国外换热器新进展

国外换热器新进展
国外换热器新进展

国外换热器新进展

国外换热器新进展

原作者:曹纬

出处:

【关键词】强化传热,传热元件,壳程设计,新型高效换热器

【论文摘要】简述了国外近年来换热器的发展概况,介绍了强化传热研究、强化传热元件开发、新型壳程结构设计以及国外推出的各种新型高效换热器的有关情况。

分类号TQ 051.5

Recent advances on foreign heat exchangers

Senior Translator Cao Wei

(Lanzhou Petroleum Machinery Reseach Institute, Lanzhou 730050)

Abstract The recent progress of foreign heat exchangers in lasted years is ou tlined, research of enhanced heat transfer, development of heat transfer elements a nd structural design of new type shell side are introduced,and new high-effective h eat exchangers abroad are commented.

Key words:enhanced heat transfer,heat transfer elements, shell side design,new high-effective heat exchangers

1概述

70年代的世界能源危机,有力地促进了传热强化技术的发展。为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。所以,这些年来,换热器的开发与研究成为人们关注的课题。

最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。

2强化传热技术

所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系指提高流体和传热面之间的传热系数。其主要方法归结为下述两个原理,即使温度边界层减薄和调换传热面附近的

流体。前者采用各种间断翅片结构,后者采用泡核沸腾传热[2]。最近还兴起一种EHD

技术,即电气流体力学技术,又称为电场强化冷凝传热技术,进一步强化了对流、冷凝和沸腾传热,特别适用于强化冷凝传热,并适用于低传热性介质的冷凝,因而引起人们的普遍关注[3]。其原理是,对某些不导电液体的表面施以相垂直的电场,使液体表面变得很不稳定,借冷凝液表面的张力作用和在静电场下液膜的不稳定现象使液膜厚度减薄,从而强化冷凝传热。其所需电场耗用的电力很小。

人们想尽各种办法实施强化传热,归结起来不外乎两条途径,即改变传热面的形状和在传热面上或传热流路径内设置各种形状的湍流增进器或插入物。

2.1传热面形状的改变

改变传热面形状的方法有多种,其中用于无相变强化传热的有:横槽管、螺旋槽管(S 管)和缩放管。新近又开发出偏置折边翅片管(一种间断翅片管)和螺旋扁管,后者也叫麻花管(Twisted Tube),这原是瑞士的Allares公司技术,后经布朗公司(Brown Fintube,Ltd.)

改进,是一种高效换热元件[4]。用于有相变强化传热的强化沸腾传热管有:烧结多孔表面管、机械加工的多孔表面管(如日本的Themoexcel-E管)、电腐蚀加工的多孔表面管[7]、T型翅片管、ECR40管和Tube-B型管。从所报导数据来看,在整体低肋管上切纵槽后再滚压成型的Tube-B型管似乎有较高的传热性能,它可能符合薄液膜面积较大,隧道与外界液体相通,因而有利于蒸汽流出和液体吸入等要求[1]。俄罗斯也开发出一种称之为"变形翅片管"的传热管,可用于空分装置的冷凝-蒸发器[8]。用于强化冷凝传热的传热管有:纵槽管、低螺纹翅片管、锯齿形翅片管(ST管)和径向辐射肋管式翅片管(R管)等。近年来,Hamon-Lummus公司又新推出一种SRC翅片管(SRC Fin Tube)[3],用于冷凝传热。

内翅片管与横槽管和螺旋槽管一样,不但可用于单相对流传热,也可有效地用于强化管内流动沸腾传热[1]。而横槽管和螺旋槽管不但能强化管内传热,同时还能强化管外传热。

外翅片管可以利用液体表面张力减薄冷凝液膜厚度以强化传热,这一发现大大促进了新型翅片管的研究开发。人们用不同金属制造不同形状的翅片管,其翅片形状有:三角肋三角槽、梯形肋三角槽、梯形肋梯形槽、三角肋梯形槽和Wolverine Tube-C管等。翅片密度在50~3 000个翅片/m,与光管相比,给热系数可提高1~12倍[9]。俄罗斯还介绍了1种空冷器用的轧制翅片管,为双金属管,每隔1个翅片有切口,用以强化传热[10]。俄罗斯还有1种金属丝缠绕的绕丝翅片管[14]和气动喷涂翅片管[15]。

内螺旋翅片管(NL管)是美国新开发的1种高效强化管内相变传热元件,根据翅片形状不同,可分为三角肋、梯形肋和矩形肋等,用于沸腾传热[9]。

内波纹螺纹管在湍流时可使对流传热系数增加1倍多[11]。

多头内螺纹管(ISF管)也是一种高效强化传热管,具有较好的强化管内沸腾传热的性能,传热膜系数为光管的1.6~2.2倍,在相同的传热面积下,能够完成相当于光管168%~200%的传热负荷。ISF管的强化传热作用主要是内表面和二次流的增加所致。可用于干式蒸发器,与目前制冷行业通用的星形内肋管蒸发器相比,质量可以减轻近50%[12]。

截面管也是近年来国外研究开发的强化传热元件,可分为蛋形管、豆状管和菱形管,统称为异形管。实验证明,此类管件与光圆管相比,具有显著的强化传热效果[13]。

2.2流路湍流增进器与管内插入物

增进器是在传热面附近设置一个小物体(不一定与传热面相连接),它可以是各种形状和型式,最常见的是在传热面上等距离设置突起物,通过搅乱流动来达到强化传热的目的[2]。

管内插入物有:扭带(Turbulators)、螺旋片、螺旋线圈(Spirele Elements)和静态混合器(Kenics Mixers)。它们适合于强化管内单相流体传热,尤其对强化气体、低雷诺数或高粘度流体传热更为有效[9]。最近,国外又开发出一种称之为Hitran Matrix Elements的花环式插入物,它是一种金属丝制翅片管子插入件(Wire-Fin Tube Inserts),能增强湍流,改善传热性能。它是英国Cal Garin Ltd.公司的产品,并取得了专利权[5]。

3壳程设计

为了强化壳程传热,除上述改变管子外形或在管外加翅片外,另一途径就是改变壳程档板或管间支撑物。为了克服单弓形档板的缺点,先后开发了双档板(Double Segmental Baf fles)、三档板(Triple Segmental Baffles)、折流杆(Rod Baffles)、窗口不排管(NTIW)和波网(Nest)等新壳程结构[16]。随后有人设计了一种"外导流筒(Shellside Flow Distribution) "结构,接着又出现了整圆槽孔折流栅板[17]。最近ABB Lummus 公司又新推出了Heli cal Baffles折流板结构[18,19]。实践证明,这些改进都大大降低了流体在壳程中的阻力。Taborek曾指出,流体在壳程中作纵向流动是管壳式换热器中的最理想结构形式,如果壳程流体流量足以保证在湍流条件下作纵向流动,这种选择看来是有利的。为了强化壳程传热,目前,壳程设计也在向各种强化结构组合的方向发展。

