高中数学圆锥曲线之椭圆

高中数学圆锥曲线之椭圆
高中数学圆锥曲线之椭圆

椭圆(讲义)

知识点睛

一、曲线与方程

1. 曲线C 上的点与二元方程()0f x y =,的对应关系:

(1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.

那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2. 求曲线的方程的一般步骤:

(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合

{|()}P M p M =;

(3)用坐标表示条件p (M ),列出方程()0f x y =,; (4)化方程()0f x y =,为最简形式;

(5)说明以化简后的方程的解为坐标的点都在曲线上. 二、椭圆及其标准方程

我们把平面内与两个定点1F ,2F 的距离的和等于常数(大于12||F F )的点的轨迹叫做椭圆.

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 如图,设( )M x y ,是椭圆上任意一点,椭圆的焦距为2(0)c c >, 那么焦点1F ,2F 的坐标分别为( 0)c -,,( 0)c ,. 又设M 与1F ,2F 的距离的和等于2(0)a a >.

由椭圆的定义,椭圆就是集合

12{|||||2}P M MF MF

a =+=.

因为12|| ||MF MF =

=

所以

2a =.

为化简这个方程,将左边的一个根式移到右边,得

2a =

将这个方程两边平方,得

22222()44()x c y a x c y ++=--+,

整理得

2a cx -=

上式两边再平方,得

4222222222222a a cx c x a x a cx a c a y -+=-++,

整理得

22222222()()a c x a y a a c -+=-,

两边同除以222()a a c -,得

22

2221x y a a c

+=-. ① 由椭圆的定义可知,22220a c a c a c >>->,即,所以.

由图可知,1212|||| |||| ||PF PF a OF OF c PO =====,,

令||b PO ==那么①式就是22221(0)x y a b a b

+=>>.

椭圆的标准方程:22

221(0)x y a b a b

+=>>.

三、椭圆的几何性质

精讲精练

1. 已知点P 是直线230x y -+=上的一个动点,定点(12)M -,,Q 是线段PM 延

长线上的一点,且||||PM MQ =,则点Q 的轨迹方程是( ) A .210x y ++= B .250x y --= C .210x y --=

D .250x y -+=

2. 已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2.

一条曲线也在l 的上方,它上面每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.

3. 过原点的直线与圆22650x y x +-+=相交于A ,B 两点,求弦AB 的中点M 的

轨迹方程.

4. 写出适合下列条件的椭圆的标准方程:

(1)4a =,1b =,焦点在x 轴上; (2)4a =

,c =,焦点在y 轴上; (3)10a b +=

,c =.

5. 如图,1F ,2F 分别为椭圆的左、右焦点,椭圆上点M 的横坐标

等于右焦点的横坐标,纵坐标等于短半轴长的2

3

,则椭圆的离心率为__________.

6. 设e 是椭圆

2

2

14x y k +=的离心率,且1(1)2

e ∈,,则实数k 的取值范围是( ) A .(03),

B .16

(3)3

C .16

(03)()3

+∞U ,,

D .(02),

7. 设1F ,2F 分别是椭圆22

1259

x y +

=的左、右焦点,P 为椭圆上一点,M 是1F P 的中点,O 为坐标原点,||3OM =,则点P 到椭圆左焦点的距离为( ) A .4 B .6 C .3

D .7

8. 已知椭圆的方程是22

21(5)25

x y a a +

=>,它的两个焦点分别为 1F ,2F ,且12||8F F =,过点1F 的直线AB 交椭圆于A ,B 两点,

则△2ABF 的周长为( ) A .10

B .20

C

D

9. 已知点P 是椭圆22

1259

x y +

=上的一点,M ,N 分别是两圆: 22(4)1x y ++=和22(4)1x y -+=上的点,则||||PM PN +的

最小值、最大值分别为( ) A .9,12 B .8,11

C .8,12

D .10,12

10. 如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点.线

段AP 的垂直平分线l 和半径OP 相交于点 Q ,当点P 在圆上运动时,点Q 的轨迹是什么?

11. 点M 与定点(2 0)F ,的距离和它到定直线x = 8的距离之比是

1:2,求点M 的轨迹方程,并说明轨迹是什么图形.

12. 如图,从椭圆22

221(0)x y a b a b

+=>>上一点P 向x 轴作垂线,

垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y 轴正半轴的交点,且AB

∥OP

,1||F A =,求该椭圆的方程.

