2-1 螺栓连接性能测试实验报告(已填数据、仅供参考)

2-1 螺栓连接性能测试实验报告(已填数据、仅供参考)
2-1 螺栓连接性能测试实验报告(已填数据、仅供参考)

实验二螺栓组联接性能测试实验报告

实验名称日期

班级姓名学号成绩

一、实验目的

1.掌握螺栓与被联接件的受力-变形规律,并绘制相关曲线;

2.作出螺栓组载荷分布图及应力变化规律分布曲线;

3.了解应变测试原理。

二、实验条件

1、实验台型号

多功能螺栓组联结综合实验台

2、测试仪器型号及规格

(1)静态应变仪CQYJ-12

(2)应变片:R=120欧。灵敏系数2.2

(3)加载负荷: N

三、实验内容

1.螺栓受力分析及计算;

2.螺栓应变计算;

3.残余预紧力计算;

4.利用实测数据描绘螺栓受力—变形图;

5.螺栓组受倾覆力矩时应力变化。

四、实验步骤

1.松开联接螺栓,在控制面板上调节ε1-ε调节电位器,使电桥平衡(输出基本为零,或保持5根螺栓的初始值接近)。

2.用扳手给每根螺栓预紧,预紧应变值为120με-200με左右,可在控制面板上读取。

3.按列表中的负载值逐次加载,并记录1—5号螺栓的应变值。

4.计算相关参数并绘制图线。

5.若使用计算机处理,则打开相应界面,每一次加载后,点击界面上的“测试”键后,记录数据。

6.根据实验数据写实验报告。

五、螺栓组静态特性实验数据

螺栓号 1 2 3 4 5 6 7 8 9 10

预调零应变(με)0 0 0 0 0 0 0 0 0 0

预紧应变(με)300298302298300298298301299298

第一次测试(με)449378300223152447381302224150

第二次测试(με)447376303224151452380295226152第三次测试(με)454375295221151445381294225152

平均值(με)450376299223151448381297225151负荷应变(με)15078-3-75-14915083-4-74-147应力/1000 92700775256166345869311759228878417611824635031175

预紧拉力F1(N)2050203620632036205020362036205720432036实验拉力F2(N)3075257120451521103430612601202915371034负荷拉力△F(N)1025535-18-515-10161025565-27-506-1002六、螺栓组联结受力图

螺栓号1、2、3、4、5 6、7、8、9、10

线

线

七、思考题

1、螺栓组连接理论计算与实测的工作载荷间存在误差的原因有哪些?

原因是因为实验中用的螺栓它是工业产品,它只能保证测试过程当中一个范围范围内不会受到破坏,所测量得到的数据就是一系列离散的数据。另外就是实验设备的扭矩误差。

2、实验台上的螺栓组联接可能的失效形式有哪些?

弯曲、变形、拉断、脱扣、

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

螺栓联接标注

螺栓联接静、动态特性实验报告 专业班级 ___________ 姓名 ___________ 日期 2009-12-18 指导教师 ___________ 成绩 ___________ 一、实验条件: 1、试验台型号及主要技术参数 螺栓联接实验台型号: 主要技术参数: ①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。 ②、八角环材料为40Cr,弹性模量E=206000 N/mm2。L=105mm。 ③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形 计算长度L=88mm。 2、测试仪器的型号及规格 ①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2 二、实验数据及计算结果 1、螺栓联接实验台试验项目: 空心螺杆 2、螺栓组静态特性实验 实测值理论值 螺栓拉力螺栓扭矩八角环挺杆螺栓拉力螺栓扭矩八角环挺杆 预紧形变值(μm) 40 89 40 89 预紧应变值(με) 156 134 45 -3 250 预紧力(N) 4846 240.4 4893.6 -47.6 7766 406.5 7766 0 预紧刚度(N/mm) 121149.9 54449.4 194150.4 87258.6 预紧标定值(με/N) 0.0321915 0.1287796 0.0091957 0.0630252 0.01983 0.3271832 0.0057944 0 加载形变值(μm) 43 85 43 85 加载应变值(με) 169 140 42 49 268.75 加载力(N) 5249.8 246.3 4472.9 776.9 8348.5 424.7 7417 931.5 加载刚度(N/mm) 121150 54449.4 194150 87258.4 加载标定值(με/N) 0.0321917 0.1287666 0.0093899 0.0630712 0.0202431 0.3296444 0.0056626 0.0526033

