多足步行机器人概况

多足步行机器人概况
多足步行机器人概况

多足步行机器人概况

摘要:本文介绍了多足步行机器人的发展阶段,指出了其的优点,详细的介绍国内外多足机器人的发展状况,纵观国内外的发展成果,指出多足机器人的发展趋势及存在的问题。

关键词:多足步行机器人,趋势,问题

Overview of Multi-legged Walking Robots (School of Electrical Engineering and Automation , Shanghai University, Shanghai 200072, China)

Abstract:This article describes the development of multi-legged walking robots, points out the advantages, describs the development of domestic and foreign multi-legged robots’ situation in detail. looking at the fruits of development at home and abroad, we points out the development trends of multi-legged robots and existing problems.

Key words:Multi-legged Walking Robots, trends, problems

1.引言

多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构,是模仿多足

动物运动形式的特种机器人,是一种智能型机器人,它是涉及到生物科学、仿生学、机

构学、传感技术及信息处理技术等的一门综合性高科技。所谓多足一般指四足及四足

其以上,常见的多足步行机器人包括四足步行机器人、六足步行机器人、八足步行机

器人等。

步行机器人历经百年的发展,取得了长足的进步,归纳起来主要经历以下几个阶

段:

第一阶段,以机械和液压控制实现运动的机器人。

第二阶段,以电子计算机技术控制的机器人。

第三阶段,多功能性和自主性的要求使得机器人技术进入新的发展阶段。

与其他行走方式相比,足式行走机器人的优点[1]:

第一,足式机器人的运动轨迹是一系列离散的足印,轮式和履带式机器人的则是

一条条连续的辙迹。崎岖地形中往往含有岩石、泥土、沙子甚至峭壁和陡坡等障碍物,

可以稳定支撑机器人的连续路径十分有限,这意味着轮式和履带式机器人在这种地形

中已经不适用。而足式机器人运动时只需要离散的点接触地面,对这种地形的适应性

较强,正因为如此,足式机器人对环境的破坏程度也较小。

第二,足式机器人的腿部具有多个自由度,使运动的灵活性大大增强。它可以通

过调节腿的长度保持身体水平,也可以通过调节腿的伸展程度调整重心的位置,因此

不易翻倒,稳定性更高。

第三,足式机器人的身体与地面是分离的,这种机械结构的优点在于,机器人的

身体可以平稳地运动而不必考虑地面的粗糙程度和腿的放置位置。当机器人需要携带

科学仪器和工具工作时,首先将腿部固定,然后精确控制身体在三维空间中的运动,

就可以达到对对象进行操作的目的。

2.研究主要成果

2.1国内多足步行机器人的研究成果:

1991年,上海交通大学马培荪等研制出JTUWM系列[2]四足步行机器人。JTUWM-III 是模仿马等四足哺乳动物的腿外形制成,每条腿有3个自由度,由直流伺服电机分别驱动。在进行步态研究的基础上,通过对3个自由度的协调控制,可完成单腿在空间的移动。该机器人采用计算机模拟电路两级分布式控制系统,JTUWM-III以对角步态行走,脚底装有PVDF测力传感器,利用人工神经网络和模糊算法相结合,采用力和位置混合控制,实现了四足步行机器人JTUWM-III的慢速动态行走,极限步速为1.7km/h。为了提高步行速度,将弹性步行机构应用于该四足步行机器人,产生缓冲和储能效果。

2000年,上海交通大学马培荪等对第一代形状记忆合金SMA驱动的微型六足机器人进行改进,开发出具有全方位运动能力的微型双三足步行机器人MDTWR[3],如图1所示。其第一代的每条腿只有2个自由度,无法实现机器人的转向,只能进行直线式静态步行,平均行走速度为1mm/s。将机体的主体部分进行改进设计,由上下两层相互平行的三叉支架组成,将六足改进为双三足,引入身体转动关节,采用新型的组合偏动SMA驱动器,使新一代的微型双三足步行机器人MDTWR具有全方位运动能力。

图1 MDTWR双三足步行机器人

2002年,上海交通大学的颜国正、徐小云等进行微型六足仿生机器人[4]的研究,如图2所示。该步行机器人外形尺寸为:长30mm,宽40mm,高20mm,质量仅为6.3kg,步行速度为3mm/s。他们在分析六足昆虫运动机理的基础上,利用连杆曲线图谱确定行走机构的尺寸,采用微型直流电机、蜗轮蜗杆减速机构和皮带传动机构,在步态和稳定性分析的基础上,进行控制系统软、硬件设计,步行实验结果表明,该机器人具有较好的机动性。

