吨嘧菌酯原药产生约50吨的废水。 二、嘧菌酯进入快速放量期 以甲氧基丙烯酸酯类杀菌剂王牌—嘧菌酯为代表的新一代杀菌剂,逐步显现出未来强劲的机会。通过研究某些已实现转移专利的杀菌剂进程来看,其过程可以分为三个阶段:首先是专利到期价格下降,经济劣势扭转; 产品逐渐被接受;第二阶段:中间体在国内逐步扩能,巨头(巴斯夫等)开始小规模的产能转移;相关上游产业链受益;第三阶段:价格企稳,大范围产能转移开始;国内厂商开始受益。目前,嘧菌酯刚刚进入第一阶段中期,即将迎来它的“快速放量期”。 嘧菌酯具有极其广泛的杀菌普,对几乎所有的真菌病害如白粉病,、锈

病、黑星病、霜霉病、稻瘟病等都有极好的活性,一般在保护性处理或病害发生早期使用,对作物种植影响甚微。 嘧菌酯可治疗作物疾病汇总 高效的杀菌效果与优异的经济效益是其胜出的核心因素。嘧菌酯具有良好的理化性质,能够制成各种制剂,包括:可湿性粉剂、水分散粒剂、悬浮剂等等。相关的田间药效试验表明在对马铃薯早疫病的测试中,其治疗效果优于代森锰锌;对黄瓜褐斑病的测试中显著优于百菌清。 三、嘧菌酯生产量情况 嘧菌酯产能集中度高,国内企业刚刚起步。目前全球嘧菌酯生产主要集中在先正达公司,总产能在8000吨。嘧菌酯2010年专利到期后,国内掀起了登记热潮,原药生产企业登记的有33家,但真正能够实现大规模生产的企业少之又少。 我国嘧菌酯主要生产企业 国内生产的嘧菌酯原药主要用于出口,出口国家包括乌拉圭、南非、

费托合成工艺学习分析报告本科

关于煤间接液化技术“费-托合成”的学习报告报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: (1) (2) 生成烯烃: (3) (4) 副反应 生成含氧有机物: (5) (6) (7) 生成甲烷: (8) 积碳反应: (9) 歧化反应:

(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T合成液体产物C数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe催化剂也可用Co系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图错误!未指定顺序。反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 固定床反应器(Arge反应器) 由于催化剂到冷却界面的传热距离限制,固定床式反应器要想法设法增大表面积。早期由于管式反应器直径过大而采取了层炉式反应器,然而由于散热和催化剂利用效率的问题而不被广泛使用。随后的发展趋势就是反应器内“管”越来越多、越来越细;1955年Sasol公司开发了内含2052根直径50毫米“管”的固定床反应器;1990年Shell公司开发了内含26150根直径26毫米“管”的反应器。而“管越多、越细”,反应器的效率和生产能力也越高(这点后面要提到)。 这种反应器优点易于操作运行,产品易于分离,适用于蜡生产;但是缺点也很明显,由于此类反应器温度分布不均,其温度需要控制在较低水平,影响反应速率和产率,以及因此带来的对于催化剂细度的要求,使得催化剂利用效率低,用量大;同时反应器由于承受压降厚度较大,铁催化剂定期更换要求复杂的网络结构,加大了设备成本。 浆态床反应器

费托合成

费-托合成(煤间接液化介绍,包括催化技术、反应器以及国内正在进行项目介绍) 间接液化概念 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。 煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T 命名的,简称F-T合成或费托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及政治因

素而盛衰不定。费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费托合成技术工业化的国家。1992和1993年,又有两座基于天然气的费托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自