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

螺栓连接

实验一螺栓连接实验 Ⅰ、单个螺栓连接实验 一、实验目的 现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静、动态特性参数,是工程技术人员的一个重要课题。本实验通过对螺栓的受力进行测试和分析,要求达到下述目的。 1、了解螺栓联接在拧紧过程中各部分的受力情况。 2、计算螺栓相对刚度,并绘制螺栓联接的受力变形图。 3、验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响。 4、通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。 二、实验项目 LZS螺栓联接综合实验台可进行下列实验项目: 1、(空心)螺栓联接静、动态实验。(空心螺栓+ 刚性垫片+ 无锥塞) 2、改变螺栓刚度的联接静、动态实验。(空心螺栓、实心螺栓) 3 、改变垫片刚度的静、动态实验。(刚性垫片、弹性垫片) 4、改变被连接件刚度的静、动态实验。(有锥塞、无锥塞) 三、实验设备及仪器 该实验需LZS螺栓联接综合实验台一台,CQYDJ一4静动态测量仪一台,计算机及专用软件等实验设备及仪器。 1、螺栓联接实验台的结构与工作原理。如图1-1所示。 (1)螺栓部分包括M16空心螺栓、大螺母、组合垫片和M8小螺杆组成。空心螺栓贴有测拉力和扭矩的两组应变片,分别测量螺栓在拧紧时,所受预紧拉力和扭矩。空心螺栓的内孔中装有M8小螺杆,拧紧或松开其上的手柄杆,即可改变空心螺栓的实际受载面积,以达到改变联接件刚度的目的。组合垫片设汁成刚性和弹性两用的结构,用以改变被联接件系统的刚度。 (2)被联接件部分由上板、下板和八角环、锥塞组成,八角环上贴有应变片,测量被连接件受力的大小,中部有锥形孔,插入或拨出锥塞即可改变八角环的受力,以改变被连接件系统的刚度 (3)加载部分由蜗杆、蜗轮、挺杆和弹簧组成,挺杆上贴有应变片,用以测最所加工作载荷的人小,蜗杆一端与电机相联,另一端装有手轮,启动电机或转动手轮使挺杆上升或下降,以达到加载、卸载(改变工作载荷)的目的。 2、LSD-A型静、动态测量仪的工作原理及各测点应变片的组桥方式。 实验台各被测件的应变量用CQYDJ一4型静、动态测量仪测量,通过标定或计算即可换算出各部分的大小。 CQYDJ一4型静、动态测量仪是利用金属材料的特性,将非电量的变化转换成电量变化的测量仪,应变测量的转换元件——应变片是用极细的金属电阻丝绕成或用金属箔片印刷腐蚀而成,用粘接剂将应变片牢固的贴在被测物件上,当被测件受到外力作用长度发生变化时,粘贴在被测件上的应变片也相应变化,应变片的电阻值也随着发生了△R的变化,这样就把机械量转换成电量(电阻值)的变化。用灵敏的电阻测量仪——电桥,测出电阻值的变化△R/R,就可换算出相应的应变ε,并可直接在测量仪的液晶128X64点阵的大显示屏读 1

