鲁大电磁场与电磁波实验指导书(新)

鲁大电磁场与电磁波实验指导书(新)
鲁大电磁场与电磁波实验指导书(新)

电磁场与电磁波实验指导书

鲁东大学信息与电气工程学院

电磁场与电磁波实验室

电磁场与电磁波实验守则

1、学生必须按时到指定实验室做实验,不迟到、不早退,不喧哗,不乱扔杂物;爱护公物,严禁在实验桌面上乱刻、乱画。保持实验室良好的实验环境。

2、实验前学生必须对所做的实验进行充分预习,并写出预习报告。实验前应认真了解所用仪器、设备、仪表的使用方法与注意事项。在启动设备之前,需经指导教师检查认可。

3、实验时,要严肃认真,正确操作,仔细观察,真实记录实验数据的结果。实验中严禁违章操作,遇到仪器设备故障要及时报告,不得自行拆卸。不得做与实验无关的事情,不得动与实验无关的设备,不得进入与实验无关的场所。

4、实验中,如发现仪器设备损坏或丢失,应及时报告,查明原因。凡属违反操作规程导致设备损坏或自行丢失仪表工具的,要追究责任,照章赔偿。

5、若发生事故,不要惊慌,必须立即切断电源,要保持现场并报告老师,以便查明情况,酌情处理。

6、实验完毕后,要按要求整理好试验设备、器材和工具等,关断电源。经指导教师检查数据并签字后,方可离开实验室。

7、学生需做开放性实验时,应事先与有关实验室(中心)联系,报告自己的实验目的、内容。实验结束后应整理好实验现场。

8、学生必须认真做好实验报告,在规定时间内交给指导教师批阅。

目录

实验一电磁波感应器的设计与制作

实验二电磁波的极化实验

实验三电磁波传播特性实验

实验四天线方向图测量实验

实验一电磁波感应器的设计与制作

一、预习要求

1、什么是法拉第电磁感应定律?

2、什么是电偶极子?

3、了解线天线基本结构及其特性。

二、实验目的

1、认识时变电磁场,理解电磁感应的原理和作用。

2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。

3、理解电磁波辐射原理。

三、实验原理

随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。电场和磁场构成了统一的电磁场的两个不可分割的部分。能够辐射电磁波的装置称为天线,用功率信

号发生器作为发射源,通过发射天线产生电磁波。

图1 电磁感应装置

如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。

电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。

图2 接收天线

本实验重点介绍其中的一种─—半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为/4λ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(/L λ=4)的远区场强有以下关系式:

()cos(cos )sin I I

E f r r

θπ

θθ==60602 式中,()f θ为方向性函数,对称振子归一化方向性函数为:

()()max

cos(cos )

sin f F f θθπ

θθ

=

=2 其中max f 是()f θ的最大值。

由上式可画出半波振子的方向图如图3所示。

图3 半波振子的方向图

半波振子方向函数与φ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方向性的方向图。在E 面的方向图为8字形,最大辐射方向为/θπ=2,且只要一臂长度不超过.λ0625,辐射的最大值始终在/θπ=2方向上;若继续增大L ,辐射的最大方向将偏离/θπ=2方向。

四、实验内容与步骤

1、打开功率信号发生器电源开关,Signal 灯亮,机器工作正常,按下Tx 按钮,观察功率指示表有一定偏转,此时Standby 灯亮,说明发射正常。

2、用金属丝制作天线体,用螺丝固定于感应灯板(或电流表检波板)两端,并安放到测试支架上,调节感应板的角度,使其与发射天线的极化方向一致。调节测试支架滑块到最右端,按下功率信号发生器上Tx 按钮,同时移动测试支架滑块,靠近发射天线,直到小灯刚刚发光时,记录下滑块与发射天线的距离。

3、改变天线振子的长度,重复上面过程,记录数据。

4、选用其它天线形式制作感应器,重复上面过程,记录数据。 次数 天线形式

天线长度

接收距离

1 2

五、注意事项

1、按下Tx按钮时,若Alarm红色告警灯亮,应立即停止发射,检查电缆线与发射天线接口是否旋紧,其余接口是否用封闭帽盖上,Output接口与电缆是否接好,或请老师检查。否则会损坏机器。

2、测试感应器时,不能将感应灯靠近发射天线的距离太小,否则会烧毁感应灯。(置于20cm 以外,或视感应灯亮度而定)。

3、尽量减少按下Tx按钮的时间,以免影响其它小组的测试准确性。

4、测试时尽量避免人员走动,以免人体反射影响测试结果。

六、报告要求

1、按照标准实验报告的格式和内容完成实验报告。

2、制作两种以上天线,观察接收效果。画出天线形状,记录接收距离。

3、对实验中的现象分析讨论。

4、提出改进意见及建议。

七、接收天线参考形状

实验三 电磁波传播特性实验

一、预习要求

1、什么是迈克尔逊干涉原理?它在实验中有哪些应用?