氯沙坦中间体合成

SHORT PAPER 506A Rapid and Efficient Synthesis of 2-Butyl-5-Chloro-3H -Imidazole-4-Car-boxaldehyde K. Srinivas,* C. K. Snehalatha Nair, S. Ramesh, M. Pardhasaradhi Specialty Gas Based Chemicals & Processes Division, FCL Lab, Indian Institute of Chemical Technology, Hyderabad 500 007, India E-mail: kantevari@https://www.360docs.net/doc/b16518434.html, Received 22 December 2003; revised 7 January 2004 SYNTHESIS 2004, No. 4, pp 0506–0508Advanced online publication:09.02.2004 DOI: 10.1055/s-2004-815961; Art ID:Z18103SS ? Georg Thieme Verlag Stuttgart · New York Abstract: A rapid, efficient, cost effective procedure has been de-veloped for the synthesis of 2-butyl-5-chloro-3H -imidazole-4-car-boxaldehyde. Preparation of methyl pentanimidate was accomplished in just 12 hours, followed by a sequence of reactions without isolation and purification of the formed intermediates. The final compound was purified by simple acid-base treatment to get a product with 99.9% HPLC purity. Key words: imidazole, imidates, Vilsmeier reagents, nitrile, tetra-zole Introduction Losartan-K, popularly known as Cozaar, was the first non-peptide angiotensin II receptor antagonist to get ap-proval for the treatment of hypertension.1,2 Due to its high market value over the world,3 cost effective synthesis of its intermediates viz, 4-bromomethyl-2,2-biphenyltetra-zole 1 and 2-butyl-5-chloro-3H -imidazole-4-carboxalde-hyde (2) attracted the attention of several labora-tories.2,4–8 Having developed an efficient process 9,10 for the intermediate 1, we have now focused our interest on developing a novel procedure for the most important in-termediate 2 in the synthesis of Losartan-K (Scheme 1).The literature methods 4,7 developed for the preparation of 2 make use of 2-butyl 4-hydroxymethyl imidazole pre-pared via the reaction of pentanimidate hydrochloride, di-hydroxy acetone and ammonia at high temperature and pressure.11 The alcohol thus formed was then converted to 2 by oxidation-chlorination 12 or chlorination-oxidation 5methods. This procedure is not commercially viable be-cause of the use of high temperature and pressure and also due to the formation of dichloroimidazole as byproduct.Although later methods 12 employed trimethylsilyl (TMS)protected alcohol, the procedure is not suitable for com-mercial exploitation because of the added cost of TMS in the process. The alternate approach described by Griffith et.al,13,14 involve the preparation, isolation and distillation of methyl pentanimidate, its condensation with glycine and then cyclization-chlorination-formylation using Vils-meier reagents. In the above procedure, preparation of methyl pentanimidate in dibutyl ether itself takes six days for completion of the reaction, followed by work up pro-cedures at several stages to isolate and purify the interme-diates. In our attempts to prepare Losartan-K, we 15 have targeted a fast and industrially viable process for the preparation of 2. We herein report an improved and practical procedure for the preparation of 2-butyl-5-chloro-3H -imidazole-4-carboxaldehyde (2) (Scheme 2), wherein methyl pentan-imidate was made in just 12 hours without any solvent,followed by a sequence of reactions without isolation and purification of the formed intermediates. The final com-pound 2 was purified by simple acid-base treatment fol-lowed by recrystallization (99.9% HPLC purity). Results & Discussion Pentanimidate hydrochloride is generally prepared 4,14 by passing HCl gas through a solution of valeronitrile and MeOH in Et 2O–dibutyl ether at –15 °C to 0 °C and main-taining the reaction mixture at 4 °C for six days. Our re-peated attempts on this reaction made us realize that ether Scheme 1 D o w n l o a d e d b y : Z h e j i a n g U n i v e r s i t y . C o p y r i g h t e d m a t e r i a l.

费托合成工艺学习报告(本科)

关于煤间接液化技术“费-托合成”的学习报告 报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: nCO+2n+1H2==C n H2n+2+nH2O(1) n+1H2+2nCO==C n H2n+2+nCO2(2) 生成烯烃: nCO+2n H2==C n H2n+nH2O(3) n H2+2nCO==C n H2n+nCO2(4) 副反应 生成含氧有机物: nCO+2n H2==C n H2n+nH2O(5) nCO+(2n?2)H2=C n H2n O2+(n?2)H2O(6) n+1CO+2n+1H2==C n H2n+1CHO+nH2O(7) 生成甲烷: CO+3H2==CH4+H2O(8) 积碳反应: CO+H2==C+H2O(9) 歧化反应: 2CO==C+C O2(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1

和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T 合成液体产物C 数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe 催化剂也可用Co 系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图1反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 2 46 5 3 1 1-合成气注入通道;2-均布段;3-冷却管道;4- 反应段;5-分离段;6-输出通道;(吴尧绘制)