4新型换热器

近年来,随着制造技术的进步,强化传热元件的开发,使得新型高效换热器的研究有了较大的发展,根据不同的工艺条件与换热工况设计制造了不同结构形式的新型换热器,并已在化工、炼油、石油化工、制冷、空分及制药各行业得到应用与推广,取得了较大的经济效益。

国外推出的新型换热器有:ABB公司的螺旋折流板换热器(HelixchangerTM)[18]、Hamon Lummus 公司的SRCTM空冷式冷凝器[3]、Packinox换热器[3]、NTIW列管式换热器[16]、英国Cal Gavin 公司的丝状花内插物换热器(Hitran)[5]、日本的Hy brid 混合式换热器[20],俄罗斯的变形翅片管换热器(ДеФормированноеОребрение)[8]、喷涂翅片管冷却器[15]、非钎焊金属丝缠绕翅片管换热器[14]和螺旋绕管式换热器(ВитойГладкотруббчатыйТеплообменник)[21]、美国Chemineer公司的Ke nics换热器(Kenics Heat Exchanger)、日本的SM型换热器(内插静态混合器)、美国的Br own Fintube Ltd.的带扭带插入物的湍流增强式换热器(Exchanger With Turbulator)和麻

花扁管换热器(Twisted Tube Heat Exchanger)、美国Yuba公司的Hemilok○R换热器、澳大利亚Roach Heat Exchangers公司的柔性换热器(Flexible Heat Exchanger)等。此外,还有日本日阪制作所生产的世界单台最大处理能力为5,000 m3/h的UX-100型板式换热器、法国Nordon Cryogenie S.N.C.公司生产的6 900 mm×1 525 mm×1 300 mm (长×宽×高)换热面为1 500 m2/m3的板翅式换热器、英国Michael Webb Process Equi pment Supply公司的提箱式全焊板式换热器和其他各种紧凑式换热器(包括半焊式和全焊式板式换热器)、美国传热公司的FIVER-ROD式防振结构换热器。更值一提的是在今年欧洲化工设备展览会上,法国Le Carbone公司还推出了1种称为新奇换热器(Exotic Heat Exchanger),它是一种防腐的钽制换热器,光滑如玻璃,供制药工业用,配有防污平管板,避免了任何污物在管接合处聚积。该换热器尺寸很大。此外,空冷器方向也有新进展。

以上介绍的各式换热器的设计思想各有新颖之处,结构上各具特色。有的在于强化管内传热,有的着眼于壳程强化传热,有的改进了管箱设计,有的着重防止管板诱导振动,有的

紧凑了设备结构,有的在于防腐防垢。其中最先进的要数PACKINOX、SRCTM、Helixcha ngerTM、Twisted-tube Exchanger、HiTRAN、Hybrid、Exotic Heat Exchanger 几种换热器。

PACKINOX换热器实际上是一种新型板式换热器,代替列管式换热器用作炼油厂催化重整装置混合料换热器,并且得到了迅速推广应用。SRCTM换热器,采用扁平翅片管(19 mm×200 mm),由于传热面造型特异,最适于强化传热,解决了偏流问题。其用于空冷式换热,传热特性高,压力损失低。HeliechangerTM换热器,采用了螺旋状折流板结构,设计原理是:将圆截面的特制板安装在拟螺旋状折流系统中。每块折流板占换热器壳程中横剖面的1/4,其倾角朝向换热器的轴线,即与换热器轴线保持一倾斜度。相邻折流板的周边相接,与外圆处成连续螺旋状,折流板轴向重叠。如欲减少支撑管子的跨度时,也可以采用双螺旋设计。独特的设计避免弓形折流板曲折的Z字形流道系统导致的死角和较高的返混。美国Brown公司最新推出了Twisted-tube Exchanger换热器,此换热器原本是瑞典Allare s公司产品,Brown公司作了改进。其螺旋扁管制造过程包括"压扁"、"热扭"两个工序。由于管子结构独特,使管程与壳程同时处于螺旋流动,促进了湍流程度。该换热器总传热系数较常规换热器高40%,而压力降几乎相等。换热器组装时亦可采用螺旋扁管与光管混合方式。这种换热器在化工、石油化工行业中将具有广阔的应用前景[17]。HiTRAN换热器,采用丝状花内插物,可使流体在低速下产生径向位移和螺旋流相叠加的三维复杂流动,可提高诱发湍流和增强沿温度梯度方向上的流体扰动,能在不增加阻力的条件下大大提高传热系数[20]。Hybrid换热器是日本近几年开发的一种新型换热器,它综合了板式换热器与管壳式换热器两者的优点,克服了板式换热器因密封问题而受到限制的弱点,很有发展前途[2 0]。

由于文章篇幅所限,上述国外换热器新进展仅是提示性介绍,对于各种新型换热器的详细情况,笔者拟另文再作叙述。

作者单位:曹纬(兰州石油机械研究所(兰州730050)副译审)

参考文献

[1]邓颂九.提高管壳式换热器传热性能的途径.化学工程,1992,20(2):30~36

[2]棚泽一郎.换热技术研究开发の最新动向.配管技术[日],1988,30(7):51~56

[3]鱼津博久,小川敬雄.热交换器的の进步と期待.化学装置[日],1995,37(3):44~48

[4]Insight: A twist in the tale.The Chemical Engineer,1997,(626):21~24

[5]Rajiv Mukherjee.Bwoaden your heat exchanger design skills.CEP,1998,40(3):3 5~47

[6]王进修,姚爱如,程尚模等.槽道表面沸腾强化传热机理研究.化学工程,1989,17(4):35~42,20

[7]王凤魁.池式沸腾人工汽化中心表面汽泡脱离频率的研究.化工学报,1989,40(4):4 38~443

[8]ПознякВЕ,СавелъевВН.Исследование

ТеплопередачаиГидравлического

СопротивлениявВитых

Конденсаторах-испарителяхизТрубокс

Деформированныморебрением.Хим.инеф.

маш.1997,(2):29~34

[9]钟理,谭盈科.国外强化传热技术的研究与进展.化工进展,1993,(4):1~5

[10]КунтышВБ,БессонныйАН,БрилльАА.