图2 微型六足仿生机器人

2003年哈尔滨工程大学的孟庆鑫、袁鹏等进行了两栖仿生机器蟹的研究[5],从两栖仿生机器蟹的方案设计到控制框架构建,研究了多足步行机的单足周期运动规律,提出适合于两栖仿生机器蟹的单足运动路线规划方法,并从仿生学角度研究了周期性节律性的多足步行运动的控制问题,建立了生成周期运动的神经振荡子模型。

2.2 国外多足步行机器人的研究成果

1990年,美国卡内基-梅隆大学研制出用于外星探测的六足步行机器人AMBLER[6],如图3所示。该机器人采用了新型的腿机构,由一个在水平面内运动的旋转杆和在垂直平面内作直线运动的伸展杆组成,两杆正交。该机器人由一台32位的处理机来规划系统运动路线、控制运动和监视系统的状态,所用传感器包括激光测距扫描仪、彩色摄像机、惯性基准装置和触觉传感器。总质量为3,180kg,由于体积和质量太大,最终没被用于行星探测计划。

图3 六足步行机器人AMBLER

1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人DANTE[7],用于对南极的埃里伯斯火山进行了考察,其改进型DANTE-II也在实际中得到了应用,如图4所示。1994年,DANTE-II对距离安克雷奇145 km的斯伯火山进行了考察,传回了各种数据及图像。

图4 八足步行机器人DANTE-II

1996~2000年,美国罗克威尔公司在DARPA资助下,研制自主水下步行机ALUV[8](Autonomous Legged Underwater Vehicle),如图5所示。该步行机模仿螃蟹的外形,每条腿有两个自由度,具有两栖运动性能,可以隐藏在海浪下面,在水中步行,当风浪太大时,将脚埋入沙中。它的脚底装有传感器,用于探测岸边的地雷,当它遇到水雷时,自己爆炸同时引爆水雷。

图5 自主水下步行机ALUV

在对昆虫步态进行研究的基础上,2000年美国研制出六足仿生步行机器人Biobot[9],如图6所示。为了像昆虫那样在凸凹不平地面上仍能高速和灵活步行,采用气动人工肌肉的方式,压缩空气由步行机上部的管子传输,并由气动作动器驱动各关节,使用独特的机构来模仿肌肉的特性。与电机驱动相比,该作动器能提供更大的力和更高的速度。

图6 六足仿生步行机器人Biobot

2008年,美国科学家最新研制的ATHLETE(全地形六足地外探测器)机器人,如图7所示。对于未来月球基地建设和发展充当着至关重要的角色。

美国宇航局指出,ATHLETE机器人顶部可放置15吨重的月球基地装置,它可以在月球上任意移动,能够抵达任何目的地。当在水平表面上时,ATHLETE机器人的车轮可加快行进速度;当遇到复杂的地形时,其灵活的6个爪子可以应付各种地形。

图7全地形六足地外探测器ATHLETE

日本对多足步行机的研究从20世纪80年代开始,并不断进行着技术创新,随着计算机和控制技术的发展,其机械结构由复杂到简单,其功能由单一功能到组合功能,并已研究出各种类型的步行机。主要有四足步行机、爬壁机器人、腿轮分离型步行机

器人和手脚统一型步行机器人。

1994年,日本电气通信大学的木村浩(Hiroshi Kimura)等研制成功四足步行机器人Patrush-II[10],如图8所示。该机器人用两个微处理机控制,采用直流伺服电机驱动,每个关节安装了一个光电码盘,每只脚安装了两个微开关,采用基于神经振荡子模型CPG(Central Pattern Generator)的控制策略,能够实现不规则地面的自适应动态步行,显示了生物激励控制对未知的不规则地面有自适应能力的特点。

图8步行机器人Patrush-II

2000~2003年,日本的木村浩等又研制成功四足步行机器人Tekken[10],如图9所示。该机器人用一台PC机系统控制,采用瑞士Maxon直流伺服电机驱动,每个关节安装了一个光电码盘,并安装了陀螺仪、倾角计和触觉传感器。采用基于神经振荡子模型的CPG 控制器和反射机制构成的控制系统,其中CPG用于生成机体和四条腿的节律运动,而反射机制通过传感器信号的反馈,来改变CPG的周期和相位输出,Tekken能适应中等不规则表面的自适应步行。