费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923 首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费-托合成技术工业化的国家。1992 和1993年,又有两座基于天然气的费-托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自己的费-托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造费-托合成天然气液化工厂。 F-T合成的主要化学反应 F-T合成的主反应: 生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O 生成烯烃:nCO+(2n)H2 = CnH2n+nH2O 另外还有一些副反应,如: 生成甲烷:CO+3H2 = CH4+H2O 生成甲醇:CO+2H2 = CH3OH 生成乙醇:2CO+4H2 = C2H5OH+ H2O 积炭反应:2CO = C+CO2 除了以上6个反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。

雷迪帕韦的合成及其主要中间体的研究进展

雷迪帕韦的合成及其主要中间体的研究进展 摘要: 雷迪帕韦(Ledipasvir),前身为GS-5885,是由吉利德科学公司开发的一种NS5A蛋白酶抑制剂[1]。雷迪替韦完成III期临床试验后,用于治疗基因型1丙型肝炎的雷迪帕韦/索非布韦的固定剂量组合的片剂,于2014年2月10日被美国药典收录。2014年10月10日组合产品雷迪替韦/索非布韦获得美国FDA批准,商品名Harvoni[2]。雷迪帕韦通过对NS5A 蛋白的抑制作用,从而阻断了病毒RNA的复制[3]。雷迪替韦拥有六个手性中心,其中处于桥杂环化合物1,3,4位与螺杂环6位上,这将是其合成工作中的重点?本文通过参考大量文献综述了雷迪替韦的合成研究进展及其最新的合成路线,并对其关键步骤——主要的中间体做出了深入的研究? 关键词:雷迪帕韦(Ledipasvir),NS5A抑制剂,丙肝,手性,中间体,制备。 1.简介: 丙型病毒性肝炎,简称为丙肝,是一种由丙型肝炎病毒(HCV)感染引起的病毒性肝炎,主要经输血、针刺、吸毒等传播。丙肝的的潜伏期往往是1.5-2个月,经过一段的潜伏期之后,便出现肝炎的常见症状有疲乏、身体无力、食欲减退、部分出现黄疸等症状。丙肝患者右下腹部感觉不舒服,恶心呕吐,食欲减退。丙型肝炎发病机理仍未十分清楚,当HCV在肝细胞内复制引起肝细胞结构和功能改变或干扰肝细胞蛋白合成,可造成肝细胞变性坏死,表明HCV直接损害肝脏,导致发病起一定作用。但多数学者认为细胞免疫病理反应可能起重要作用,发现丙型肝炎与乙型肝炎一样,其组织浸润细胞以CD3+为主,细胞毒T细胞(TC)特异攻击HCV感染的靶细胞,可引起肝细胞损伤。[4] 雷迪帕韦(Ledipasvir),化学名称:GS-5885,英文化学名: Methyl N-[(2S)-1-[(6S)-6-[5-[9,9-Difluoro-7-[2-[(1S,2S,4R)-3-[(2S)-2-(methoxyc arbonylamino)-3-methylbutanoyl]-3-azabicyclo[2.2.1]heptan-2-yl]-3H-benzimidazol -5-yl]fluoren-2-yl]-1H-imidazol-2-yl]-5-azaspiro[2.4]heptan-5-yl]-3-methyl-1-ox obutan-2-yl]carbamate,CAS NO.:1256388-51-8,分子式C49H54F2N8O6,分子量为:889.00,其商品名为:Harvoni (与索非布韦组合)。化学结构为图1.1所示:

嘧菌酯1

(10)申请公布号 CN 102199127 A (43)申请公布日 2011.09.28C N 102199127 A *CN102199127A* (21)申请号 201010130608.8 (22)申请日 2010.03.24 C07D 239/52(2006.01) (71)申请人淄博万昌科技股份有限公司 地址255068 山东省淄博市张店区朝阳路 18号 (72)发明人高庆昌 (74)专利代理机构青岛发思特专利商标代理有 限公司 37212 代理人巩同海 (54)发明名称 一种制备嘧菌酯的方法 (57)摘要 本发明涉及嘧菌酯的制备方法,按照苯并呋 喃-2(3H)-酮∶催化剂∶甲酸酯∶硫酸二甲酯= 1.0∶1.0~ 2.5∶1.0~10.0∶0.9~2.5的 比例,首先由苯并呋喃-2(3H)-酮与甲酸酯反应 生成中间体3-甲酰基苯并呋喃-2(3H)-酮,再使 用硫酸二甲酯甲氧基化,生成3-(α-甲氧基)-亚 甲基苯并呋喃-2(3H)-酮,后者再与4,6-二氯嘧 啶和2-氰基苯酚反应,生成嘧菌酯。本发明反应 工艺操作简单,原料成本低,“三废”生成少,环境 污染小,收率高。(51)Int.Cl. (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 4 页