2、驻波的产生原理及其特性。

二、实验目的

1、学习了解电磁波的空间传播特性。

2、通过对电磁波波长、波幅、波节、驻波的测量,进一步认识和了解电磁波。

三、实验原理

变化的电场和磁场在空间的传播称为电磁波。几列不同频率的电磁波在同一媒质中传播时,几列波可以保持各自的特点(波长、波幅、频率、传播方向等),在同时通过媒质时,在几列波相遇或叠加的区域内,任一点的振动为各个波单独在该点产生振动的合成。而当两个频率相同、振动方向相同、相位差恒定的波源所发出的波叠加时,在空间总会有一些点振动始终加强,而另一些点振动始终减弱或完全抵消,因而形成干涉现象。

干涉是电磁波的一个重要特性,利用干涉原理可对电磁波传播特性进行很好的探索。而驻波是干涉的特例。在同一媒质中两列振幅相同的相干波,在同一直线上反向传播时就叠加形成驻波。

由发射天线发射出的电磁波,在空间传播过程中可以近似看成均匀平面波。此平面波垂直入射到金属板,被金属板反射回来,到达电磁波感应器;直射波也可直接到达电磁波感应器,这两列波将形成驻波,两列电磁波的波程差满足一定关系时,在感应器位置可以产生波腹或波节。

设到达电磁感应器的两列平面波的振幅相同,只是因波程不同而有一定的相位差,电场可表示为:

cos()x m E E t kz ω=- cos()=++y m E E t kz ωδ

其中z δβ=是因波程差而造成的相位差。

则当相位差(,,)===L L z n n δβπ

1012时,合成波的振幅最小,z 1的位置为合成波的

波节;相位差()/(,,)==+=L L z n n δβπ2212012时,合成波的振幅最大,z 2的位置为

合成波的波腹。

实际上到达电磁感应器的两列波的振幅不可能完全相同,故合成波波腹振幅值不是二倍单列波的振幅值,合成波的波节值也不是恰好为零。

根据以上分析,若固定感应器,只移动金属板,即只改变第二列波的波程,让驻波得以形成,当合成波振幅最小(波节)时:

//==z n n πβλ12

当合成波振幅最大(波腹)时:

(/)/()/=+=+z n n πβλ212214

此时合成波振幅最大到合成波振幅最小(波腹到波节)的最短波程差为/4λ,若此时可动金属板移动的距离为L ?,则:

/?=L λ4

即:

L λ=?4

可见,测得了可动金属板移动的距离L ?,代入式中便确定电磁波波长。

四、实验内容及步骤

实验装置如图4所示。

图4 电磁波教学综合实验仪

1、将设计制作的电磁波感应器(天线)安装在可旋转支臂上,调节其角度与发射天线的极化方向一致,再将支臂滑块移到距离发射天线分别为30 cm 、35cm 、40cm 刻度处。

2、开启电磁波教学综合实验仪开关(Power ),按Tx 按钮,此时发射天线板已有电磁波发射出来。

3、移动反射板,观察天线上的灯是否有明暗变化。如果没有,检查天线角度是否与发射天线极化方向一致;如果还没有明暗变化,再将支臂滑块移到距离发射天线近一点。

4、如系统正常工作,从远而近移动反射板,使灯泡明暗变化。以灯泡明暗度判断波节(波腹)的出现。

先将天线固定于位置1,由远而近移动反射板,记录下灯泡两个相邻最亮时反射板位置的坐标(波腹点),其距离即为/2λ。再将天线固定于位置2,重复上述过程。最后将天线固定于位置3,重复上述过程。将测量数记入下表:

五、注意事项

1、按下Tx按钮时,若Alarm红色告警灯亮,应立即停止发射,检查电缆线与发射天线接口是否旋紧,其余接口是否用封闭帽盖上,Output接口与电缆是否接好,或请老师检查。否则会损坏仪器。

2、测试感应器时,不能将感应灯靠近发射天线的距离太小,否则会烧毁感应灯。(置于20cm 以外,或视感应灯亮度而定)。

3、尽量减少按下Tx按钮的时间,以免影响其它小组的测试准确性。

4、测试时尽量避免人员走动,以免人体反射影响测试结果。

六、报告要求

1、按照标准实验报告的格式和内容完成实验报告。

2、用自制的接收天线,分别用白炽灯和电流表测量电磁波的波长,并计算出电磁波的频率。

3、对实验中的现象分析讨论,并对实验误差产生的原因进行分析。

4、提出改进意见及建议。

实验二 电磁波的极化实验

一、预习要求

1、什么是电磁波的极化?它具有什么特点?

2、了解各种常用天线的极化特性。

3、天线特性与发射(接收)电磁波极化特性之间的有什么关系?

二、实验目的

1、研究几种极化波的产生及其特点。

2、制作电磁波感应器,进行极化特性实验,与理论结果进行对比、讨论。

3、通过实验,加深对电磁波极化特性的理解和认识。

三、实验原理

电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量E 的端点在空间描绘出的轨迹来表示。由其轨迹方式可得电磁波的极化方式有三种:线极化、圆极化、椭圆极化。极化波都可看成由两个同频率的直线极化波在空间合成,如图5所示。设两线极化波沿正Z 方向传播,一个的极化取向在X 方向,另一个的极化取向在Y 方向。若X 在水平方向,Y 在垂直方向,这两个波就分别为水平极化波和垂直极化波。