图9 步行机器人Tekken

3.发展趋势

未来多足步行机器人的研究方向有如下几个方面[10]:

(1)足轮组合式步行机器人。足式移动机器人地形适应能力强,能越过大的壕沟和台阶,其缺点是速度和效率均比较低。目前,足式移动机器人系统应用行星探测仍然是很困难的。足轮组合式步行机器人综合了足式和轮式机器人的优点,具有较强的地形适应能力、较好的稳定性和较高的能量效率。特别适合用于行星探测,在无法确定待探测地表状态的情况下,采用足轮组合式步行机器人可提高步行速度和效率。在松

软或者崎岖不平的行星地表,采用足轮组合式显示出优越性,在坚硬且较平坦的地表,由于没有土壤变形引起的阻力,采用轮式结构可有效提高其运动速度。

(2)微小型步行机器人。微型化是工业发展的必然趋势之一,是高技术成果的结晶。日本已研制出外形为:8.6mm×9.3mm×7.2mm的微型行走机器人。微型步行机器人有广阔的应用前景,如可将数以千计的微型步行机器人散布在星球上进行探测;在考古研究中,该种机器人可步行进入狭小的空间内采集样品等;可在狭小的空间如管道内行走、作业和维修等。

(3)仿生步行机器人。在步行机的腿上安装弹性装置或采用人工肌肉等柔性腿,就是结构仿生的体现,采用形状记忆合金驱动是材料仿生的体现。目前的步行机器人还远未达到像多足昆虫那样的步行机动性和灵活性,存在步行速度低,效率差等问题。进一步深入研究功能、控制和群体仿生,提高步行机器人的速度和灵活性,充分实现多足步行机器人的优点,是今后研究步行机器人的重点之一。

4.存在问题

当今多足步行机器人面临待解决的问题[1,10]:

(1) 有些多足步行机器人的体积和重量很大。在实际应用中未必有足够大的空间能够容纳它们或者根本不允许体积较大的机器人出现。从实用化角度出发,这类多足步行机器人在小型化方面还需要进行更深入的研究和改进。尤其是机械结构、控制系统硬件电路、电源系统、传感器等,需要寻找体积更小、效率更高的替代品。

(2) 大多数多足步行机器人研究平台的承载能力不强,从而导致它们没有能力承载视觉设备。而且多足步行机器人的视觉研究也不太成熟,而视觉正是多足步行机器人实现自主化和智能化的关键之一。要解决这个问题,首先还需改进现有多足步行机器人的机械机构设计,使其能够承受更大的负载;其次是改进视觉图像处理的算法,增强图像处理的实时性、快速性和准确性。

(3) 步行敏捷性方面。多足步行机器人有很好的地面适应能力,但在某些地貌,其行走效率很低,而且在机器人动步态步行方面的研究比较缺乏。这就提出机器人动步行步态规划问题。因此多足步行机器人对地面的适应性和运动的灵活性需要进一步提高。

(4) 多足步行机器人的控制方法需要改进。多足步行机器人系统的复杂性使其控制算法复杂化。但有些算法由于其计算量很大,所以对于机器人的实时控制很难实现甚至不能实现。因此需要简化机器人控制算法,实现用相对较简单的控制算法获得符合工作要求的控制效果的目标。另外,多足步行机器人现有的控制方法还有待完善和发展。

(5)能源问题。寻求新型可靠的能源为机器人供电,实现机器人长时间在户外行走的目标。

参考文献:

[1] 刘静,赵晓光,谭民.腿式机器人的研究综述[J].机器人,2006,28(1):82-86.

[2] 马培荪,窦小红,刘臻.全方位四足步行机器人的运动学研究[J].上海交通大学学报,1994,28(2):36-39.

[3]李明东,程君实,马培荪等.一种形状记忆合金驱动的微小型六足机器人[J].上海交通大学学

报,2000,34(10):1426–1429.

[4]徐小云,颜国正,丁国清.微型六足仿生机器人及其三角步态的研究[J].光学精密工

程,2002,10(4):392-396.

[5]袁鹏,孟庆鑫,王沫楠等.两栖仿生机器蟹的单足路径规划和生成[J].哈尔滨工程大学学

报,2003,24(3):297-301.