离心泵特性曲线测定实验报告

离心泵特性曲线实验报告 一.实验目的 1、熟悉离心泵的构造和操作 2、掌握离心泵在一定转速下特性曲线的测定方法 3、学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生 了解涡轮流量计、电动调节阀以及相关仪表的原理和操作。 二, 基本原理 离心泵的主要性能参数有流量Q 、压头H 、效率和轴功率N ,在一定转速下,离心泵的送液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。而且,当期流量变化时,泵的压头、功率、及效率也随之变化。因此要正确选择和使用离心泵,就必须掌握流量变化时,其压头、功率、和效率的变化规律、即查明离心泵的特性曲线。 用实验方法测出某离心泵在一定转速下的Q 、H 、n 、N ,并做出H-Q 、n-Q 、N-Q 曲线,称为该离心泵的特性曲线。 1、扬程(压头)H (m ) 分别取离心泵进口真空表和出口压力表处为1、2截面,列柏努利方程得: f H g u g p z H g u g p z +++=+++222 2222 111ρρ 因两截面间的管长很短,通常可忽略阻力损失项H f ,流速的平方差也很小 故可忽略,则: +H0 式中 ρ:流体密度,kg/m 3 ; p 1、p 2:分别为泵进、出口的压强,Pa ; g p p H ? 1 2 ? ?

u 1、u 2:分别为泵进、出口的流速,m/s ; z 1、z 2:分别为真空表、压力表的安装高度,m 。 由上式可知,由真空表和压力表上的读数及两表的安装高度差,就可算出泵的扬程。 2、轴功率N (W ) N= N 电η电 =电 其中,N 电为泵的轴功率,η电为电机功率。 3、效率η(%) 泵的效率η是泵的有效功率与轴功率的比值。反映泵的水力损失、 容积损失和机械损失的大小。泵的有效功率Ne 可用下式计算: g HQ Ne ρ= 故泵的效率为 %100?= N g HQ ρη 4、泵转速改变时的换算 泵的特性曲线是在定转速下的实验测定所得。但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q 的变化,多个实验点的转速n 将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n ¢ 下(可取离心泵的额定转速)的数据。换算关系如下: 流量 n n Q Q '=' 扬程 2 )(n n H H ' =' 轴功率 3 )(n n N N ' =' 效率 ηρρη==''= 'N g QH N g H Q ' 三, 实验装置流程示意图

性能测试工具LoadRunner实验报告

性能测试工具LoadRunner实验报告 一、概要介绍 1.1 软件性能介绍 1.1.1 软件性能的理解 性能是一种指标,表明软件系统或构件对于其及时性要求的符合程度;同时也是产品的特性,可以用时间来进行度量。 表现为:对用户操作的响应时间;系统可扩展性;并发能力;持续稳定运行等。1.1.2 软件性能的主要技术指标 响应时间:响应时间=呈现时间+系统响应时间 吞吐量:单位时间内系统处理的客户请求数量。(请求数/秒,页面数/秒,访问人数/秒) 并发用户数:业务并发用户数; [注意]系统用户数:系统的用户总数;同时在线用户人数:使用系统过程中同时在线人数达到的最高峰值。 1.2 LoadRunner介绍 LoadRunner是Mercury Interactive的一款性能测试工具,也是目前应用最为广泛的性能测试工具之一。该工具通过模拟上千万用户实施并发负载,实时性能监控的系统行为和性能方式来确认和查找问题。 1.2.1 LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户; 压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;

监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 1.2.2 LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner就是通过代理方式截获客户端和服务器之间交互的数据流。 1)虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,记录并将其转发给服务器端;接收到从服务器端返回的数据流,记录并返回给客户端。 这样服务器端和客户端都以为在一个真实运行环境中,虚拟脚本生成器能通过这种方式截获数据流;虚拟用户脚本生成器在截获数据流后对其进行了协议层上的处理,最终用脚本函数将数据流交互过程体现为我们容易看懂的脚本语句。 2)压力生成器则是根据脚本内容,产生实际的负载,扮演产生负载的角色。 3)用户代理是运行在负载机上的进程,该进程与产生负载压力的进程或是线程协作,接受调度系统的命令,调度产生负载压力的进程或线程。 4)压力调度是根据用户的场景要求,设置各种不同脚本的虚拟用户数量,设置同步点等。 5)监控系统则可以对数据库、应用服务器、服务器的主要性能计数器进行监控。 6)压力结果分析工具是辅助测试结果分析。 二、LoadRunner测试过程 2.1 计划测试 定义性能测试要求,例如并发用户的数量、典型业务流程和所需响应时间等。 2.2 创建Vuser脚本 将最终用户活动捕获(录制、编写)到脚本中,并对脚本进行修改,调试等。协议类型:取决于服务器端和客户端之间的通信协议;