1.一种制备嘧菌酯的方法,其特征在于首先由苯并呋喃-2(3H)-酮与甲酸酯在催化剂存在下进行甲酰化反应,生成3-甲酰基苯并呋喃-2(3H)-酮,后者与硫酸二甲酯进行甲氧化反应生成3-(α-甲氧基)-亚甲基苯并呋喃-2(3H)-酮,再与4,6-二氯嘧啶和2-氰基苯酚进行反应,生成嘧菌酯,其中: 反应物料的摩尔比为:苯并呋喃-2(3H)-酮∶催化剂∶甲酸酯∶硫酸二甲酯=1.0∶1.0~2.5∶1.0~10.0∶0.9~2.5; 甲酰化反应温度-10~45℃,反应时间2~24小时; 甲氧化反应温度0~60℃,反应时间1~4小时。 2.根据权利要求1所述的制备嘧菌酯的方法,其特征在于所述甲酸酯为甲酸甲酯或甲酸乙酯。 3.根据权利要求1所述的制备嘧菌酯的方法,其特征在于所述催化剂为氢化钠或者醇的钠盐或者钾盐。 4.根据权利要求3所述的制备嘧菌酯的方法,其特征在于所述醇的钠盐或者钾盐为甲醇钠/甲醇钾、乙醇钠/乙醇钾、丙醇钠/丙醇钾、异丙醇钠/异丙醇钾、丁醇钠/丁醇钾或者叔丁醇钠/叔丁醇钾。

医药中间体合成及工艺复习题:

医药中间体合成及工艺复习题: 一、简答题:20~25分 1、何为药物中间体(医药中间体) 医药中间体,实际上是一些用于药品合成工艺过程中的一些化工原料或化工产品。 2、世界医药工业发展的特征是什么 a.与其他行业相比,医药工业受世界经济的影响较小 b. 产品更新换代速度较快 c. 行业研发费用大,利润率高 d. 行业集中度不断提高 e. 医药行业受各国医药政策影响很大 3、什么叫“基本药物目录”? 有世界卫生组织提出的能够满足大部分人口卫生保健需要的药物目录。 4、世界原料药发展的大致趋势? a.交易市场仍在扩大 b.生产向新、特、小发展 c.合同化生产趋势加强,合同合作方式多样化 d.原料药的生产中心将逐步向我国和印度转移 e.市场竞争日趋激烈 5、我国医药中间体发展的特征? 1. 企业大多为私营企业,经营灵活,投资规模不大,基本在数百万到一两千万元之间; 2. 企业地域分布比较集中,主要以浙江台州和江苏金坛为中心; 3. 随着国家对环保日益重视,企业建设环保处理设施的压力正在加大; 4. 产品更新速度快,一般入市3~5年后利润率便大幅度下降,迫使企业必须不断开发 新产品或改进工艺,才能获得较高的利润; 5.由于医药中间体生产利润高于一般化工产品,生产过程又基本相同,有越来越多的 小型化工企业加入到生产医药中间体的行列,导致业内无序竞争日益激烈; 6.与原料药相比,生产中间体利润率偏低,而原料药与医药中间体生产过程又相似, 因此部分企业不仅生产中间体,还利用自身优势开始生产原料药。 6、何为伪拟效应?何为阻断效应? 有机分子中的氢原子被氟原子取代后,体积不会有较大的变化,从而使得含氟有机化合物往往不被生物体中的酶受体所识别,有机氟化合物能毫无困难的代替非氟母体进入生物体内参与到代谢过程中。即“伪拟效应” 含氟有机化合物中的C-F键的键能大于C-H键键能,且氟原子难以F+的形式离去,导致含氟有机化合物氧化还原稳定性很强,使在生物体内不易被代谢,阻碍其正常的代谢循环。即“阻断效应”(block effect)。 7、何为相转移催化剂(PTC)? 能加速或者能使分别处于互不相溶的两种溶剂(液-液两相体系或固-液两相体系) 中的物质发生反应的催化剂。 8、相转移催化剂的优点有哪些? (1)不使用昂贵的特殊溶剂,且不要求无水操作,简化了工艺 (2) PTC的存在,使参加反应的负离子具有较高的反应活性 (3)具有通用性,应用广泛 (4)原子经济性(合成过程中,合成方法和工艺应被设计成能把反应过程中所用的所 有原材料尽可能多的转化到最终产物中