Основныеспособзнергетического

Совершенствованияаппаратоввоздушного

охлаждения.Хим.инеф.маш.,1997,(4):

41~44

[11]思勤.内波纹螺纹管传热性能及流体阻力的研究.化学工程,1990,18(6):40~46

[12]杨伟年.多头内螺纹管管内R12沸腾传热强化的研究.化学工程,1988,16(1):19~22,12

[13]李庆领.滴形管换热器壳程换热特性的实验研究.化工机械,1996,(6):315~318

[14]АлексеевАЮ,.Применение

газодинамического напылениядляоребрения

трубтепдообменников.Хим.инеф.маш.1996,(4):63~64

[15]КрасниковаОК.Определениевозможности

использованиянеприпаянногоребраввитом

теплообменникеизтруб.оребренных

проволокой,Хим.инеф.маш.,1996,(1):

46~48

[16]Rajiv Mukherjee.Effectively design shell-and tube heat exchangers.CEP,94 (2):21~37

[17]陆应生,陈慕玲,潘宁忠等.强化传热元件与高效换热器研究进展.化工进展,1998,(1):46~48

[18]ABB Lummus Heat Trasfer Ltd.:A new shell-and-tube option for refineries. PTQ,AUTUMN,1997,

91~95

[19]ABB Lummus Heat Trasfer Ltd.:HelixchangerTM,HP,1997,(6):10

[20]时铭显.石油化工装备研究的进展.石油炼制与化工,1997,(1):1~5

[21]КрасниковаОК,КомароваЛР.,МишенкоТС.

Витойгладкотрубчатыйтеплообменникс

улучшеннымитепловымихарактеристиками.Хим.

инеф,маш.,1997,(4):25~26

第一章国内外CFB锅炉发展现状

第一章国内外CFB锅炉的发展现状 1.1 国外CFB锅炉的发展 近年来,循环流化床锅炉以其优越的环保特性、燃料适应性和良好的运行性能受到广泛欢迎,并得到了迅猛发展。尤其是最近十年,机组大型化发展取得了突破性的进展。其代表作就是法国普罗旺斯(Provence)电站250 MWe循环流化床锅炉的成功投运。另外,近几年来,国际上CFB锅炉的发展出现了竞争十分激烈的局面:法国GEC ALSTOM收购了德国EVT公司、法国Stein公司和美国ABB-CE公司;美国FW公司兼并了芬兰的Ahlstrom Pyropower公司,不同流派的CFB燃烧技术在逐渐相互结合,相互渗透,在国外逐渐形成了美国FW公司和法国GEC Alstom公司两大CFB锅炉技术集团。 1.1.1 德国鲁奇型(Lurgi)循环流化床锅炉及Alstom公司的扩展 鲁奇型循环流化床锅炉采用外置式换热器(EHE)设计,在有利于锅炉受热面布置、有利于炉膛温度及锅炉负荷控制、有利于再热器布置及汽温调节等方面做出了成功的探索,同时也为机组大型化创造了有利条件。特别是鲁奇公司将其CFB锅炉技术转让给ALSTOM-Stein(原法国Stein公司)公司、ALSTOM-CE公司(原美国CE公司)后,这项技术得到了进一步的发展和更广泛的应用。 ALSTOM-Stein公司充分利用外置式换热器的优越性,主要致力于CFB锅炉的大型化工作。通过大量的试验研究工作,率先在世界上完成了大型化CFB锅炉的开发应用工作,其代表作就是艾米录希电站和Gardanne(Provence)电站。艾米录希电站125 MWe CFB锅炉燃用干煤泥和湿煤泥两种燃料。Gardanne(Provence)电站是世界上第一座250 MWe CFB锅炉电站,1995年顺利投运标志着大型化CFB锅炉技术已经成熟。该锅炉燃用褐煤,锅炉的整体布置型体和主要结构基本上是在艾米录电站125 MWe CFB锅炉基础上的放大,采用单炉膛裤衩腿结构,4个分离器和4个外置式换热器。无疑Gardanne(Provence)电站的成功投运为广大CFB锅炉工作者增添了更多信心,为CFB锅炉的进一步发展开辟了道路。 Gardanne电厂位于法国南部的Provence省。该锅炉于1996年正式投入运行,并获得了美 Gardanne电厂250MWe循环流化床锅炉 的主蒸汽流量为194.44kg/s,蒸汽压力为 16.9MPa,主蒸汽温度为567℃,再热蒸 汽温度为566℃,排烟温度为140℃。 该锅炉的设计煤种为当地的高硫煤 和其它煤,也可掺烧50%(热值)的油渣。 其燃料分析见表1-1。该电站外观图见图

换热器原理介绍

换热器基础知识 简单计算板式换热器板片面积 选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热对数温差 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 换热器的分类与结构形式 换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一、换热器按传热原理可分为: 1、表面式换热器 表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器 蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器 流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器 直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 二、换热器按用途分为: 1、加热器 加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器 预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器 过热器用于把流体(工艺气或蒸汽)加热到过热状态。

国内外焊接技术的现状及其发展前景

国内外焊接技术的现状及其发展前景 在现代工业中,焊接技术已广泛用于航天、航空和船舶、海洋结构物及压力锅炉,化工容器、’机械制造等产品的建造。就船舶建造而言,焊接工时要占船体建造总工时的30~40%,由此可见,焊接作为一种加工工艺方法在制造业中的重要 作用。为了实现焊接产品或焊接结构生产的高效率、低,国内外都在大力开发创新新的焊接技术, 国内外焊接技术的新发展 一、电阻点焊 电阻点焊被认为是汽车车身制造中最重要的连接工艺。 二、激光技术和使用激光束加工材料 将激光束焊接与弧焊工艺相结合可以获得一种值得注意的焊接工艺:即CO2激光束与气体保护金属极电弧焊工艺相结合的工艺。采用该工艺,能对不同级别的钢材进行高效率的焊接。 三、等离子弧焊 一种新开发的用于等离子弧焊的焊矩系统,采用反极性电极和选用100~200A焊接电流可以经济有效地焊接铝制零件,焊接质量很好。 四、粉末等离子弧表面堆焊 通过表面堆焊,可以经济有效地制造具有不同特性的零部件。 五、焊接电源 六、机器人和系统 七、热喷涂技术 八、钎焊 九、微连接技术 十一、碳钢和低合金钢的焊接 在第十五届焊接和切割国际展览会上在保护气体方面,建议针对被焊材料和焊接要求的确定所需气体和精细调制的混合气体的发展趋势更加明显了。主要的研发特点是关注改善润湿性能、提高焊接速度和优化焊缝成形。 十二、细晶粒结构钢和高强度钢的焊接 国外新技术开发实例:1,肯倍Wise?焊接工艺软件 -- 更富成效的焊接解决方 案 全球知名的焊接解决方案提供商--芬兰肯倍公司(Kemppi Oy)推出全新智能焊接工艺软件Wise TM。该系列软件与肯倍最新FastMig Pulse与KempArc Pulse 焊接设备配套使用,可提供更多专业功能。 Wise TM系列软件产品可广泛应用于造船与海洋工程、汽车厂等各种焊接领域,