13.如图,已知椭圆

22

1

259

x y

+=,直线l:45400

x y

-+=.椭圆上是否存在一点,

它到直线l的距离最小?最小距离是多少?

14.如图,椭圆E:

22

22

1(0)

x y

a b

a b

+=>>的右焦点(30)

F,,过点F的直线交椭

圆E于A,B两点,若AB的中点坐标为(11)

-

,,求E的方程.

回顾与思考

________________________________________________________ ________________________________________________________ ________________________________________________________

【参考答案】 知识点睛

三、对称轴:x 轴、y 轴; 对称中心:原点;

2a

2b

2c

(01),

22a b -

精讲精练

1.D

2.21

(0)8

y x x =≠

3.2230x x y -+=

4.(1)22

116x y +=;(2)22116

y x +=;

(3)2213616x y +=或22

13616

y x +=

5.

3

6.C 7.A

8.D

9.C

10.点Q 的轨迹是以O ,A 为焦点,以r 为长轴长的椭圆.

11.点M 的轨迹方程是22

11612

x y +

=, 轨迹是以(2,0)、(-2,0)为焦点,以8为长轴长的椭圆.

12.22

1105

x y +

=

13

14.22

1189

x y +=

椭圆(随堂测试)

1. 经过定点( )(0)A a b a ≠,作互相垂直的两条直线1l 和2l ,

分别与x 轴、y 轴交于B ,C 两点,求线段BC 的中点M 的轨迹方程.

2. 设椭圆C :22

221(0)x y a b a b

+=>>的左、右焦点分别为1F ,2F ,P 是椭圆C 上

的点,212PF F F ⊥,1230PF F ∠=?,则C 的离心率为( )

A

.3

B

.6

C .13

D .16

3. 已知P 为椭圆22

1259

x y +=上任一点,F 为椭圆的左焦点,(21)

A ,为椭圆内一点,则||||PA PF +的最大值为__________.

【参考答案】

1.2222ax by a b +=+ 2.A 3

.10

椭圆(作业)

例1: 过点(3 4)P ,的动直线与x 轴、y 轴的交点分别为A ,B ,过A ,B 分别作x

轴、y 轴的垂线,两垂线交于点M ,求点M 的轨迹方程.

【思路分析】

设点M 的坐标为(x ,y ),用(x ,y )表达出点A ,B 的坐标,利用A ,B ,P 三点共线,求出x ,y 之间的关系式,此即为所求点M 的轨迹方程. 【过程示范】

根据题意画出符合题意的图形,如图,

设点()M x y ,,则(0)A x ,,(0)B y ,, ∵A ,B ,P 三点共线, ∴AP ??→,PB ??→

共线,

∵(34)AP x ??→

=-,,(34)PB y ??→

=--,,

∴(3)(4)4(3)x y --=?-,整理得43x y xy +=, 即430x y xy +-=,

∴点M 的轨迹方程为430x y xy +-=.

例2: 如果椭圆22

18125

x y +=上一点M 到此椭圆一个焦点1F 的距离为2,N 是1MF 的

中点,O 是坐标原点,则ON 的长为( )

A .2

B .4

C .8

D .3

2

【思路分析】

令左、右焦点分别为1F ,2F ,根据椭圆的定义,先求出2MF

△12MF F 的中位线,求出ON 的长.如图所示:

由椭圆方程:

2

2

18125

x y +=,可知9a =,

由椭圆的定义,知12||||218MF MF a +==,

∴2||16MF =,

∵ON 是△12MF F 的中位线, ∴21

||||82

ON MF =

=.故选C .

例3: 已知中心在原点,一个焦点为(0F 的椭圆被直线 32l y x =-:截得的

弦的中点横坐标为1

2

,求此椭圆的方程.

【思路分析】

根据焦点位置设出椭圆的方程,与直线方程联立,得一元二次方程,利用方程根与系数的关系表达出弦的中点坐标,建立等式求解. 【过程示范】

∵焦点(0F 在y 轴上,且c =,

∴设所求的椭圆方程为22

221y x a b

+=,且2250a b -=,①

联立22

22132y x a b y x ?+=???=-?,得222222(9)12(4)0a b x b x b a +-+-=,

设两交点为1122() ()A x y B x y ,,,,则2

1222

129b x x a b

+=+, ∵弦AB 的中点的横坐标为1

2

∴121

22

x x +=,即22

2

1219b a b =+,解得223a b =,② 由①②得,275a =,225b =,

故椭圆的方程为22

17525

y x +

=.