图5 电磁波的极化方式

若:水平极化波 sin()x xm E E t kz ω=-

垂直极化波 sin()y ym E E t kz ωδ=-+

其中xm E 、ym E 分别是水平极化波和垂直极化波的振幅,δ是y E 超前x E 的相角(水平极化波取为参考相面)。

取z =0的平面分析,有:

sin()x xm E E t ω= sin()y ym E E t ωδ=+

综合得:

x x y y aE bE E cE -+=221

式中a 、b 、c 为水平极化波和垂直极化波的振幅xm E 、ym E 和相角δ有关的常数。

此式是个一般化椭圆方程,它表明由x E 、y E 合成的电场矢量终端画出的轨迹是一个椭圆。在满足不同条件时,形成三种极化波。

1、当两个线极化波同相或反相时,其合成波是一个线极化波。

2、当两个线极化波振幅相等,相位相差/π2时,其合成波是一个圆极化波。

3、当两个线极化波振幅不等或相位差不为/π2时,其合成波是一个椭圆极化波。 实验一所设计的半波振子天线接收(发射)的波为线极化波;而最常用的接收(发射)圆极化波或椭圆极化波的天线为螺旋天线。实际上一般螺旋天线在轴线方向不一定产生圆极化波,而是椭圆极化波。当单位长度的螺圈数N 很大时,发射(接收)的波可看作是圆极化波。

极化波需要重视的是极化的旋转方向问题。一般规定:面对电磁波传播的方向(无论是发射或接收),电场沿顺时针方向旋转的波称为右旋圆极化波,反时针方向旋转的波称为左旋圆极化波。右旋螺旋天线发射或接收右旋圆极化波效果较好,左旋螺旋天线发射或接收左旋圆极化波效果较好。螺旋天线绕向的判断方法:沿着天线辐射方向,当天线的绕向符合右手螺旋定则时,为右旋圆极化,反之为左旋圆极化。

四、实验内容

实验装置如图6所示。

图6 电磁波极化实验装置

1、将一付发射天线架设在发射支架上,连接好发射电缆,开启电磁波教学综合实验仪开关(Power ),电缆线一端接输出端口(Output ),另一端分别接发射天线的垂直、水平和圆极化端口。

2、将电磁波感应器安装在测试支架上,分别设置成垂直、水平、斜45度三种位置,按下Tx 发射按钮,并移动感应器滑块,观察灯泡由亮到不亮时距发射天线的距离,并记录数据。

3、分析实验数据,判断发射天线发出的电磁波的极化形式。

五、注意事项

1、按下Tx按钮时,若Alarm红色告警灯亮,应立即停止发射,检查电缆线与发射天线接口是否旋紧,其余接口是否用封闭帽盖上,Output接口与电缆是否接好,或请老师检查。否则会损坏机器。

2、测试感应器时,不能将感应灯靠近发射天线的距离太小,否则会烧毁感应灯。(置于20cm 以外,或视感应灯亮度而定。)

3、避免与相邻小组同时按下Tx按钮,尽量减少按下Tx按钮的时间,以免相互影响测试准确性。

4、测试时尽量避免人员走动,以免人体反射影响测试结果。

六、报告要求

1、按照标准实验报告的格式和内容完成实验报告。

2、用自制的接收天线,对应不同的天线极化波接口,调整感应器的角度,用电流表或灯泡记录感应器的最大接收距离,分析电磁波的极化形式。

3、讨论电磁波不同极化收发的规律。

4、提出实验改进意见和建议。

实验四 天线方向图测量实验

一、预习要求

1、什么是天线的方向性?

2、什么是天线的方向图,描述方向图有哪些主要参数?

二、实验目的

1、通过天线方向图的测量,理解天线方向性的含义;

2、了解天线方向图形成和控制的方法;

3、掌握描述方向图的主要参数。

三、实验原理

天线的方向图是表征天线的辐射特性(场强振幅、相位、极化)与空间角度关系的图形。完整的方向图是一个空间立体图形,如图7所示。

它是以天线相位中心为球心(坐标原点),在半径足够大的球面上,逐点测定其辐射特性绘制而成的。测量场强振幅,就得到场强方向图;测量功率,就得到功率方向图;测量极化就得到极化方向图;测量相位就得到相位方向图。若不另加说明,我们所述的方向图均指场强振幅方向图。空间方向图的测绘十分麻烦,实际工作中,一般只需测得水平面和垂直面的方

向图就行了。 图7 立体方向图

天线的方向图可以用极坐标绘制,也可以用直角坐标绘制。极坐标方向图的特点是直观、简单,从方向图可以直接看出天线辐射场强的空间分布特性。但当天线方向图的主瓣窄而副瓣电平低时,直角坐标绘制法显示出更大的优点。因为表示角度的横坐标和表示辐射强度的纵坐标均可任意选取,例如即使不到1o的主瓣宽度也能清晰地表示出来,而极坐标却无法绘制。一般绘制方向图时都是经过归一化的,即径向长度(极坐标)或纵坐标值(直角坐标)是以相对场强

max `)(E E ?θ表示。这里,)(`?θE 是任一方向的场强值,max E 是最大辐射方向的场强值。因此,

归一化最大值是1。对于极低副瓣电平天线的方向图,大多采用分贝值表示,归一化最大值取为零分贝。图8所示为同一天线方向图的两种坐标表示法。

图8 方向图表示法(a)极坐标(b)直角坐标

本实验测量一种天线的方向图,测试系统框图如图9所示。其中,辅助天线作发射,由功率信号发生器激励产生电磁波;被测天线作接收,被测天线置于可以水平旋转的实验支架上,接收到的高频信号经检波后送给电流指示器显示。