换热器介绍

换热器 一,定义: 换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。 二,换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: (一)_换热器按传热原理分类 1、表面式换热器:表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器:蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器:流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器:直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 (二)换热器按用途分类 1、加热器:加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器:预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器:过热器用于把流体(工艺气或蒸汽)加热到过热状态。 4、蒸发器:蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。 (三)按换热器的结构分类 可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。

三,换热器类型 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。 1 .间壁式换热器的类型 (1)夹套式换热器这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管. 夹套式换热器广泛用于反应过程的加热和冷却。 (2)沉浸式蛇管换热器这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中.蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小.为提高传热系数,容器内可安装搅拌器。 (3)喷淋式换热器这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器.喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多.另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用.因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。 (4)套管式换热器套管式换热器是由直径不同的直管制成的同心套管,并由U形弯头连接而成.在这种换热器中,一种流体走管内,另一种流体走环隙,两者皆可得到较高的流速,故传热系数较大.另外,在套管换热器中,两种流体可为纯逆流,对数平均推动力较大。套管换热器结构简单,能承受高压,应用亦方便(可根据需要增减管段数目). 特别是由于套管换热器同时具备传热系数大,传热推动力大及能够承受高压强的优点,在超高压生产过程(例如操作压力为3000大气压的高压聚乙烯生产过程)中所用的换热器几乎全部是套管式。 (5)板式换热器:最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。主体结构由换热板片以及板间的胶条组成。长期在市场占据主导地位,但是其体积大,换热效率低,更换胶条价格昂贵(胶条的更换费用大约占整个过程的1/3-1/2).主要应用于液体-液体之间的换热,行业内常称为水水换热,其换热效率在5000w/m2.K。为提高管外流体

换热器设计说明书样本1

2010级应用化学专业《化工原理》课程设计说明书 题目: 姓名: 班级学号: 指导老师: 同组人员 完成时间:

《化工原理》课程设计评分细则 说明:评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60)

目录(按毕业论文格式要求书写)

第一部分设计任务书

第二部分设计方案简介评述 我们设计的是煤油冷却器,冷却器是许多工业生产中常用的设备。列管式换热器的结构简单、牢固,操作弹性大,应用材料广。列管式换热器有固定管板式、浮头式、U形管式和填料函式等类型。列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。由于两流体 的温差大于50 C,故选用带补偿圈的固定管板式换热器。这类换热器 结构简单、价格低廉,但管外清洗困难,宜处理壳方流体较清洁及不易结垢的物料。因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。

第三部分 换热器设计理论计算 1、试算并初选换热器规格 (1)、 定流体通入空间 两流体均不发生相变的传热过程,因水的对流传热系数一 般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。 (2)、确定流体的定性温度、物性数据,并选择列管式换热器的形式: 被冷却物质为煤油,入口温度为140℃,出口温度为40C 冷却介质为自来水,入口温度为30C ,出口温度为40C 煤油的定性温度:(14040)/290m T C =+= 水的定性温度:(3040)/235m t C =+= 两流体的温差:903555m m T t C -=-= 由于两流体温差大于50℃,故选用带补偿圈的固定管板式列管换热器。 两流体在定性温度下的物性数据 (3)、计算热负荷Q 按管内煤油计算,即 1253 361.981010() 2.2210(14040) 1.541610330243600 n ph W Q C T T W ?=-= ????-=??? 若忽略换热器的热损失,水的流量可由热量衡算求得,即 6 3,21() 1.54161036.94/4.17410(4030) c p c Q C t t W kg s =-?==??- (4)、计算两流体的平均温度差,并确定壳程数 逆流 温 差 212211222111 ()()(14040)(4030)39.09614040 ln ln ln 4030m t t T t T t t C t T t t T t ??-?------'====??---?- 121214040 104030 T T R t t --= ==--

火力发电机组锅炉控制技术的新进展

火力发电机组锅炉控制技术的新进展 摘要:计算机技术是当今社会的一大重要革新发明,目前许多领域都采用计算 机进行操做,火力系统也不例外,融合计算机技术后的控制系统更加复杂。目前 火力发电机组的数学模型日渐成熟和完善,但是采用锅炉这一设施就注定会有非 线性、不稳定性、惯性大等众多的影响因素,这样就难以让数学模型发挥最大的 效应,控制力度不见准确进而影响正常操作的运行。目前国际上逐渐研究了其他 多种控制方法进行改良,火力发电机也由此变成了一项新型的研究潮流。 关键词:火力发电;机组锅炉;控制技术 近年来,在科技发展的推动下,为我国火力发电厂的发展带来了极大的推动 作用,机组锅炉是火力发电厂中重要的组成部分,一旦其存在问题必将对火力发 电厂的正常运行带来影响,因此,对于这方面的控制技术,我们需要高度重视起来。 一、概述 火力发电中计算机控制的引入为采用复杂的控制策略、先进的算法创造了条件。20世纪70年代后期,最优控制分别在日本和英国的火电机组中获得实际应用。特别是20世纪90年代以来,模糊控制、自适应控制和神经控制用于火电机 组的研究,在国内外获得了长足进展,而预测控制在火电机组中的应用成为近年 来的研究热点。火电机组的控制系统大部分是由PID(PI)算法的多个单输入单输出反馈控制回路组成,在预定的基本负荷工作点整定控制器参数并固定下来。对 于在此工作点附近的随机负荷扰动,其调节的有效性已被几十年的研究和实践所 证实。然而,当前电网负荷需求的峰谷差加大,大容量机组参与调峰已不可避免。为高效参与负荷调度,机组的控制必须在日、周和季节等调度周期内适应负荷变 动以及随机波动。在负荷调度过程中,随着工作点的变化,过程动态特性中的非 线性和相互影响降低了发电机组的运行性能,上述控制方案受到挑战。火电机组中,锅炉对负荷的响应速度比汽轮机对负荷的响应速度慢很多。因此,影响机组 负荷跟踪速度的因素,主要集中在锅炉部分。锅炉是一个复杂的多变量非线性系统,各通道之间存在强耦合;蒸汽压力、温度过程都具有较大的惯性和滞后,这些特点不利于锅炉的控制。此外,为提高发电机组的整体效率,机组向着高参数、 大容量的方向发展,而运行的安全性则对机组运行中汽包水位、过热蒸汽温度、 再热蒸汽温度等的控制性能(如速度、精度等)提出了更加苛刻的要求。这样的 发展趋势给锅炉控制造成了更大的困难。为此,近年来人们研究了多种新的控制 策略来解决上述控制难题。 二、传统火力发电技术存在的不足 目前,锅炉控制技术主要是由多个单输入、出这些回路构成,可以预先设定 所能承担的工作符合,以参数的形式表现并将数字进行固定。这种算法简称PI算法。但是目前我国的电力负荷较重,人民对电的需求越多越多,这就导致电网的 波峰波谷差距悬殊,就不得不使用大容量的机组进行调节。调度工作至关重要, 要想最大效率的提高所受负荷,机电组一定要控制调度周期,随机应对负荷变动 和随机性问题。在调度过程中,工作点的改变很大程度上影响了零件的运行,这 样会大幅度的降低发电机的工作性能。而锅炉机组的控制问题也由来许久,复杂 的非线性运行体系导致各个通道连接处都会存在滞后现象,这些因素都会导致总 体难以控制。锅炉发现机组面临着新一轮的革新,只有容量巨大、参数程度高等 设施才能够保证锅炉的正常运行,在运行过程中确保锅炉的安全性,有效对蒸汽