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。 即:电N N 95.0= (4) 3.效率η的计算

PC性能评测实验报告

计算机体系结构课程实验报告 PC性能测试实验报告 学号: 姓名:张俊阳 班级:计科1302 题目1:PC性能测试软件 请在网上搜索并下载一个PC机性能评测软件(比如:可在百度上输入“PC 性能benchmark”,进行搜索并下载,安装),并对你自己的电脑和机房电脑的性能进行测试。并加以比较。 实验过程及结果: 我的电脑:

机房电脑:

综上分析:分析pcbenchmark所得数据为电脑的current performance与其potential performance的比值,值大表明计算机目前运行良好,性能好,由测试结果数据可得比较出机房的电脑当前运行的性能更好。分析鲁大师性能测试结果:我的电脑得分148588机房电脑得分71298,通过分析我们可以得出CPU占总得分的比重最大,表明了其对计算机性能的影响是最大的,其次显卡性能和内存性能也很关键,另外机房的电脑显卡性能较弱,所以拉低了整体得分,我的电脑各项得分均超过机房电脑,可以得出我的电脑性能更好的结论。 题目2:toy benchmark的编写并测试 可用C语言编写一个程序(10-100行语句),该程序包括两个部分,一个部分主要执行整数操作,另一个部分主要执行浮点操作,两个部分执行的频率(频率整数,频率浮点)可调整。请在你的计算机或者在机房计算机上,以(,),(,),(,)的频率运行你编写的程序,并算出三种情况下的加权平均运行时间。 实验过程及结果: #include<> #include<> int main() {

int x, y, a; double b; clock_t start, end; printf("请输入整数运算与浮点数运算次数(单位亿次)\n"); scanf("%d%d", &x, &y); /*控制运行频率*/ start = clock(); for (int i = 0; i

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

化工原理实验报告离心泵的性能试验北京化工大学

北京化工大学 化工原理实验报告 实验名称:离心泵性能实验 班级:化工13 姓名: 学号: 20130 序号: 同组人: 实验二:离心泵性能实验 摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大; 当Re大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 为定值的条 件下。 关键词:性能参数(N H Q, , , )离心泵特性曲线管路特性曲线C0一.目的及任务

1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.熟悉孔板流量计的构造,性能和安装方法。 4.测定孔板流量计的孔流系数。 5.测定管路特性曲线。 二. 实验原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。 图1.离心泵的理论压头与实际压头 (1)泵的扬程He He=0真空表压力表H H H ++ 式中 H 压力表——泵出口处的压力,mH 2o ; H 真空表——泵入口处的真空度,mH 2o ; H 0——压力表和真空表测压口之间的垂直距离,H 0=。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为 轴 ηN Ne = 102 QHe Ne ρ = 式中 Ne ——泵的有效功率,kW ;