图9 方向图测试系统

四、实验内容与步骤

1、打开功率信号发生器电源开关,Signal灯亮,机器工作正常,按下TX按钮,观察功率指示表有一定偏转,说明发射正常。

2、将检波天线架设于极化支架上,连接好天线到电流表的电缆,按下TX按钮,电流表应有一定指示,说明接收部分工作正常。

3、设定被测天线的架设距离,使天线旋转360o的电流读数在量程范围内。

4、固定被测天线位置,连续旋转天线支架,按一定角度步进,读出每个步进角度对应的电流表指示值。

5、将测量数据在直角坐标系中画出天线的方向图。并在图上读出方向图的主瓣宽度和副瓣电平。

五、注意事项

1、按下TX按钮时,若Alarm红色告警灯亮,应立即停止发射,检查波段插口与波段开关是否对应,发射天线是否接好,或请老师检查。否则会损坏机仪器。

2、尽量减少按下TX按钮的时间,以免影响其它小组的测试准确性。

3、测试时尽量避免人员走动,以免人体反射影响测试结果。

六、报告要求

1、画出实验测试原理框图

2、数据记录与处理

(1)分别在E面和H面旋转被测天线,将数据记录入下表

(2)根据上面的数据,在下表中画出H面和E面的直角坐标方向图

0o 180o 360o

(3)根据上面的数据,读出方向图的主瓣宽度:E面,H面。

3、分析该实验中方向图测量误差产生的因素有那些?

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

控制工程基础实验指导书(答案)

控制工程基础实验指导书 自控原理实验室编印

(内部教材)

实验项目名称: (所属课 程: 院系: 专业班级: 姓名: 学号: 实验日期: 实验地点: 合作者: 指导教师: 本实验项目成绩: 教师签字: 日期: (以下为实验报告正文) 、实验目的 简述本实验要达到的目的。目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。 二、实验仪器设备 列出本实验要用到的主要仪器、仪表、实验材料等。 三、实验内容 简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。 四、实验步骤 简述实验操作的步骤以及操作中特别注意事项。 五、实验结果

给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。 六、讨论 分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。 七、参考文献 列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资 料。 格式如下 作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码

实验一控制系统典型环节的模拟、实验目的 、掌握比例、积分、实际微分及惯性环节的模拟方法; 、通过实验熟悉各种典型环节的传递函数和动态特性; 、了解典型环节中参数的变化对输出动态特性的影响。 二、实验仪器 、控制理论电子模拟实验箱一台; 、超低频慢扫描数字存储示波器一台; 、数字万用表一只;

、各种长度联接导线。 三、实验原理 运放反馈连接 基于图中点为电位虚地,略去流入运放的电流,则由图 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。 、比例环节 实验模拟电路见图所示 U i R i U o 接示波器 以运算放大器为核心元件,由其不同的输入网络和反馈网络组成的各种典型环节,如图所示。图中和为复数阻抗,它们都是构成。 Z2 Z1 Ui ,— U o 接示波器 得:

PLC实验指导书

PLC综合实验课题 1.总体要求: 对每一课题必须绘制运行工序图,设计的PLC控制系统包括:PLC I/O分配、控制线路图设计、梯形图设计;将设计的PLC程序利用手持式编程器送入PLC 并调试通过,符合课题提出的控制要求后,提交现场验收。 实验报告书在提交上述内容的基础上,还要讨论调试心得。 2.实验课题 课题一:小车往返运动控制 小车往返运动情况参如图1。 SQ1 SQ2SQ3 图 1 初态:小车启动前位于导轨的中部(如图1中位置)。系统运行要求如下:1)按启动按钮SB1,小车前进,到SQ1处停车,延时5s后小车后退; 2)小车后退至SQ2处停车,延时5S后第二次前进,到SQ3处后再次后退; 3)后退至SQ2处停车。 要求:设计PLC控制系统,必须采用基本逻辑指令编程。 课题二:三台电机顺序控制 三台电机顺序控制要求如下:M1运行10S 后停止,M2自行启动;M2运行5S 后停止,M3自行启动;M3运行5S后停止,M1重新自行启动运行,如此反复三次后所有电机停止运行,指示开始灯闪烁,按停车按钮指示灯闪烁停。 要求:设计PLC控制系统,必须采用基本逻辑指令编程。

课题三:机械手PLC 控制 悬挂式机械手结构示意图如图3 。 图 3 SQ1 SQ4 机械手工作控制方式分手动、单步、单周期和连续控制,控制方式采用转换开关进行,(手动时X6=ON ,单步时X7=ON ,单周期X10=ON ,连续X11=ON )。 连续操作过程如下: 机械手必须在原位(图3中A 点),按启动按钮SB1,机械手开始动作: 下降→夹紧(电磁阀得电)→上升→右行→下降→放松(电磁阀失电)→上升→左行回到原位→下降(循环执行) 连续操作过程中按停止按钮SB2,必须完成一个工作循环回到A 点后停止运行。 单周期操作:机械手在原位,按启动按钮,机械手工作一个周期后停在原位。 单步操作:机械手在原位开始,按一次启动按钮,机械手自动完成一步后自动停止,再按一次启动按钮机械手自动完成下一步后自动停止…… 手动操作是指机械手的上升/下降、右行/左行、夹紧/放松可以用按钮单独操作,工作方式采用转换开关进行选择,具体控制要求如下: X20=ON :按住启动按钮SB1,机械手左行;按住停止按钮SB2,机械手右行; X21=ON :按住启动按钮SB1,机械手上升;按住停止按钮SB2,机械手下降; X22=ON :按住启动按钮SB1,机械手夹紧;按住停止按钮SB2,机械手放