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

教育技术的发展趋势简析

教育技术的发展趋势简 析 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

我国教育技术的发展趋势简析 北京师范大学信息科学院黄荣怀曾兰芳余冠仕 摘要:本文分析和探讨了目前我国教育技术理论和实践领域存在的问题,包括软硬件建设不能同步、重效应轻效果、理论研究与实践需求存在较大差距、实践领域的管理体制欠完善、支持教育技术的青金欠充足、照搬国外理论和经验等,并提出了与教育技术发展息息相关、尚待解决的实际问题。文章最后预测T教育技术未来的发展趋势,认为庄谊重视教育技术实践性和支持性研究,更全面审视和研究计算机教育应用,更关注技术环境下的学习心理研究,更重视学习活动的设计与支持以及需要进一步完善教育技术学科建设。关键词:教育技术教师培训学习活动学习支持 教育技术作为教育改革的制高点和突破口.已成为人们住目的焦点。那么,教育枝术如何更有效地促进教育教学改革、促进我国教育信息化进程如何把握教育技术的发展趋势这已是人们共同关注的问题。 一、教育技术目前存在的问题 在过去的几十年里,教育技术极大地促进了我国教育的发展,这值得我们欣喜。但我国的教育技术丁作确实还存在不少问题,有的问题还很严重,如果不重视,不解决,势必会阻碍我国教育技术的发展.对我国的教育改革事业产生不良影响: 1.几个误区 (1)硬件、软件建设不同步。这是一个我国教育技术发展过程十的老问题.往往是重硬件,轻软什。70年代末日。年代初,我国出现过一哄而上搞电视课堂搬家的现象,造成了很大的浪费。90年代以后,以计算机为核心的信息技术兴起,教育信息化成为世人瞩目69焦点。据2000年底不完全统计,全国中、小学各类计算机没备242万台,建立校园网的学校5700所。至此,硬件建设已取得一定成绩.但软件建设还是没有跟上硬件建设的步伐,·软件匮乏”成为开展教育技术工作的瓶颈。因此,我们应该关注硬件和软件的并行建设,探索出一条符合中国国情的软件建设的路子。 (2)重效应轻效果。这反映在多个方面:其一,重技术轻理论。教师热衷于学习技术,而对教育技术理论则持怀疑、否定甚至拒绝的态度。其二,重制作轻应用。人们在制作教育教学软件时,认为“只要运用了教育技术,就一定能够促进教学”,而不注重教学过程的设计、教学的反馈和评价,致使真正优质的教育教学软件稀缺。其三,重评奖轻实用。许多教师运用教育技术手段只是为了获得参加各种比赛、公开课的机会。 (3)理论研究与实践需求存在较大差距。一方面,教育拄术的研究人员普遍存在重理论轻实践的现象,另一方面,教育技术的实际工作者,尤其是一线教学人员,存在重实践轻理论的现象。教育技术是理论和实践的结合,实践是理论的先导,同时理论指导实践,并在实践中检验和修改理论。这是一个反复的过程。教育技术研究人员和一线教师各有优势和不足,如果能够协力合作,交流沟通,优势互补,将会促进教育技术在理论和实践领域的更快发展。近几年,在这方面我国取得了一些进展,像"小学语文四结合教学改革试验研究”就是一个理论与实践、专家与教师密切结合的成功范例。 2.几个问题

换热器原理与设计(答案)

广东海洋大学 2013年清考试题 《换热器原理与设计》课程试题 课程号: 1420017 √ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 √ 考试 一.填空题(10分。每空1分) 1.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数 较低。 2.对于套管式换热器和管壳式换热器来说, 套管式换热器 金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。 3.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是 增加管外程数 和两台单壳程换热器串联。 4.在流程的选择上,腐蚀性流体宜走 管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re >100)下即可达到湍流。 5.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。 6. 相对于螺旋槽管和光管,螺旋槽管的换热系数高. 7. 根据冷凝传热的原理,层流时,相对于横管和竖管,横管 传热系数较高。 8.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将 减小 管子的支撑跨距 9. 热交换器单位体积中所含的传热面积的大小大于等于700m 2/m 3,为紧凑式换热器。 10. 在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B 股流体,设置旁路挡板可以改善C 股流体对传热的不利 GDOU-B-11-302 班级: 姓 名: 学号: 试题共 4 页 加白纸3 张 密 封 线