[6]Bares J E,Whittaker W L.Cfiguration of autonomous walkers for extreme terrain[J].The International Journal of Robotics Research,1993,12(6):535-559.

[7]Werrergreen D,Pangels H,Bares J.Behavior-based gait execution for the DANTE-II walking robot[C].IEEE/RJS international Conference,1995,3:274-279.

[8]Greiner H,Shectman A.Autonomous legged underwater vechiles for near land warfare[J].Autonomous Underwater Vechile Technology,1996(6):41-48.

[9]Delcomyn F,Nelson M E.Architectures for biomimetric hespod robot[J].Robotics and Autonomous Systems,2000,30:5-15.

[10]雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望[J].机械设计:2006,23(9):1-3.

人形机器人论文中英文资料对照外文翻译

中英文资料对照外文翻译 最小化传感级别不确定性联合策略的机械手控制 摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。 关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。 1 引言 各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

仿人机器人的发展现状及其发展趋势

仿人机器人的发展现状及其发展趋势 摘要:当下机器人技术的研究越来越多样化及智能化与人性化,仿人机器人技术的研究已成为新的热点。依托于5G技术仿人机器人的技术将更加成熟。本文从仿人机器人的应用领域,目前所取得的成就和不足之处,未来的研究方向,以及发展中遇到的困难来介绍仿人机器人的发展现状和发展趋势。 关键词:仿人机器人,5G技术,人机交互,应用领域 一、引言 仿人机器人的研制开始于上个世纪60年代末,是机器人技术领域的主要研究方向之一。1968年,美国的通用电器公司设制了一台叫Rig的操纵型双足步行机器人,从而揭开了仿人机器人研制的序幕。仿人机器人在移动性,稳定性等方面都取得了较为突出的成就。仿人机器人集机械、材料、电子、计算机、自动化等多门学科于一体,技术含量高,研究和开发难度大。它是一个国家高技术实力和发展水平的重要标志。因此,世界各发达国家都不惜投入巨资进行研究与开发。目前,美国和日本等许多发达国家的科学家都在仿人机器人的研究与开发方面做了大量的工作,并取得了突破性的进展。仿人机器人已经对人类社会产生了巨大的影响[1]。 二、仿人机器人的发展现状 (1)仿人机器人是一种具有人的外形,并能够效仿人体的某些物理功能、感知系统及社交能力并能承袭人类部分经验的机器人。它具有灵活的行走功能,可以随时走到需要的地方,包括一些对普通人来说不易到达的角落,完成人指定或预先设置的工作。 (2)从机体结构上来看,仿人机器人为做到与真人类似,其在腰部,腿部的远动结构上都存在着一定的技术支持。仿人机器人能与人类在同样的空间内移动,无论是从机动性、能耗性和人们对其的认同感方面,较之轮式移动机器人都有无法比拟的优越性。仿人机器人的逼真性越来越高,从第一代仿人机器人到如今的仿人机器人来说其身体外部构造以及身体的比例与人类是较为相似的。同时,仿人机器人的运动模式与人类相似,通过多个关节以及人造肌肉的有效合作可以使仿人机器人的运动与人无异。 除了外部的构造上,仿人机器人在内部的装置中也很智能化,如今的仿人机器人不光可以看人脸色,还能够读懂人的脸色,内置的大数据以及AI技术使得仿人机器人可以通过算法的运算进行人的思维读取,同时还可以达到交流的目的。 (3)从驱动系统上来看,仿人机器人系统经历了从钢绳牵引、弹簧到如今的齿轮和智能材料。人类的关节有至少两块肌肉包裹,根据人类肌腱的启发,在2010年,日本东京大学研究出首个以绳子牵引的仿人机器人,该仿人机器人主要通过非线性的弹簧来调整连接再其上的钢绳,研究之初,该防人机器人可以提起2kg 的重物,但是其腿部的驱动力量不足以让其进行运动,于是,东京大学的研究团队进行相应的改进,通过加入张力传感器得到相应的“肌肉”数据,通过钢绳硬度的改变,从而研发出类似人类肌腱的“平面肌肉”。【2】同年,美国佐治亚理工学院研究出拥有膝关节、髋关节的单腿机器人,紧接着,东京大学JSK研究出双足步行的钢绳牵引的机器人。并于一年后研究出Kenshiro机器人,该机器人拥有160块“人造肌肉”。 除了钢绳牵引,为了模拟人工肌肉,还存在着气动推动的处理方法,这些气动人工肌肉主要依靠压力从而实现跳跃、行走等动作,但是这种气动的人工肌肉具有不确定性,一方面,气动肌肉负载量大,对于机器人本身行走的路线不确定。另一方面,启动肌肉需要联合作业,需求量大,机器人的成本较高,同时也增加了研发的难度。