数控插补多轴运动控制实验指导书(学生)

数控插补多轴运动控制系统解剖实验 实验学时:8 实验类型:独立授课实验 实验要求:必修 一、实验目的 1、通过本实验使学生掌握数控插补多轴控制装置的基本工作原理; 2、根据常用低压电器原理分析各运动控制电气元件的应用原理,分析数控插补运动实现的控制原理; 3、根据机电一体化产品的设计要求和设计流程进行运动控制系统的功能分析、机械结构分析、控制系统分析以及相关传感器选型等方面的设计内容。 本实验以数控插补多轴运动控制系统为具体对象,使学生掌握机电一体化产品设计和开发的技术流程和主要内容,通过运动控制系统的实现过程掌握常用电气元件识别和原理、数控插补原理、位置伺服控制系统等的设计和实现方式。 二、实验内容 1、通过数控插补多轴控制装置及其相关系统的测试和观察,分析数控插补的工作原理; 2、分析系统的功能、机械结构分析、运动关系以及相关传感器等,分析其相关的机械结构、电机及其驱动模块和传感反馈环节等; 3、根据常用低压电器原理,分析系统各运动控制电气元件的应用原理,分析数控插补运动过程实现的控制原理,并绘制相关的控制原理图和系统连接图。 三、实验设备 1、多轴运动控制系统一套(含电控箱) 2、PC机一台 3、GT-400-SG-PCI 卡一块(插在PC机内部)

四、实验原理 该数控插补多轴运动控制系统是依据开放式数控系统原理构建的,其以通用计算机(PC)的硬件和软件为基础,采用模块化、层次化的体系结构,能通过各种形式向外提供统一应用程序接口的系统。开放式数控系统可分为 3类:(1)CNC 在 PC中;(2)PC作为前端,CNC作为后端;(3)单 PC,双 CPU平台。 本实验采用第一类,把顾高公司的 GT-400-SG-PCI 多轴运动控制卡插入PC 机的插槽中,实现电机的运动控制,完成多轴运动控制系统的控制。其优点如下:(1)成本低,采用标准 PC机;(2)开放性好,用户可自定义软件;(3)界面比传统的 CNC 友好。 图1为该系统的硬件构成图,运动平台机械本体采用模块化拼装,主要由普通PC机、电控箱、运动控制卡、伺服(步进)电机及相关软件组成。其主体由两个直线运动单元(GX系列)组成。每个GX系列直线运动单元主要包括:工作台面、滚珠丝杆、导轨、轴承座、基座等部分,其结构见图2。伺服型电控箱内装有交流伺服驱动器,开关电源,断路器,接触器,运动控制器端子板,按钮开关等。步进型电控箱则装有步进电机驱动器,开关电源,运动控制器端子板,船形开关等。 图1 数控插补多轴控制系统硬件构成

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

控制工程基础实验指导书(答案) 2..

实验二二阶系统的瞬态响应分析 一、实验目的 1、熟悉二阶模拟系统的组成。 2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单 位阶跃响应。 3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调 整时间ts。 4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。 5、学会使用Matlab软件来仿真二阶系统,并观察结果。 二、实验仪器 1、控制理论电子模拟实验箱一台; 2、超低频慢扫描数字存储示波器一台; 3、数字万用表一只; 4、各种长度联接导线。 三、实验原理 图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。 图2-1 二阶系统原理框图

图2-1 二阶系统的模拟电路 由图2-2求得二阶系统的闭环传递函 12 22 122112 /() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为 (1)(2), 对比式和式得 n ωξ== 12 T 0.2 , T 0.5 , n S S ωξ====若令则。调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、 临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。 (1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为: 图2-3 0 < ξ < 1时的阶跃响应曲线 (2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为: 如图2-4为二阶系统工作临界阻尼时的单位响应曲线。 (2) +2+=222n n n S S )S (G ωξω ω1 ()1sin( ) (3) 2-3n t o d d u t t tg ξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线 e t n o n t t u ωω-+-=)1(1)(

机电传动控制实验指导书(最新)

机电传动控制实验指导书 实验一、继电—接触器控制三相异步电动机 一、实验目的 1.熟悉继电—接触器断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握三相异步电动机主回路和控制回路的接线方法; 3.了解继电—接触器断续控制电路的组成 二、实验使用仪器、设备 1.DB电工实验台; 2.三相异步电动机二台; 3.万用表一台; 4.专用连接线一套。 三、实验要求 实现三相异步电动机的正、反转、点动、互锁、连锁控制。满足以下具体要求: (1) M1可以正、反向点动调整控制; (2) M1正向起动之后,才能起动M2; (3) 停车时,M2停止后,才能停M1; (4) 具有短路和过载保护; (5) 画出主电路和控制电路。 四、实验参考电路

五、实验步骤 1.按布局图要求将各元器件定位; 2.按接线图要求,以正确的规格电线连接各器件;3.按接线图要求,连接电动机的定子线圈; 4.自查并互查连接线; 5.合上电源,调试电路; 6.观察电动机的运行情况。 六、实验注意事项 1.操作前切断总电源; 2.接线完毕,必须检查接线情况,并做好记录;3.在指导老师认可后,方能接通电源。 七、思考题 1.熔断器与热继电器可否省去其中任何一个?为什么?2.熔断器与热继电器的规格可否随意选择?为什么?3.连接电线的规格可否随意选择?为什么? 4.交流接触器可否带直流负载?为什么?