影响。

二.选择题(20分。每空2分) 1.管外横向冲刷换热所遵循侧传热准则数为(C ) A. 努赛尔准则数 B. 普朗特准则数 C. 柯尔本传热因子 D. 格拉肖夫数 2.以下哪种翅片为三维翅片管( C ) A. 锯齿形翅片 B. 百叶窗翅片 C. C管翅片 D. 缩放管 3.以下换热器中的比表面积最小( A ) A.大管径换热器B.小管径换热器 C.微通道换热器 D. 板式换热器 4. 对于板式换热器,如何减小换热器的阻力(C ) A.增加流程数B.采用串联方式 C.减小流程数 D. 减小流道数。 5.对于板翅式换热器,下列哪种说法是正确的( C ) A.翅片高度越高,翅片效率越高 B.翅片厚度越小,翅片效率越高 C.可用于多种流体换热。 D. 换热面积没有得到有效增加。 6.对于场协同理论,当速度梯度和温度梯度夹角为( A ),强化传热效果最好。 A.0度B.45度 C.90度 D. 120度 7. 对于大温差加热流体(A ) A.对于液体,粘度减小B.对于气体,粘度减小 C.对于液体,传热系数减小 D. 对于气体,传热系数增大8. 对于下列管壳式换热器,哪种换热器不能进行温差应力补偿( B ) A.浮头式换热器B.固定管板式换热器 C.U型管换热器 D. 填料函式换热器。 9. 对于下列管束排列方式,换热系数最大的排列方式为( A ) A.正三角形排列B.转置三角形排列 C.正方形排列 D. 转正正方形排列。 10. 换热器内流体温度高于1000℃时,应采用以下何种换热器(A )

锅炉国内外研究现状

供暖锅炉控制的国内外研究现状 锅炉的自动化控制从上世纪三、四十年代就开始了,当时大都为单参数仪表控制,进入上世纪五十年代后,美国、前苏联等国家都开始进行对锅炉的操作和控制的进一步研究。但由于当时科技发展的局限性,对锅炉的控制主要停留在使用汽动仪表(包括汽动单元组合仪表和汽动基地式仪表)的阶段,而且大多数锅炉只是检测工艺参数,不进行自动控制。到上世纪六十年代,在发达国家,锅炉的控制主要以电动单元组合仪表(相当于我国的DDZ-II, DDZ-III仪表)检测与控制,还是以检测报警为主,控制为辅助功能。到了上世纪七十年代,随着计算机技术和自动控制技术理论的发展,使得锅炉的计算机控制成为可能。尤其是近一、二十年来,随着先进控制理论和计算机技术的飞速发展,加之计算机各种性能的不断增强,价格的大幅度下降,使锅炉应用计算机控制很快得到了普及和应用。许多发达国家都相继开发出了锅炉计算机控制系统。如今在国外,锅炉的控制己基本实现了计算机自动控制,在控制方法上都采用了现代控制理论中的最优控制、多变量频域、模糊控制等方法,因此,锅炉的热效率很高、锅炉运行平稳,而且减少了对环境的污染。在国内,由于经济技术条件的限制,中小企业锅炉设备水平一直比较落后,大多数中小型锅炉水平基本上停留在手动和简单仪表操作的水平。80年代中后期,随着先进的控制技术引入我国的锅炉控制,锅炉的计算机控制得到了很大的发展。至90年代,锅炉的自动化控制己成为一个热门领域,利用单片机、可编程序控制器、工业计算机以及引进的国外控制设备开发的各种控制系统,己逐渐用于对原有锅炉的技术改造中,并向与新建炉体配套的方向发展,许多新的控制方法,诸如最优控制、自适应控制、模糊控制、神经网络控制、专家控制等自动控制的最新成果也在锅炉自动控制中得到了尝试和应用.但由于控制技术单一,或控制算法的建模往往不能反映真实的锅炉燃烧状况,导致在工程实践中并不怎么成功,不能产生很好的经济效益,挫伤了用户在工业锅炉上用计算机进行控制的积极性。进入本世纪以来,为了进一步改善锅炉操作状况,降低能耗,确保安全运行,减少对大气的污染,同时随着人工智能理论的发展成熟,智能控制技术的大规模应用,对新一代锅炉计算机优化控制系统的开发和应用已势在必行且条件成熟。国内供热锅炉燃烧系统自动控制大多在燃油和燃气锅炉上实现的,对于燃煤锅炉,在自动控制研究方面总是得不到满意的效果,存在的主要问题是滞后问题。近几年变频技术在我国的应用领域越来越广,在锅炉控制方面也有应用,主要有三种形式,①全自动变频定压; ②锅炉鼓、引风机变频控制;③循环泵变频控制,对系统进行质调节。三种形式均有独立应用的范例,也有组合应用,但主要是以人工控制为主,节能效果仍然取决于司炉人员的经验,水平和责任意识。 SCADA是英文“Supervisory Control and Data Acquisition”的缩写,即“监视控制和数据采集”。SCADA系统是建立在计算机基础之上的自动化监控系统,它的主要任务是采集和管理各个生产环节的实时生产数据,对生产过程进行监视和控制,并保存历史数据和故障事件,提供报表输出和计算、分析SCADA系统作为生产过程和事物管理自动化最为有效的计算机软硬件系统之一,它有两层含义:一是分布式的数据采集系统,即智能数据采集系统,也就是通常所说的下位机;另一个是数据处理和显示系统,即上位机HMI(HumanMachine Interface,人机界面)系统,下位机通常是指硬件层上的,即各种数据采集设备,如RTU(Remote Terminal Unit,远程终端测控单元)、PLC(Programmable Logic Controller,可编程逻辑控制器)及各种智能控制设备等等。这些智能采集设备与生产过程

监测换热器介绍说明

监测换热器 在我国石油化工、冶金和发电等行业上,大多采用工业循环冷却水。目前,为了进一步节能减排,提高循环冷却水的利用率,从而对水处理的技术和药剂的质量要求越来越高。同时,加强水处理的监测也越来越重要。监测换热器较好地模拟了工业现场换热器,对测量有关水质的腐蚀、结垢数据十分重要。它适用于各种材质的换热器,如陶瓷换热器,金属换热器等。 1. 监测换热器的原理 监测换热器 监测换热器是一种模拟用的小型换热器, 其工作条件较接近于换热器装置的实际运行条件, 其特点是有一个传热的金属表面, 能够监测传热面上腐蚀、结垢和沉积的情况。适于各种材质的换热器监测,如陶瓷换热器、金属换热器、石墨换热器等。所以监测换热器法是冷却水系统进行腐蚀、结垢监测和评价的一种重要方法。