依折麦布中间体的合成工艺研究

依折麦布中间体的合成工艺研究 蔡金刚1赵世明2*,罗振福2肖如亭1 1.天津理工大学化学化工学院,天津300191;2.天津药物研究院化学制药部,天津300193 摘 要:以氟苯和戊二酸酐为起始原料,经傅-克反应、羰基保护、水解、酰胺化、偶联反应,合成了依折麦布(Ezetimibe)的重要中间体(S)-3-{4-[2-(4-氟苯基)-[1,3]-二氧杂环戊烷-2-基]-丁酰}-4-苯基-噁唑烷-2-酮(_1),总收率36.7%,该工艺反应条件温和、原料价廉易得、收率较高,具有工业化前景。 依折麦布;依折麦布;中间体;合成 R979.1+2A1009-9212(2011)04-0037-03 Synthesis of the Intermediate of Ezetimibe CAI Jin-gangZHA0 Shi-minLUO Zhen-fuXIA0 Ru-ting 蔡金刚(1984-),男,湖北孝感人,硕士研究生,研究方向:化学工艺。(E-mail:caijingang2002@163.com) 赵世明,副研究员,从事新药开发研究。 (E-mail: zhaosm@tjipr.com) 2011-06-22

2实验部分

@@[1] Meng C Q, Ezetimibe. Schering-Plough[J]. Curr Opin Inves tig Drugs, 2002, 3 (3): 427. @@[2] 苏雨,蒋述斌.依折麦布联合降脂治疗及其多效性研究进展 [J].中国新药杂志,2010,19 (8): 666-670. @@[3] 蔡正艳,宁奇,周伟澄.Ezetimibe合成路线图解[J].中国医 药工业杂志,2004,35 (4): 251-253. @@[4] Bodi. Process for the production of Ezetimibe and intermedi ates used in this process: WO, 2007072088[P].2007-06-28. @@[5] Sawant. Process for the preparation of azetidinones: WO, 2007017705[P]. 2007-02-15. @@[6] Escude A G. Processes for preparing intermediate compounds  useful for preparation of Ezetimibe: US, 20090227786 [P]. 2009-09-10.

嘧菌酯使用技巧及注意事项

怎样用好嘧菌酯防病 嘧菌酯的来源 热带雨林中的一种密环菌,存在有天然杀菌物质,可杀死与其共生的多种真菌,而自身生长旺盛。先正达公司的科研部门对该天然物质进行了研究,研制出仿生合成杀菌剂――阿米西达。用于农业生产,取得了极大的成功,为此获得了英国女王奖,在农药界中为第一个获得此奖的产品。 阿米西达是以源于蘑菇的天然抗菌素为模板,通过人工仿生合成的一种全新的病害管理产品。阿米西达已经在全球72个国家,80多种作物病害上获得登记。阿米西达拥有前所未有的超广杀菌谱,对四大类病真菌所引起的霜霉病、白粉病、番茄早疫病、脐橙炭疽病、脐橙溃疡病、叶斑病、黑星病等大部分病害均有很好的防效。 阿米西达超越了普通杀菌剂的概念,通过全新的病害管理方式,明显的提高作物的产量,改善作物的品质。阿米西达,为全球各地专业种植者所选择、推荐。阿米西达具有全新的作用机制。 嘧菌酯的特性 嘧菌酯杀菌谱广,除了乳油外,可溶于甲醇、乙腈等各种溶剂,几乎对所有的真菌界病原菌都有着很好的活性。 A,对几乎所有的真菌界(子囊菌亚门、担子菌亚门、鞭毛菌亚门和半知菌亚门)病害如白粉病、锈病、颖枯病、网斑病、霜霉病、稻瘟病等均有良好的活性。可用于茎叶喷雾、种子处理,也可进行土壤处理,主要用于谷物、水稻、花生、葡萄、马铃薯、果树、蔬菜、咖啡、草坪等。 B,植物保健功能:调节植物內源激素平衡,作物健康、抗病、产量高。 具有向顶传导特性,有利于地下施药,地下施药安全性好。