工业机器人发展现状及趋势

工业机器人发展现状及趋势 1国内工业机器人的发展现状 1.1发展概述 我国的工业机器人研究开始于20世纪80年代中期.在国家的支持下,通过“七五”、“八五”科技攻关.已经基本实现了实验、引进到自主开发的转变。促进了我国制造业、勘探等行业的发展。但随着我国门户的逐渐开放.国内的工业机器人产业面临着越来越大的竞争与冲击。虽然我国机器人的需求量逐年增加,但目前生产的机器人还很难达到所要求的质量.很多机器人的关键部件还需要进口。所以目前来说。我国还处在一个机器人消费型的同家。 现在,我国从事机器人研发的单位有200多家,专业从事机器人产业开发的企业有50家以上。在众多专家的建议和规划下,“七五”期间由机电部主持,中央各部委、中科院及地方科研院所和大学参加,国家投入相当资金,进行了工业机器人基础技术、基础元器件、工业机器人整机及应用工程的开发研究。“九五”期间,在国家“863”高技术计划项目的支持下,沈阳新松机器人自动化股份有限公司、哈尔滨博实自动化设备有限责任公司、上海机电一体化工程公司、北京机械工业自动化所、四川绵阳思维焊接自动化设备有限公司等确立为智能机器人主题产业基地。此外,还有上海富安工厂自动化公司、哈尔滨焊接研究所、国家机械局机械研究院及北京机电研究所、首钢莫托曼公司、安川北科公司、奇瑞汽车股份有限公司等都以其研发生产的特色机器人或应用工程项目而活跃在当今我国工业机器人市场上。 1.2机器人分类 随着科学技术的不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新的里程碑按照工业机器人的关键技术发展过程其可分为三代:第一代是示教再现机器人,主要由机器人本体、运动控制器和示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储的示教程序,使机器人实现预定动作。这类机器人通常采用点到点运动,连续轨迹再现的控制方法,可以完成直线和圆弧的连续轨迹运动,然而复杂曲线的运动则由多段圆弧和直线组合而成。由于操作的容易性、可视性强,所以在当前工业中应用最多。

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

国内外机器人发展的现状及发展动向

国内外机器人发展的现状及发展动向 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的Big Dog军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

工业机器人外文翻译

附录外文文献 原文 Industrial Robots Definition “A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.” --Robotics Industries Association “A robot is an automatic device that performs functions normally ascribrd to humans or a machine in orm of a human.” --Websters Dictionary The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society . The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off . The basic terminology of robotic systems is introduced in the following :