监测换热器安装在循环冷却水旁。试验管采用¢19×2 毫米无缝钢管, 外壁镀铬, 有效长度1177 毫米, 有效传热面积0.055米2 , 流经试管的冷却水( 给水) 流量636 公斤/小时( 流速1米/秒) ; 采用低压饱和蒸汽, 试管传热强度约500, 000 千焦(/ 米2时) , 水侧壁温75~80℃。测量水的流量、进出口温度和蒸汽温度等数据, 计算当前污垢热阻值。取出试管和挂片通过失重法计算腐蚀率、粘附速度等。 2. 监测换热器的分类根据热介质来源不一样, 可以分为我们通常说的蒸汽式监测换热器和电加热式监测换热器。 3. 监测换热器的热介质来源现场带压工作蒸汽, 虽然监测换热器工作要求蒸汽压力在0.8~1.0kg/cm2, 但在进入监测换热器前蒸汽压力要保持在 4.0~ 5.0kg/cm2, 然后再减压到监测换热器工作压力。如果进入监测换热器前蒸汽压力低于4.0 kg/cm2, 在冬天尤其是在北方, 蒸汽管线中蒸汽含水过多, 影响测量; 如果进入监测换热器前蒸汽压力高于5.0 kg/cm2, 蒸汽的波动, 难以控制。为了稳定蒸汽压力, 采用一种蒸汽自力式调压阀, 它是一种不需要外加能源的这些执行机构, 外来蒸汽压力在4.0~10.0kg/cm2 波动, 经过蒸汽自力式调压阀, 使压力可以稳定在0.8~1.0kg/cm2中的某个值, 运用场合比较大。 4. 电加热式监测换热器用于不能提供外来蒸汽的现场, 通过电加热容器里的水产生蒸汽给试验管加热。使用电加热式监测换热器, 消耗功率在18 千瓦以上, 监测成本较高。

看世界PDC钻头的最新进展(一)

钻井过程中的技术创新,看世界PDC钻头的最新进展(一) 研磨性页岩地层驱使着新钻头的设计,以应对坚硬岩石及高温井的钻探。 在金刚石切削齿与碳化物基岩面相互作用期间,贝克休斯的休斯克里斯滕森Quantec Force强力PDC钻头获得了最佳效果,表现出更高的耐用性和热稳定性,通过获得的有限的切削齿分析,切削刃上的残余应力被迁移。 随着北美油气井页岩层的不断出现,钻头公司迫切地公关,以应对这些地层钻探的挑战并不让人惊讶,对于具体的应用,随之而来的是新钻头的设计,或是改进现有钻头的设计。 一些近期的设计,包括一些应对研磨性地层或高温地层钻井的新切削材料,也有一些8刀翼钻头的外形设计,这些设计都吸收了新切削齿技术和新材料技术,还有一些更新的钻头体材料技术,这些技术都是为了增强钻头的耐用性和提高钻头的性能表现,唯一的目的就是为了降低作业者的钻井成本。 一位服务于Varel国际公司西半球的现场工程经理卡尔罗斯(Karl Rose)说:“在开发钻头切削齿方面,许多钻头技术基本上都是材料技术,使钻头能够承受钻极硬的研磨性地层,切削齿能够在钻硬地层、软地层和夹层地层的变化中不会损坏”。 在钻头本身的材料特性方面也有了新的进展,为了使钻头更加结实和耐用,促使设计者设计出应对更硬地层类型的PDC钻头,罗斯先生说:“随着更坚硬材料的出现,切削齿材料的密度也会增加,使钻头从根本上更加坚韧耐用,这会让作业者在钻硬地层和研磨性地层时,用一只钻头打更多的进尺”。 一位史密斯国际公司的技术支持经理弗莱明克雷格同意说:“切削齿越好,钻头在井里滞留的时间就越长,就能打更多的硬地层和研磨性地层,作业者花费的成本就会越少”。 弗莱明先生说:“我们首先要能让一个切削齿应对更硬和更高研磨性地层,以便能使整个PDC钻头切削齿吃入这些地层,另一方面,钻头的刀翼越多,触到井底的金刚石体就越多”。

锅炉行业国内外发展现状

锅炉行业国内外发展现状 我国锅炉市场国际化竞争日趋激烈,目前为止,已取得中国进口锅炉安全质量许可证书的境外企业已达173家,其中美国26家、英国6家、日本13家、韩国21家、意大利15家、德国31家等。另外目前中国已建立了14家合资或独资企业,大多生产油气锅炉,如上海三浦、杭州富尔顿、韶关正久、安阳方块、三北拉法克、北京庆东、北京菲斯曼、北京巴布科克、沈阳大通、山东前田、青岛荏原、在宇、昆山大震、九江克莱顿等。同时进口锅炉越来越多,占据了相当的市场份额。面对这种新的形势,对整个市场而言竞争会日益惨烈,企业压力会越来越大。 根据对国内锅炉及原机制造业前十家企业的经营指标的统计发现,产品销售收入在10亿元以上的有8家,最高达到30亿元左右。利润总额与其销售收入却相差很大,有的企业利润总额是销售收入的1/4左右,而有的企业只有1/20,可见这些骨干企业在经营策略上有很大的区别,这期间存在着极大的浪费和不合理等因素,同样面对各方面的压力,有些企业在竞争策略上已经走在了行业的前列,而有些企业则正在逐步的走入误区。今年,我国推行了一系列措施,锅炉企业将可享受许可证升级、换证受理期限从5个工作日缩短至3个工作日,企业向质监局认可机构申请对其生产的新产品进行热工测试时,实施减免50%的测试费等一系列优惠政策等,逐步推进我国锅炉业的发展。 锅炉结构 炉体设计和制造采用三回程、湿背式、偏心炉膛、非对称性结构。炉胆可设计为波形,减少 热膨胀应力,增加辐射受热面。应用先进的数字化控制技术,可远程精确监控燃烧过程。自 动化程度,各种保完善。选配优质进口低NOX燃烧机,燃烧充分,属于环保产品。可选 配冷凝换热器和空气预热器,从而提高锅炉效率。可增设通讯接口实现上位机控制。锅炉 制造规范,严格按国家有关标准制造。整体快装出厂,外形美观,色泽明快。 一、锅炉的分类 锅炉按用途可分为:电站锅炉、产业锅炉、采热锅炉、机车锅炉和船舶锅炉等。 按照锅炉产生的蒸汽压力和流量可分为:高压锅炉、中压锅炉、低压锅炉及大容 量(大型)锅炉、中容量(中型)锅炉、小容量(小型)锅炉。产业锅炉一般是 低压小容量锅炉。