实验二、PLC控制三相异步电动机 一、实验目的 1.了解PLC——AC电动机断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握继电—接触器逻辑电路与PLC梯形图的转换方式; 3.熟悉PLC控制系统的接线方法; 3.了解PLC断续控制电路的组成。 二、实验使用仪器、设备 1.PLC模拟实验台; 2.三相异步电动机二台; 3.万用表一台; 4.专用连接线一套。 三、实验要求 实现PLC对三相异步电动机的正、反转、点动、互锁、连锁控制。满足以下具体要求: (1) M1可以正、反向点动调整控制; (2) M1正向起动之后,延时5分钟再可起动M2; (3) 停车时,M2停止后,延时2分钟再可停M1; (4) 主电路同实验一。 四、实验参考电路与梯形图 1.电路

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

控制工程实验指导书

实验一 传递函数的测定 一、实验准备知识 1.一阶系统传递函数及其特征参数对其性能的影响; 2.一阶系统的阶跃响应; 3.直流电动机工作原理; 4.直流发电机的工作原理。 二、实验目的 1.掌握直流电动机系统工作框图,并推导其传递函数; 2.掌握一阶系统(以直流电动机为例)传递函数的测试方法; 3.学会相关实验仪器的使用方法,包括:低频示波器、光电测速仪、稳压电源等。 三、实验仪器 1.直流电动机-测速发电机组一套; 2.低频示波器一台; 3.光电测速仪一套; 4.三路稳压电源一台; 5.连接导线若干。 四、实验原理 1.直流电机工作原理 2.电枢控制式直流电机传递函数的建立 (1) 电网络平衡方程 a a d a di L Ri e u dt ++= 式中,a i 为电动机的电枢电流; R ——电动机的电阻; L ——电动机的电感; d e ——电枢绕组的感应电动势。 工作原理图:

负载L M R a i M L ω a u d e 1Ls R +() d E s () a I s m k () s ω() M s d k 1Js () a U s () L M s 系统方框图: (2) 电动势平衡方程 d d e k ω= 式中,d k 为电动势常数,由电动机的结构参数确定。 (3) 机械平衡方程 L d J M M dt ω =- 式中,J ——电动机转子的转动惯量; M ——电动机的电磁转矩; L M ——折合阻力矩。 (4) 转矩平衡方程 a m i K M = 式中,m K 表示电磁力矩常数,由电动机的结构参数确定。 将上述四个方程联立,因为空载下的阻力矩很小,略去L M ,并消去中间变量a i 、d e 、 M ,得到关于输入输出的微分方程式: 22d a m m JL d JR d k u K dt K dt ωω ω++= 这是一个二阶线性微分方程,因为电枢绕组的电感一般很小,若略去L ,则可以得到简化的一阶线性微分方程为: d a m JR d K u K dt ω ω+=

实验38三相异步电动机顺序启动控制

实验三十八三相异步电动机顺序启动控制 一、实验目的 1、通过各种不同顺序控制的接线,加深对一些特殊要求机床控制线路的了解。 2、进一步加深学生的动手能力和理解能力,使理论知识和实际经验进行有效的结合。 三、实验方法 1、三相异步电动机起动顺序控制(一): 按图38-1接线。因每台实验装置只配一只电机和热继电器,故须用灯组负载来模拟M2,FR2不接。图中U、V、W为实验台上三相调压器的输出插孔。 (1) 将调压器手柄逆时针旋转到底,启动实验台电源,调节调压器使输出线电压为220V。 FR1 图 38-1 起动顺序控制(一)

(2) 按下SB 1,观察电机运行情况及接触器吸合情况。 (3) 保持M 1运转时按下SB 2,观察电机运转及接触器吸合情况。 (4) 在M 1和M 2都运转时,能不能单独停止M 2? (5) 按下SB 3使电机停转后,按SB 2,电机M 2是否起动?为什么? 图38-2 起动顺序控制(二) 2、三相异步电动机起动顺序控制(二): 本实验须将两台实验装置的配件合并才能实施。 按图38-2接线。图中U 、V 、W 为实验台上三相调压器的输出插孔。 (1) 将调压器手柄逆时针旋转到底,启动实验台电源,调节调压器使输出线电压为220V 。 (2) 按下SB 2,观察并记录电机及各接触器运行状态。 (3) 再按下SB 4,观察并记录电机及各接触器运行状态。 (4) 单独按下SB 3,观察并记录电机及各接触器运行状态。 (5) 在M 1与M 2都运行时,按下SB 1,观察电机及各接触器运行状态。 四、讨论题 1、画出图38-1、38-2的运行原理流程图。 2、比较图38-1、38-2二种线路的不同点和各自的特点。 3、例举几个顺序控制的机床控制实例,并说明其用途。 FR