C,施药后通过内吸作用,均匀分布及重新分布,对作为的保护面面俱到。 D,对蜂、鸟、蚯蚓、益虫无害,对环境友好。 E,多种施药方式:喷雾20克-30克/亩,灌根40-50克/亩。 F,未来主流市场应以单剂为主,农场可根据需要,与多数杀菌剂复配使用,以满足不同需要。 G,完全符合未来农场“预防为主”的植保策略, 应在病害侵染前或病害发生初期施药,以提高防治效果。 喷沟预防马铃薯黑痣病 黑痣病由立枯丝核菌引起,菌核初白色,后变为淡褐或深褐色,主要为害幼芽、茎基部及块茎。带病种薯是翌年初侵染源,也是远距离传播的主要途径。该病发生与春寒及条件有关,播种早或播后土温较低发病重。 想要有效防治黑痣病,要注意三点:一是选用抗病品种,采用无病薯播种。二是要注意适期播种,在温暖的土壤种植。三是要选择好的药剂处理:用适乐时1L拌种1吨,或者用阿米西达每亩用40-60ml沟施,能够有效防治马铃薯黑痣病。 嘧菌酯的注意事项

α-氨基酸中间体的合成

α-氨基酸中间体的合成 【实验目的与要求】 1. 了解亚硝化反应的原理及一般操作方法 2. 掌握锌—冰醋酸还原的方法及氨基保护的方法 【实验原理】 C OC 2H 5 CH 2C OC 2H 5O O AcOH C OC 2H 5C C OC 2H 5 O O NOH AcOH C OC 2H 5 CHNH 2C OC 2H 5 O O 2C OC 2H 5 CHNH C OC 2H 5 O O OCCH 3 【实验原料、试剂与仪器】 循环水泵,鼓风干燥箱,旋转蒸发仪, 三用紫外灯,熔点仪,制冰机,红外分光光度计。 【实验方法与步骤】 1. 异亚硝基丙二酸二乙酯的制备 250mL 三口瓶中,加入18.3mL (0.32mol )的冰醋酸和16.2g (0.1mol )丙二酸二乙酯,搅拌,冰浴冷却至10℃以下,将20.9g (0.3mol )亚硝酸钠溶于30mL 水中,缓缓滴入反应瓶中,保持温度,不超过10℃,约一小时滴完,移去冰浴,自然升温,待反应液温度不再升高时,用热水浴加热,使反应液保持在30~35℃,反应四小时。 反应液置于分液漏斗中,静置分层(如有可能,放置过夜),分出上层油状物,约30g 备用,粗油为亚硝基丙二酸二乙酯,可不经纯化,直接用于下一步反应。 2. 乙酰基丙二酸二乙酯 将自制的丙二酸二乙酯粗油置于250mL 三口瓶中,加入70mL 冰醋酸,分批加入

26.1g(0.4mol)锌粉,整个过程维持反应温度30~35℃,约一小时完成,继续搅拌二十分钟,反应液冷至20℃以下,滴加30.0g(0.29mol)醋酸酐,控制反应温度20~25℃,约十五分钟加完,继续搅拌四十分钟,反应液过滤,滤饼用少量冰醋酸酸洗一次,合并滤液及洗涤液,减压蒸尽乙酸,得到大量固体,加水(约30mL),加热溶解,如不澄清则需过滤,冷却,析出结晶,用冰浴冷却使结晶完全,有大量白色固体析出,过滤,得白色结晶(略带黄绿色),固体以冰水洗一次,干燥称重,如颜色较深,可用热水重结晶一次。产品为乙酰氨基丙二酸二乙酯,白色(或略带黄绿色)晶体,熔点93~96℃ 收率约为60% [思考题] 1.亚硝化反应为何在低温进行 2.亚硝化反应与硝化反应比较,有何相同之处?有何不同之处? 3.粗油的含水量多少对下面的反应有何影响?是对还原反应的影响大,还是对氨基乙酰化 反应的影响大? 4.粗油在测定干燥的情况下,下面两步反应是否能同时进行? (即同时加入冰醋酸与酸酐, 再分批加入锌粉,还原与保护同时进行)为什么?

相关文档
最新文档