螺栓检测报告

螺栓检测报告 南京力通机械装备研究所(属河海大学)受**公司的委托对螺栓部分性能进行检测。 检测时间为2006年3月26日至3月29日 1.检测内容及设计标准 1.1检测内容 根据**公司提出的要求,对其提供的螺栓分别进行: 1)进行螺栓抗拉强度检测 2)螺栓抗剪切强度检测。 检测螺栓为四组,四组螺栓分别标称为:A组(新螺栓)、B组(旧螺栓)、C 组(新螺栓)及D组(旧螺栓)。螺栓型号为8.8级M24双头螺栓,螺栓长度为100mm。 每组检测数量由**公司确定。 1.2设计标准 根据《紧固件机械性能螺栓、螺钉和螺柱》GB/T 3098.1-2000标准的规定8.8级M24粗牙螺纹的最小拉力荷载为293.0kN,保证荷载为212.0kN。公称抗拉强度为800N/mm2,最小抗拉强度为830 N/mm2。 在《紧固件机械性能螺栓、螺钉和螺柱》GB/T 3098.1-2000标准中没有对螺栓的剪切强度提出规定。 2.检测依据及检测方法 2.1检测依据 本次检测依据下列标准进行。 1)《紧固件机械性能螺栓、螺钉和螺柱》GB/T 3098.1-2000 2)《金属材料室温拉伸实验方法》GB/T228-2002 2.2检测方法 1)螺栓抗拉强度检测 试验依据《紧固件机械性能螺栓、螺钉和螺柱》GB/T 3098.1-2000和《金属材料室温拉伸实验方法》GB/T228-2002标准执行。 检测设备为济南试金集团有限公司的WAW-E2000万能试验机(见图1)和专用拉伸试验夹具(见图3)。 将检测试件放置在专用试验夹具中,用两个螺母将螺栓与专用夹具固定好,再将专用夹具固定在万能试验机上进行拉伸试验。加载直至试件被拉破坏。 规范规定试验时应力速率在6~60N/mm2s-1之间。 2)螺栓抗剪切强度检测 螺栓抗剪切强度检测没有国家标准,只能依据通常采用的剪切试验方法进行螺栓抗剪切强度检测。由于没有国家标准,所以对试验检测值无法进行评判,检测值仅提供参考。 试验设备为济南试金集团有限公司的WAW-E2000万能试验机和专用抗剪切强

软件测试实验报告LoadRunner的使用

南昌大学软件学院 实验报告 实验名称 LoadRunner的使用 实验地点 实验日期 指导教师 学生班级 学生姓名 学生学号 提交日期 LoadRunner简介: LoadRunner 是一种适用于各种体系架构的自动负载测试工具,它能预测系统行为并优化系统性能。LoadRunner 的测试对象是整个企业的系统,它通过模拟实际用户的操作行为和实行实时性能监测,来帮助您更快的查找和发现问题。此外,LoadRunner 能支持广范的协议和技术,为您的特殊环境提供特殊的解决方案。LoadRunner是目前应用最为广泛的性能测试工具之一。 一、实验目的

1. 熟练LoadRunner的工具组成和工具原理。 2. 熟练使用LoadRunner进行Web系统测试和压力负载测试。 3. 掌握LoadRunner测试流程。 二、实验设备 PC机:清华同方电脑 操作系统:windows 7 实用工具:WPS Office,LoadRunner8.0工具,IE9 三、实验内容 (1)、熟悉LoadRunner的工具组成和工具原理 1.LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户;压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 2.LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner 就是通过代理方式截获客户端和服务器之间交互的数据流。 ①虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,