《控制系统计算机仿真》实验指导书

实验一 Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B (3)矩阵的转置及共轭转置 已知A=[5+i,2-i,1;6*i,4,9-i]; 求A.', A' (4)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9]; 求A中第3列前2个元素;A中所有列第2,3行的元素; (5)方括号[] 用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式 (1)求多项式p(x) = x3 - 2x - 4的根 (2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A的特征多项式; 求特征多项式中未知数为20时的值; 4、基本绘图命令 (1)绘制余弦曲线y=cos(t),t∈[0,2π] (2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] 5、基本绘图控制 绘制[0,4π]区间上的x1=10sint曲线,并要求: (1)线形为点划线、颜色为红色、数据点标记为加号; (2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 6、基本程序设计 (1)编写命令文件:计算1+2+?+n<2000时的最大n值; (2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。 三、预习要求 利用所学知识,编写实验内容中2到6的相应程序,并写在预习报告上。

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

控制工程-实验指导书-修订版

《控制工程基础》实验指导书常熟理工学院机械工程学院 2009.9

目录 1.MATLAB时域分析实验 (2) 2.MATLAB频域分析实验 (4) 3.Matlab校正环节仿真实验 (8) 4.附录:Matlab基础知识 (14)

实验1 MATLAB 时域分析实验 一、实验目的 1. 利用MATLAB 进行时域分析和仿真。 要求:(1)计算连续系统的时域响应(单位脉冲输入,单位阶跃输入,任意输入)。 2.掌握Matlab 系统分析函数impulse 、step 、lsim 、roots 、pzmap 的应用。 二、实验内容 1.已知某高阶系统的传递函数为 ()265432 220501584223309240100 s s G s s s s s s s ++=++++++,试求该系统的单位脉冲响应、单位阶跃响应、单位速度响应和单位加速度响应。 MATLAB 计算程序 num=[2 20 50]; den=[1 15 84 223 309 240 100]; t= (0: 0.1: 20); figure (1); impulse (num,den,t); %Impulse Response figure (2); step(num,den,t);%Step Response figure (3); u1=(t); %Ramp.Input hold on; plot(t,u1); lsim(num,den,u1,t); %Ramp. Response gtext(‘t’); figure (4); u2=(t.*t/2);%Acce.Input u2=(0.5*(t.*t)) hold on; plot(t,u2); lsim(num,den,u2,t);%Acce. Response

最新加工中心演示实验指导书

加工中心演示实验指 导书

加工中心演示实验指导书 一、实验目的 1.熟悉加工中心的安全操作规程。 2.熟悉加工中心的工作原理和结构。 3.掌握加工中心的常规操作方法,重点学习加工中心回零操作、自动换刀操作、手动对刀操作、工件坐标系设定、程序输入与编辑、自动加工等操作。 二、实验仪器和设备 1.XH714D 加工中心1台 2.FANUC 0i-MD 数控系统 3.气泵 三、准备材料和工具 铣刀、圆柱蜡(毛坯)、夹具(台虎钳)、毛刷、扳手、游标卡尺 四、加工中心安全操作规程 1.未经指导老师同意不得私自开机。 2.工作时要穿好工作服、女生操作机床必须戴好帽子,衣服袖口穿戴整齐。不允许戴手套操作机床,一台机床只能一个人操作。 3.请勿更改CNC系统参数或进行任何参数设定。 4.在进行数控加工中心机床操作前,应检查电压、气压、冷却、油量、润滑是否正常,油泵、油管、刀具、工装夹具等是否完好,安全保护装置是否可靠有效。 5.开机时,首先打开总电源,然后按下CNC 电源中的开启按钮,把急停按钮顺时针旋转,按下铣床复位按钮,使处于待命状态。

6.机床启动后,先进行机械回零操作,确认机械、刀具、夹具、工件、数控参数无误,方能开始正常工作。 7.回参考点前,必须检查各轴向位置,并保证全部在参考点负向50mm以上,回零时先Z向,后X、Y向操作。 8.认真查验程序编制、参数设置、动作排序、刀具干涉、工件装夹、开关保护等环节是否完全无误,以免自动加工时造成事故,损坏刀具及相关部件。 9.要保证预设的每把加工刀具类型及编号与刀库中的一一对应。每把刀具都要确保进行了正确的对刀操作及刀径、刀长设置。 10.在手动操作时,必须时刻注意,在进行X、Y方向移动前,必须使Z轴处于抬刀位置。移动过程中,不能只看CRT屏幕中坐标位置的变化,而要观察刀具的移动。 11.在换刀中,若发现刀库即将进入主轴,而其位置不在准停位置,可迅速按“复位”键或“急停”按钮。停止刀库试运行,刀库返回。 12.在换刀中,若发现刀库已进入主轴,绝对不允许按“复位”键或“急停”按钮,不能断电,否则将损坏刀库和机床主轴。可以按“进给保持”键暂停运行,观察刀库运行情况。 13.加工中心出现报警时,要根据报警号查找原因,及时解除报警,不可关机了事,否则开机后仍处于报警状态。 14.加工过程中,关上机床防护门,谨防意外发生。若出现意外,应及时按下急停键或迅速断电,保护现场并及时上报。 15.清理切屑时应用气枪或停下主轴后用毛刷清除,不能用其它方式清理切屑。