变电站机器人发展概况及最新发展趋势

移动机器人 移动机器人用途广泛,世界各国正在加紧移动机器人的研制。移动机器人的研究始于60年代末期,斯坦福研究院(SRI)的NilsNilssen和CharlesRosen等人研制出了名为Shakey 的自主移动机器人,它能够在复杂环境下,识别对象、自主推理、实现路径规划和控制功能。美国军方于1984年开始研制第一台地面自主车辆,可以在无人干预的情况下在道路上行驶,也称之为早期的移动机器人。许多国家也各自制定了移动机器人的研究计划,如日本通产省组织的极限环境下作业的机器人计划和欧洲尤里卡中的机器人计划等。虽然由于人们对机器人的研究期望过高,导致80年代的移动机器人的研究虽并未取得预期的效果,却带动了相关技术的发展,为探讨人类研制智能机器人的途径积累了经验,同时推动了其他国家对移动机器人的研究和开发。 上世纪90年代,人类把研究重点放在了移动机器人的应用上,希望移动机器人可以代替人类在各种环境下,尤其是恶劣的条件下辅助人类的工作,为人类服务。1997年7月4日,美国“火星探路者”飞抵火星考察,并在火星上成功着陆,它携带的索杰纳号火星车开始在火星表面漫游,行进了几千米,完成了预定的科学探测任务。进入21世纪后,美国研制的第四个火星探测器—好奇号于2012年8月6号成功降落火星,并展开为期两年的火星探测任务。好奇号火星探测器是第一辆釆用核动力驱动的火星车,其使命是探寻火星上的生命元素。 1992年美国研制出时速75公里的自主车,地面自主车的研制大大推动了遥控机器人的发展。目前美国“自动化技术协会”(ATC),每年在移动机器人运动控制、仿真、传感器的投资超过几亿美元。欧共体(EU)和“机器人技术”有关的课题总数约为250~300项,在EU提供基金的机器人研究领域,移动机器人占22.8%左右;日本不仅加紧研制移动机器人,更把发展重点放在移动机器人的应用研究上,目的是可以代替人在各种环境下为人服务(如在医院、家庭、恶劣的环境和核反映堆、核废料清理和排雷等危险环境下工作)。 我国机器人的研究已有20多年的历史,国家也大力发展机器人,并投入了一定的资金,对机器人进行技术攻关,发出各种类型的机器人,对我国机器人的发展具有重大的意义。但由于我国对此方面的研究起步较晚,在机器人技术水平、实用化程度以及稳定方面,与美国、日本等国家相比,都存在着较大的差距。 国内研制的机器人样机,有保安机器人、消防机器人等,有轮式和履带式;但大都是有缆方式,具有小范围内一定的避障功能。国内移动机器人的研究成果主要如下:清华大学的智能移动机器人THMR-V型机器人;中科院沈阳自动化所的AGV自主车和防爆机器人;

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

国内外机器人发展现状及发展动向

国外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间(15%-25%),表明这

机器人行走轴使用保养说明书

机器人行走轴 使用保养说明书 上海发那科机器人有限公司 二零一二年十二月

目录 行走轴使用保养手册 (1) 1.概要 (3) 2.点检.保养 (3) 2.1日常点检 (3) 2.2一个月点检 (3) 2.3三个月点检 (4) 2.4六个月点检 (4) 2.5一年半点检 (4) 2.6三年点检 (5) 3保养 (5) 3.1驱动部加油 (5) 3.2减速机加油 (5)

1.概要 本节指出了行走轴的使用和点检项目要领。请参照本内容,实施点检整顿。 2.点检·保养 本章节介绍了行走轴使用中的定期点检项目和要领。请务必按照本章节实施 定期点检。还有,有关机器人以及机器人控制器的详细保养,请参照各相关使用 说明书以及保养说明书。较长时间停止使用时,建议在长假之前,进行机器人备 份。有关备份方法,请参照机器人使用说明书。 2.1日常点检 对各部位进行清扫,并且目测检查各组件有无损坏。检查以下项目: 编号 点检项目 点检内容 点检时间 1 有无振动、异常声音 滑块运行是否顺畅,齿轮运行是否平稳 日常 2 定位精度有无变化 重复位置有无偏差 日常 2.2一个月点检 每个月点检以下项目: 序 号 点检项目 点检内容 点检时间 1 电缆有无异常 各电缆插头有无松动 1月 2 有无松动、不稳固的 零部件 各个联接件无松动、不稳固现象 1月 3 齿条、齿轮状态 齿条、齿轮表面应覆盖润滑油层,齿条、 齿轮表面无污迹及异物 1月 4 LM导轨状态 LM导轨表面是否无油,是否无污迹及异 物 1月 5 LM导轨滑块 滑块移动时滚珠是否有异常声音 1月

2.3三个月点检 每三个月或是累计运行100km后,检查以下项目: 序 点检项目 点检内容 点检时间 号 1 齿条 全行程涂布指定润滑油(AFB润滑脂) 3月 2 LM导轨 轴承部油充足(AFB润滑脂) 3月 3 机器人固定螺丝 机器人固定螺丝是否有松动 3月 4 拖链接头螺丝 拖链接头螺丝是否有松动 3月 2.4六个月点检 序 点检项目 点检内容 点检时间 号 1 齿条螺丝 齿条螺丝是否有松动 6月 2 LM导轨螺丝 LM导轨螺丝是否有松动 6月 3 减速机底座紧固螺钉 减速机底座紧固螺钉是否有松动 6月 4 减速机更换油脂 减速机是否需要更换油脂 20000小时 5 硬限位螺丝 硬限位螺丝是否有松动 6月 6 导轨安装螺丝 安装导轨的膨胀螺丝是否有松动 6月 2.5一年半点检 每隔1.5年或是累计运行时间达到5760小时,点检以下项目: 编号 点检项目 点检要点 1 电池 请更换电池