螺栓组联接实验指导

实验二螺栓组联接实验指导书 一、实验目的 1.测试螺栓组联接在翻转力矩作用下各螺栓所受的载荷; 2.深化课程学习中对螺栓组联接受力分析的认识; 3.初步掌握电阻应变仪的工作原理和使用方法。 二、实验设备及工具 1.CQL-B多功能螺栓组联接综合实验台; 2.CQYJ-12静态电阻应变仪一台; 3.其它仪器工具:螺丝刀、扳手。 三、实验台结构及工作原理 图1 多功能螺栓组联接实验台结构 1.机座 2.测试螺栓 3.测试梁 4.托架 5.测试齿块 6.杠杆系统 7.砝码 8.齿板接线柱 9.螺栓1—5接线柱 10.螺栓6—10接线柱 11.垫片 多功能螺栓组联接实验台结构如图l所示,被联接件机座1和托架4被双排共10个螺栓2联接,联接面间加入垫片11(硬橡胶板),砝码7的重力通过双级杠杆加载系统6(1:75)增力作用到托架4上,托架受到翻转力矩的作用,螺栓组联接受横向载荷和倾覆力矩联合作用,各个螺栓所受轴向力不同,它们的轴向变形也就不同。在各个螺栓上贴有电阻应变片,可在螺栓中段测试部位的任一侧贴一片,或在对称的两侧各贴一片,如图2所示。各个螺栓的受力可通过贴在其上的电阻应变片的变形,用电阻应变仪测得。 实验台主要技术参数: 1.联接螺栓中段直径Φ6.5mm,两端螺纹M10,螺栓材料40Gr,其弹性模量E=206GPa; 2.加载杠杆比:1:75; 3.托架悬臂长L=214mm; 4.砝码:共3块(两块1Kg,一块0.5Kg)

静态电阻应变仪的工作原理如图3所示,主要由:测量桥、桥压、滤波器、 A /D 转换器、MCU 、键盘、显示屏组成。测量方法:由DC2.5V 高精度稳定桥压供电,通过高精度放大器,把测量桥桥臂压差(μV 信号)放大,后经过数字滤波器,滤去杂波信号,通过24位A /D 模数转换送入MCU(即CPU)处理,调零点方式采用计算机内部自动调零。送显示屏显示测量数据,同时配有RS232通讯口,可以与计算机通讯。 εK E U BD 4=? 式中: BD U ? ——工作片平衡电压差; E ——电阻应变系数; ε——应变值。 当工作电阻片由于螺栓受力变形,长度变化L ?时,其电阻也要变化 R ? ,并且R R ?正比于 L L ? , R ?使测量桥失去平衡。通过应变仪测 量出BD U ?的变化,测量出螺栓的应变量。电阻应变仪的工作原理如图3所示, 主要有测量桥、读数桥、毫安表等。工作电阻应变片和补偿电阻应变片分别接入电阻应变仪测量桥的一个臂,当工作电阻片由于螺栓受力变形,长度变化l ? 时,其电阻值也要变化R ? ,并且R R ? ,正比于l l ? ;R ?使测量桥失 去平衡,使毫安表恢复零点,读出读数桥的调节量,及为被测螺栓的应变量。

离心泵性能实验报告

北京化工大学化工原理实验报告 实验名称:离心泵性能实验 班级:化工100 学号:2010 姓名: 同组人: 实验日期:2012.10.7

一、报告摘要: 本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?、电机输入功率Ne 以及流量Q (t V ??/)这些参数的关系,根据公式 0e H H H H ++=压力表真空表、转电电轴ηη??=N N 、102e ρ ??= He Q N 以及轴 N Ne =η可以得出 离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ?=2/ 0与雷诺数 μ ρdu = Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。 二、目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 三、基本原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He :e 0H H H H =++真空表压力表 式中:H 真空表——泵出口的压力,2mH O , H 压力表——泵入口的压力,2mH O 0H ——两测压口间的垂直距离,0H 0.85m = 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入