15.已知一曲线是到点(00)

O,与到点(30)

A,的距离之比为1:2的点的轨迹,求这条曲线的方程.

16.设P为曲线22

440

x y

--=上一动点,O为坐标原点,M为线段PO的中点,求点M的轨迹方程.

17.一动圆截直线30

x y

-=和30

x y

+=所得弦长分别为8,4,

求动圆圆心的轨迹方程.

18.求适合下列条件的椭圆的标准方程.

(1

)经过点(0)

P-

,(0

Q;

(2)长轴长是短轴长的3倍,且经过点(3 0)P ,; (3)焦距是8,离心率为0.8.

19. 已知椭圆方程为22236x y +=,则该椭圆的焦距为( )

A .2

B .3 C

. D

20. 若椭圆22

22

11

x y m m +=-(1m >)上一点P 到其左焦点的距离为 3,到右焦点的距离为1,则该椭圆的离心率为( )

A .2

B .1

2

C .13

D .3

21. 若椭圆C 的中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长

轴三等分,则椭圆C 的方程是( )

A .22

18172

x y +

=

B .22

1819

x y +

=

C .22

18145

x y +

=

D .22

18136

x y +

=

22. 已知方程

2

2

1221

x y

k k +=--表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )

A .1( 2)2,

B .(1 )+∞,

C .(1,2)

D .1( 1)2

23. 已知1F ,2F 为椭圆22

1259

x y +=的两个焦点,过1F 的直线交椭圆于

若22||||12F

A F

B +=,则||AB =__________.

24. 已知椭圆22

221(0)y x a b a b

+=>>的右顶点的坐标为(1,0),

过焦点且垂直于长轴的弦长为1,则椭圆C 的方程为

_____________________.

25. 如图,椭圆22

12516

x y +

=的左、右焦点分别是1F ,2F ,P 是椭圆上一点,若1F ,2F ,P 三点恰好能构成直角三角形,则点P 到x 轴的距离是__________.

26. 求过点(2 0)A ,,且与圆224320x x y ++-=内切的圆的圆心的轨迹方程.

27. 已知椭圆22149x y +

=,一组平行直线的斜率是3

2

. (1)这组直线何时与椭圆相交?

(2)当它们与椭圆相交时,证明这些直线被椭圆截得的线段的中点在一条直线上.

【参考答案】1.22

x y

++=

(1)4 2.22

-=

x y

41 3.10

xy=

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

(新)高中数学圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程 1. 椭圆方程的第一定义:平面内与两个定点F 1,F 2的距离的和等于定长(定长通常等于2a ,且2a >F 1F 2) 的点的轨迹叫椭圆。 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ (1)①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 22 2 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . 注:A.以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; B.在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和 2y 的分母的大小。 ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为???==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵椭圆的性质 ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e = .【∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为2 2 2 x y a +=。】 ⑦焦(点)半径: i. 设),(00y x P 为椭圆)0(12222 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+上的一点,21,F F 为上、下焦点,则 ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高中数学圆锥曲线解题技巧方法总结7558

圆锥曲线 1、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。 在椭圆122 22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0 202y a x b ; 在双曲线22 221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0 202y a x b ;在抛物线 22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 2.了解下列结论 (1)双曲线1222 2=-b y a x 的渐近线方程为02222 =-b y a x ; (2)以x a b y ±=为渐近线(即与双曲线12222=-b y a x 共渐近线)的双曲线方程为λλ(2222 =-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为22 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为2 2b a ,焦准距(焦点到相应准线 的距离)为2 b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 3、解析几何与向量综合时可能出现的向量内容: (1)在ABC ?中,给出() 12 AD AB AC =+u u u r u u u r u u u r ,等于已知AD 是ABC ?中BC 边的中线; (2)在ABC ?中,给出2 22OC OB OA ==,等于已知O 是ABC ?的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (3)在ABC ?中,给出=++,等于已知O 是ABC ?的重心(三角形的重心是三角形三条中线的交点); (4)在ABC ?中,给出?=?=?,等于已知O 是ABC ?的垂心(三角形的垂心是三角形三条高的交点); (5) 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=r r 使;③若存在实数 ,,1,OC OA OB αβαβαβ+==+u u u r u u u r u u u r 且使,等于已知C B A ,,三点共线. (6) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已 知AMB ∠是钝角, 给出0>=?m ,等于已知AMB ∠是锐角,

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

相关文档
最新文档