现阶段国内外机器人产业发展现状分析

机器人与智能装备产业是高度集成微电子、通信、计算机、人工智能、控制和图像处理等学科最新科研和产业成果的前沿高新技术产业,是拟建的江苏省(常州)工业技术研究院的服务的产业核心和研发的产业立足点。直接影响生活最优化和智能化的机器人技术是机器人与智能装备产业的技术核心,推进着未来机器人与智能装备领域的科技创新力和产业竞争力。 机器人技术是一种是以自动化技术和计算机技术为主体、有机融合各种现代信息技术的系统集成和应用。经过半个多世纪的发展,机器人技术在工业生产领域得到了广泛的应用,极大地提升了生产品质并成功解放了劳动力资源。作为高技术领域中重要的前沿技术之一,机器人技术具有前瞻性、先导性的特点,对学术研究、产业升级、培养创新意识、保障国家安全、引领未来经济社会的发展有着十分重要的作用。 目前,相关领域的技术突破,从根本上为提升机器人技术的学术研究提供了必要的支持,为机器人的应用范围拓宽了道路,已涵盖国防、航空航天、工业生产、服务、老人康复、教育甚至普通家庭生活,一场新的机器人技术研究高潮和发展契机业已到来。 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。 目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的BigDog 军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制造业是所有行业中人均拥有机器人密度最高的

搬运机器人外文翻译

外文翻译 专业机械电子工程 学生姓名张华 班级 B机电092 学号 05 指导教师袁健

外文资料名称:Research,design and experiment of end effector for wafer transfer robot 外文资料出处:Industrail Robot:An International Journal 附件: 1.外文资料翻译译文 2.外文原文

晶片传送机器人末端效应器研究、设计和实验 刘延杰、徐梦、曹玉梅 张华译 摘要:目的——晶片传送机器人扮演一个重要角色IC制造行业并且末端执行器是一个重要的组成部分的机器人。本文的目的是使晶片传送机器人通过研究其末端执行器提高传输效率,同时减少晶片变形。 设计/方法/方法——有限元方法分析了晶片变形。对于在真空晶片传送机器人工作,首先,作者运用来自壁虎的超细纤维阵列的设计灵感研究机器人的末端执行器,和现在之间方程机器人的交通加速度和参数的超细纤维数组。基于这些研究,一种微阵列凹凸设计和应用到一个结构优化的末端执行器。对于晶片传送机器人工作在大气环境中,作者分析了不同因素的影响晶片变形。在吸收面积的压力分布的计算公式,提出了最大传输加速度。最后, 根据这些研究得到了一个新的种末端执行器设计大气机器人。 结果——实验结果表明, 通过本文研究应用晶片传送机器人的转换效率已经得到显着提高。并且晶片变形吸收力得到控制。 实际意义——通过实验可以看出,通过本文的研究,可以用来提高机器人传输能力, 在生产环境中减少晶片变形。还为进一步改进和研究末端执行器打下坚实的基础,。 创意/价值——这是第一次应用研究由壁虎启发了的超细纤维阵列真空晶片传送机器人。本文还通过有限元方法仔细分析不同因素在晶片变形的影响。关键词:晶片传送机器人末端执行器、超细纤维数组、晶片 1.介绍

机器人发展现状及未来趋势

机器人发展现状及未来趋势

一、机器人现状及国内外发展趋势 国外机器人领域发展近几年有如下几个趋势: 1.工业机器人性能不断提高(高速度、高精度、高可靠性、便 于操作和维修),而单机价格不断下降,平均单机价格从91年 的10.3万美元降至97年的6.5万美元。 2.机械结构向模块化、可重构化发展。例如关节模块中的伺服 电机、减速机、检测系统三位一体化;由关节模块、连杆模块 用重组方式构造机器人整机;国外已有模块化装配机器人产品 问市。 3.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且 采用模块化结构;大大提高了系统的可靠性、易操作性和可维 修性。 4.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等 传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传 感器的融合技术来进行环境建模及决策控制;多传感器融合配 置技术在产品化系统中已有成熟应用。 5.虚拟现实技术在机器人中的作用已从仿真、预演发展到用于 过程控制,如使遥控机器人操作者产生置身于远端作业环境中 的感觉来操纵机器人。