螺栓组连接实验报告

螺栓组联接实验报告 专业班级: 姓名: 日期: 指导教师: 成绩: 一、实验条件: ⑴、实验台型号及主要规格 ⑵、测试仪器的型号及规格 ①静态应变仪 CQYJ-12 ②应变片:R=120,灵敏系数=2.2 二、实验数据及计算结果 ⒈螺栓组静态特性实验 螺栓号 1 2 3 4 5 6 7 8 9 10 零点应变0 0 0 0 0 0 0 0 0 0 预紧应变267 229 280 253 263 240 246 281 244 244 第一组με300 241 278 241 227 278 258 278 227 205 第二组με0 0 0 0 0 0 0 0 0 0 第三组με0 0 0 0 0 0 0 0 0 0 平均值με300 241 278 241 227 278 258 278 227 205 负荷应变33 12 -2 -12 -36 38 12 -3 -17 -39 应力/1000 δ61800 49646 57268 49646 46762 57268 53148 57268 46762 42230 预紧拉力 F1[N] 1824 1565 1913 1729 1797 1640 1681 1920 1667 1667 实验拉力 F2[N] 2050 1647 1899 1647 1551 1899 1763 1899 1551 1401 负荷拉力△F[N] 225 82 -14 -82 -246 260 82 -20 -116 -266 理论拉力 PN[N] 486 243 0 -243 -486 486 243 0 -243 -486 ⒉应力分布图

离心泵的性能测试实验报告

实验名称:离心泵的性能测试 班级: 姓名: 学号: 一、 实验目的 1、 熟悉离心泵的操作,了解离心泵的结构和特性。 2、 学会离心泵特性曲线的测定方法。 3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。 二、 实验原理 离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线?=f(Qe);这三条曲线为离心泵的特性曲线。他们与离心泵的设计、加工情况有关,必须由实验测定。 三条特性曲线中的Qe 和N 轴由实验测定。He 和?由以下各式计算,由伯努利方程可知: He=H 压强表+H 真空表+h 0+g u u 22 1 20- 式中: He ——泵的扬程(m ——液柱) H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s ) g ——重力加速度(m/s 2 ) 流体流过泵之后,实际得到的有效功率:Ne= 102ρ HeQe ;离心泵的效率:轴 N N e =η。在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入 式中: Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s) ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率 η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90 三、 实验装置和流程

螺栓实验报告内容及参考格式

螺栓联接的静态特性实验指导书 一、实验目的 现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静态特性参数,是工程技术人员的一个重要课题。本实验通过对螺栓的受力进行测试和分析,要求达到以下目的。 1.解螺栓联接在拧紧过程中各部分的受力情况。 2.计算螺栓相对刚度,并绘制螺栓联接的受力变形图。 3.验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响。二、实验设备及仪器 1.联接实验台的结构与工作原理: a.联接部分包括M16空心螺栓、大螺母、垫片组组成。空心螺栓贴有测拉力和扭矩的两组应变片,分别测量螺栓在拧紧时,所受预紧拉力和扭矩。空心螺栓的内孔中装有双头螺栓,拧紧或松开其上的小螺母,即可改变空心螺栓的实际受载截面积,以达到改变联接件刚度的目的。垫片组由刚性和弹性两种垫片组成,刚性垫片为割分式。 b.被联接件部分由上板、下板、和八角环组成,八角环上贴有应变片组,测量被联接件受力的大小,中部有锥形孔,插入或拔出锥塞即可改变八角环的受力,以改变被联接件系统的刚度。 c.加载部分由蜗杆、蜗轮、挺杆和弹簧组成,挺杆上贴有应变片,用以测量所加工作载荷的大小,蜗杆一端与电机相联,另一端装有手轮,启动电机或转动手轮使挺杆上升或下降,以达到加载、卸载(改变工作载荷)的目的。 2、电阻应变仪的工作原理及各测点应变片的组桥方式: 实验台各被测点的应变量用电阻应变仪测量,通过去时标定或计算即可换算出各部分大小。 静态应变仪采用了包含测量桥与读数桥的双桥结构。两组电桥通常都保持平衡状态,测量应变片组与仪器中两标准电阻组成测量桥(半桥测量法)如图2中的A、B、C。当电阻应变片由于被测件受力变形,其长度发生变化Δl时,其阻值相应地变化ΔR,并且ΔR/R 正比于Δl/l,ΔR使测量桥失去平衡,应变仪毫安表指针即发生偏转。调节读数桥使之产生与测量桥相应的不平衡,从而会使毫安表回到零点,即可从读数桥的调节量大小测知被测件的应变量。实验台各测点其阻值为120Ω,灵敏系数k=2.20,各测点均为两片应变片,按测量要求粘贴组成如图2所示半桥(即测量桥的两桥臂),图中A、B、C三点分别对应连接线中的红、黄、蓝三色细导线,黄色(即B点)为两应变片之公共点。 二、实验方法及步骤 1.螺栓联接的静态实验 (1)连线及仪器预调平衡 a.取出八角环上两锥塞,松开空心螺栓上的小螺母,转动手轮,使挺杆降下,处于卸载位置,将刚性垫片装上,手拧大螺母至恰好与垫片组接触。(预紧初始值)螺栓不应有松动的感觉。 b.将各测点应变电桥之输出线中的红、黄、蓝三色细导线分别接于应变仪1、2、3、4各点的A、B、C三接线端子。各测点布置为:电机侧八角环上方为螺栓拉力,下方为螺栓扭矩,手轮侧八角环上方为八角环压力,下方为挺杆力。 c.按规定调节电阻应变仪平衡,使读数显示为0。 (2)用测力扭矩扳手预紧被试螺栓,当扳手力矩为30~40N时,取下扳手,调节仪器