我国教育技术的发展趋势

我国教育技术的发展趋势 院系:班级:姓名:学号: 随着社会不断的发展和进步,我国的教育技术也呈现出较好的发展势头,然而,它将如何发展?或者说它的未来发展趋势是怎样的?现在我们就来整体探讨一下。 首先,我们要清楚,何谓教育技术?美国是教育技术产生最早、发展较快的国家。教育技术作为一个专业和领域的出现,最早可以追溯到20世纪20年代美国的“视听教育运动”。从1963年到1994年,美国教育技术界对教育技术进行了多次定义。而我国的学者在多年的研究和实践当中,对教育技术也逐渐形成了自己的看法,并针对新兴技术和传统技术的结合,提出了现代教育技术的概念。综合国内外学者对于教育技术的理解和定义,大致可以分为以下三种: 1)媒体—工具论:这种观点主要存在于教育技术发展的早期,认为教育技术是用于教学的各种媒体和工具。代表媒体—工具论的典型定义如美国教育技术委员会(AECT)1970年定义和Lumsdaine.A.A的1964年定义。 2)手段—方法论:这种观点认为教育技术是教育手段和教育方法的总和,以系统方法为核心更有效地发挥教育手段的作用。比较典型的定义如AECT1972年定义、尹俊华等的1996年定义和南国农的1997年定义。 3)理论—实践论:这种观点是伴随着教育技术的发展,尤其是美国教育技术协会1994年定义的提出而逐渐为人们接受和认可的。理论—实践论认为教育技术由教育技术学理论和教育技术实践两个部分组成。关于这种理论和实践的范围以及它们之间的关系,还存在着不同的理解。 虽然关于教育技术,目前在我国还没有一个统一的定义或描述,但是从各种定义可以分析得出:(1)教育技术支持和优化教学,最终促进学习者的学习;(2)教育技术围绕教学过程和教学资源展开理论研究和实践;(3)教育技术的基本要素包括方法、工具、技能。 如今,教育技术作为教育改革的重点和出口.已成为社会各界关注的焦点。可是,教育枝术如何更有效地促进教育教学改革、加快我国教育信息化进程?如何把握教育技术的发展趋势这已是人们共同关注的问题,我们乐观的看到,在过去的几十年里,教育技术在我国的教育发展中所起到的重要作用和成就,但是,我国的教育技术确实还存在不少问题,有的问题还很严重,如果不重视起来,及时解决,势必会阻碍我国教育技术的发展,对我国的教育改革事业产生不良影响,接下来,我们来分析一下,目前我国的

换热器的设计说明书.

西安科技大学—乘风破浪团队 1 换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质; ③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求; ⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温

西安科技大学—乘风破浪团队 2 差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U 形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 分类 管 壳 式 名称 特性 管式 固定管板式 刚性结构用于管壳温差较小的情况(一般≤50°C),管间不 能清洗 带膨胀节:有一定的温度补偿能力,壳程只能承受较低的压 力 浮头式 管内外均能承受高压,壳层易清洗,管壳两物料温差>120℃; 内垫片易渗漏 U 型管式 制造、安装方便,造价较低,管程耐压高;但结构不紧凑、 管子不易更换和不易机械清洗 填料 函式 内填料函:密封性能差,只能用于压差较小场合 外填料函:管间容易泄露,不易处理易挥发、易爆易燃及压 力较高场合 釜式 壳体上都有个蒸发空间,用于蒸汽与液相分离 套管 双套管式 结构比较复杂,主要用于高温高压场合或固定床反应器中

国外石油工程技术的最新进展

国外石油工程技术的最新进展 近年来给世界石油工业带来技术革命的几项高新技术成果主要有以下几个方面:地质巡航系统给水平井技术和复杂油井结构的发展带来了无限的生命力,使水平井从过去边缘和高风险技术变成今天提高原油采收率的常规技术。钻井监控系统使石油钻井工艺技术迸入了全球实时监控时代,人们可以在办公室与远在万里之遇的井场工程师和技术总监通过网络进行通讯,提高了钻井的安全性和效率。智能完井技术对石油资源提供了一种更智能化、更灵活可变的管理,同时,智能完井系统给油藏参数监测和生产参数的计量提供了一个强有力的手段。先进的完井技术在疏松砂岩油藏的长水平井段裸眼完井获得成功,实现了油井长期的无砂生产。新的人工举升系统在油田的应用可提高产量和减少井下故障,降低采油成本。近年来,水平井技术带动了世界石油工程技术的飞速发展,该技术在提高原油采收率方面的优势明显。水平井钻井过程中,钻头钻遇油层靠新一代的地质巡航(Geo-Navigaion)系统进行井眼轨迹的准确导向,100%中靶,确保其最大限度地钻遇油层。在实现油藏和采油生产一体化的优化管理方面,借助网格技术的钻井井眼结构实时监控(Realtime Well Construction Monitoring)技术实现了20世纪80年代初人们的设想,已经可以使相距万里 之遥的钻井现场总监与地质师之间进行有效通讯,交换钻井意见,共同查看钻井的全过程和修改井眼轨迹,真正实现优化钻井。智能完井系统(Intelligent Completion system)可使人们目睹井下油藏变化的动态参数,并能随时根据生产需要遥控井下各个不同油水层的开关,实现油嘴或水嘴的无级调速,油井管理更高效、更科学和更灵活。先进的完井技术主要体现在高难度的疏松砂岩油藏的水平井裸眼完井技术,该技术应用近年来发展起来的水压裂(Water Fracturing)技术结合下入具有独特结构的防砂管(Stand-Along Pre-packing Screen)和管外砾石充填(Gravel Packing)完井技术,成功地实现水平井和多分支井的裸眼完井,从而达到长期的无砂生产。 国外石油工程技术的最新进展——有杆采油技术 (一)有杆采油技术 作为有杆采油的主要设备,国外抽油机的发展十分迅猛。近年来,国外研制和应用了自动化抽油机和智能抽油机。为适应各油田不同情况的需要,国外还研制了相适应的抽油机。例如,低矮型、前置式、紧凑型无游梁长冲程等抽油机能够适应各种自然地理条件的需要:液压缸式、增大冲程游梁式等抽油机能够适应高含水、含砂、含石膏、含石蜡等石油 抽汲和稠油低渗透油层的开采.斜井抽油机、丛式井抽油机、双驴头抽油机、双井平衡抽油机、紧凑型抽油机等能够适应垂下井、斜井、定向井、丛式井、水平井抽汲的需要;适应深井抽汲的大型抽油机的最大载荷达到 2 130 kN,最大下泵深度达到4 420 m;近年未美国研制出了冲程长度为30.48 m的超长冲程抽油机以适应长冲程抽油的需要,这是目前世界 上最大冲程的抽油机;为节约动力消耗,还研制应用了异相型、前置式、大圈式、轮式、玻璃钢杆、六连杆等新型节能抽油机。 在有杆泵开采井下工具方面,为提高机采效益,延长检泵周期,国外研制出了很多配套设施。例如,加拿大Harbiso。Fischer有限公司生产出了一种高排量、

相关文档
最新文档