6.当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。 7.机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一探索开拓其实际应用的领域。我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可

仿人机器人发展概况-调查

仿人机器人发展概况 摘要:介绍了国内外仿人机器人的发展特点,以行走机构为主要内容详细分析了日本、美国等几种仿人机器人的主要技术及其技术指标,根据国外的样机设计,分析了仿人机器人的控制设计中的一些问题,就国外仿人机器人发展对中国仿人机器人发展的差异提出了看法。 关键词: 仿人机器人,技术,双足步行 1概述 仿人机器人在过去的10多年特别是近5年中发展迅猛,自从有关综述文章发表以来,情况有了很大改变。 行走机构是仿人机器人的关键技术,对于仿人机器人的研究是从对行走机构的研究开始的,日本旱稻田大学在1973年研制成功了最早具有记载的双足步行人形机构WABOT-1。本文重点论述世界范围内仿人机器人的近期发展,对行走机构的发展做重点介绍。 2 仿人机器人近期发展特点 现如今,世界各个国家都进行仿人机器人的研究,据韩国的一个经常更新的仿人机器人网站统计,2005年3月5日,世界上共有76各仿人机器人项目正在进行中,其中日本36个,美国10个,韩国7个,英国4个,中国3个,瑞典2个,澳大利亚、泰国、新加坡、保加利亚、伊朗、意大利、奥地利、俄罗斯等国各有1个,从统计数字可以看出当时日本在此领域的领先地位及其他各国的竞争实力。 2005年2月18日出版的《科学》杂志上介绍了一种全新的行走机构,康奈尔大学、麻省理工学院和荷兰Delft理工大学的研究人员分别展示了基于这种行走机构的样机。

这种行走机构的概念来自一个简单的玩具:行走企鹅。这个企鹅臀部有两个没有动力的关节分别支撑两条直腿,该企鹅可以沿着斜坡摇摇晃晃的行走而下,这就是被动动力行走者。问题是在平地上企鹅不会行走,研究人员贡献在于设计了仅用少量驱动器就可以在平地上行走的行走机构。以Asimo为代表的传统仿人机器人每一个关节都用一个驱动器。新行走机构则不同,它的关节分为有驱动和无驱动两种,以康奈尔的设计为例,机器人每条腿的自由度为5个(臀1,膝2,踝2),其中只有一个踝关节用电机驱动,其他都是被动的,双手摆动各有一个自由度,通过机械结构由双腿带动,左腿带动右臂,右腿带动左臂。走动时,感知到左足触地时,右踝驱动右足踢开地面,使右腿摆动至左腿前方,完成一步,反之亦然。新行走机构的特点是节省能源,据说只需要通常行走机构的十分之一的动力,另外,新型步行机器人走路时一起一伏,跟人没什么两样。Delft设计和康奈尔的设计大致相同,只是采用气动驱动,MIT的设计则为每条腿有6个自由度,其中两个踝部关节用电机驱动,其他都是被动的。从录像看,康奈尔和Delft的机器人的行走姿态是令人满意的,但似乎它们只能有一种走法.不象每个关节都采用独立驱动方式的传统仿人机器人那样可以通过编程获得不同的步态.至于MIT模型,虽然采用了先进的控制方法,但其蹒跚的步态令观看者对其机构设计难以接受.实际上,研究者不止以上3家,日本Asano等人的被动动力步行模型基于能量约束并考虑了ZMP判据。 传统行走机构的研究继续瞄准动作的质量。本田提出新一代Asimo的步行速度要增加到2.5公里/小时,跑步速度增加到3公里/时,主要措施是添加腰部关节以在行进时扭摆.太极拳要求动作连贯均匀,协调完整.打太极拳是对仿人机器人动作质量的最好检验.各公司和业余爱好者正在寻找更好的设计和控制,以便在今后的机器人太极拳比赛中一决高低。探讨人类行走和奔跑时的各种动作方式。研究仿人机器人动态步行控制方法是研究重点2004年底前,本田公司宣布了新一代Asimo计划,寻求更强的行动能力,更佳的与人沟通,以及在真实世界中更机敏的反应能力。ZMP判据仍是二足步行机器人各种控制方法的基本依据.最早提出ZMP判据的南斯拉夫学者Vukobratovic最近对ZMP判据35年来的发展作了总结,Lim和他的同事除了以仿人机器人上身躯干的摆动来补偿下

相关文档
最新文档