螺栓连接性能测试实验ya-2静载

螺栓连接性能测试实验指导书 ——(2) 螺栓组连接受力与相对刚度实验 一、实验目的 1、验证螺栓组连接受力分析理论; 2、了解用电阻应变仪测定机器机构中应力的一般方法。 二、实验设备和工作原理 螺栓组连接实验台由螺栓连接、加载装置及测试仪器三部分组成。如图1所示螺栓组连接是由十个均布排列为二行的螺栓将支架11和机座12连接起来而构成。加载装置是由具有1:100放大比的两极杠杆13和14组成,砝码力G经过杠杆放大而作用在支架上的载荷为P,因此,连接接触面将受有横向载荷P和翻转力矩M。 M? = (N·㎜) P l = (N) P100 G 式中l—力臂(㎜) 由于P和M的作用,在螺栓中引起的受力是通过贴在每个螺栓上的电阻应变片15的变形并借助电阻应变仪而测得。电阻应变仪是通过载波电桥将机械量转换成电量实现测量的。如图2所示,将贴在螺栓上的电阻应变片1作为电桥一个桥臂,温度补偿应变片2为另一个桥臂。螺栓不受力时,使电桥呈现平衡状态。当螺栓受力发生变形后,应变片电阻值发生变化,电桥失去平衡,输出一个电压讯号,经放大、检波等环节,便可在应变仪上直接读出应变值来。经过适当的计算就可以得到各螺栓的受力大小。

图1 螺栓连接实验台结构简图 1,2,……10—实验螺栓;11—支架;12—机座;13—第一杠杆;14—第二杠杆;15— 电阻应变片;16—砝码(相关尺寸:l=200㎜;a=160㎜;b=105㎜;c=55㎜;G=22N) 图2 电桥工作原理图 本实验是针对不允许连接接合面分开的情况。螺栓预紧时,连接在预紧力作用下,接合面间产生挤压应力。当受载后,支架在翻转力矩M 作用下,有绕其对称轴线0-0翻转趋势,使连接右部挤压应力减小,左部挤压应力增加。为保证连接最右端处不出现间隙,应满足以下条件: 0≥- ?W M A Q Z p (1) 式中 Qp —单个螺栓预紧力(N ); Z —螺栓个数 Z=10; A —接合面面积 A=a(b-c) (㎜2 ) M —翻转力矩 M=Pl

离心泵特性测定实验报告

离心泵特性测定实验报告 姓名:刘开宇 学号:1410400g08 班级:14食品2班 实验日期:2016.10.10 学校:湖北工业大学 实验成绩: 批改教师:

一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法; 3.了解电动调节阀的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1-1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;和 ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (W ) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。 3.效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间内流体经过泵时所获得的实际功,

相关文档
最新文档