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

机械控制工程基础实验指导书

机械控制工程基础实验 指导书 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

河南机电高等专科学校《机械控制工程基础》 实验指导书 专业:机械制造与自动化、起重运输机械设计与制造等 机械制造与自动化教研室编 2012年12月

目录

实验任务和要求 一、自动控制理论实验的任务 自动控制理论实验是自动控制理论课程的一部分,它的任务是: 1、通过实验进一步了解和掌握自动控制理论的基本概 念、控制系统的分析方法和设计方法; 2、重点学习如何利用MATLAB工具解决实际工程问题和 计算机实践问题; 3、提高应用计算机的能力及水平。 二、实验设备 1、计算机 2、MATLAB软件 三、对参加实验学生的要求 1、阅读实验指导书,复习与实验有关的理论知识,明确每次实验的目的,了解内容和方法。 2、按实验指导书要求进行操作;在实验中注意观察,记录有关数据和图 像,并由指导教师复查后才能结束实验。 3、实验后关闭电脑,整理实验桌子,恢复到实验前的情况。 4、认真写实验报告,按规定格式做出图表、曲线、并分析实验结果。字迹 要清楚,画曲线要用坐标纸,结论要明确。 5、爱护实验设备,遵守实验室纪律。 实验模块一 MATLAB基础实验 ——MATLAB环境下控制系统数学模型的建立 一、预备知识 的简介

MATLAB为矩阵实验室(Matrix Laboratory)的简称,由美国MathWorks公司出品的商业数学软件。主要用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 来源:20世纪70年代,美国新墨西哥大学计算机科学系主任Cleve Moler 为了减轻学生编程的负担,用FORTRAN编写了最早的MATLAB。1984年由 Little、Moler、Steve Bangert合作成立了的MathWorks公司正式把MATLAB推向市场。到20世纪90年代,MATLAB已成为国际控制界的标准计算软件。 地位:和Mathematica、Maple并称为三大数学软件,在数学类科技应用软件中,在数值计算方面首屈一指。 功能:矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。 应用范围:工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 图1-1 MATLAB图形处理示例 的工作环境 启动MATLAB,显示的窗口如下图所示。 MATLAB的工作环境包括菜单栏、工具栏以及命令运行窗口区、工作变量区、历史指令区、当前目录窗口和M文件窗口。 (1)菜单栏用于完成基本的文件输入、编辑、显示、MATLAB工作环境交互性设置等操作。 (2)命令运行窗口“Command Window”是用户与MATLAB交互的主窗口。窗口中的符号“》”表示MATLAB已准备好,正等待用户输入命令。用户可以在“》”提示符后面输入命令,实现计算或绘图功能。 说明:用户只要单击窗口分离键,即可独立打开命令窗口,而选中命令窗口中Desktop菜单的“Dock Command Window”子菜单又可让命令窗口返回桌面(MATLAB桌面的其他窗口也具有同样的操作功能);在命令窗口中,可使用方向

PLC对三台电动机可逆顺序启动控制实验

PL C对三台电动机可逆顺序启动控制实验 吕以全 赵 勇 (天津理工学院自动化工程系 天津:300191)Ξ 摘 要 介绍PL C专用指令——可逆寄存器微分@SFTR指令及可逆寄存器SFTR指令,完成对3台电动机可逆顺序启动带负载控制的电工技术实验。 关键词 PL C 可逆顺序启动 指令 0 引 言 PL C在电工技术实验中的一项内容是利用可逆寄存器微分@SFTR指令和可逆寄存器SFTR指令,分别完成对3台电动机可逆顺序启动控制带负载实验。通过该实验使同学们深刻了解所使用的可逆寄存器微分@SFTR指令和可逆寄存器SFTR指令的共同点都是具有控制数据左、右移动功能;而其不同处是应该注意到使用可逆寄存器SFTR指令时,要加前沿微分D IFU(013)指令而可逆寄存器微分@SFTR是不需要的。 实验所用的电动机容量为0125k W,采用直接启动。3台电动机每台可逆顺序启动的时间间隔为2秒。3台电动机首先正转顺序启动,启动结束转为正常运行。正常运行的时间定为10秒,停止时间定为5秒。3台电动机再反转顺序启动,启动结束转为正常运行。正常运行的时间定为10秒,停止时间定为5秒。实验要求按照上述顺序反复运行。 实验所使用的PL C为OM RON-CPM2A-CDR-A型机。 1 @SFTR(084)指令可逆顺序控制 111 PL C I O口设置 1)在PL C输入端00通道中设定00000为总启动按钮,00001为总停止按钮,且均为点动按钮。 2)在PL C输出端的10通道中的01000控制1#电动机;01001控制2#电动机;01002控制3#电动机。 3)按动00000总启动按钮,3台电动机可逆顺序启动;按动停止按钮00001,三台电机全部停转。112 软件程序 11211 正向电机顺序启动 (1)利用可逆寄存器指令@SFTR(084)完成对三台电动机延时顺序启动控制程序,如图1所示 。 图1 @SFTR(084)指令对三台电动机 可逆顺序启动控制梯形图 (2)按动总启动点动按钮,锁存指令KEEP (011)将I R中的04000的逻辑线圈通电并锁存。 (3)可逆寄存器微分指令@SFTR(084)利用I R 中的030CH的12逻辑线圈的通断状态,使得03012逻辑触点O FF ON,从而控制3台电动机可逆方向,即03012逻辑线圈通过计数器CN T002的逻辑常闭触点,使得03012逻辑线圈接通,03012逻辑常开触点闭合,可逆寄存器微分指令@SFTR(084)左移,三台电动机为正向顺序启动控制。 第23卷第4期2001年8月 电气电子教学学报 JOU RNAL O F EEEE V o l.23N o.4 A ug.2001 Ξ收稿日期:2001年4月4日

相关文档
最新文档