飞行动力学仿真报告

飞行动力学仿真报告
飞行动力学仿真报告

飞行器动力学与控制复习要点new

1. 卫星轨道六要素是哪些P2-7 ),,,,,(p t i e a ωΩ,其中a 半长轴,e 偏心率,i 轨道倾角,Ω升交点赤经,ω近地点幅 角,p t 卫星经过近地点时刻。 2. 卫星发射三要素是什么P17-18 ),,(L t A ?,其中?发射场L 的地心纬度,A 发射方位角,L t 发射时刻。 3. 什么是太阳同步轨道P23 选择轨道半长轴a 和倾角i 的组合使d /)(9856.0?=?Ω,则轨道进动方向和速率,与地球绕太阳周年转动的方向和速率相同(即经过365.24平太阳日,地球完成一次360°的周年运动),此特定设计的轨道称为太阳同步轨道。 4. 什么是临界轨道、冻结轨道P24-25 若远地点始终处在北极上空,即拱线不得转动,轨道倾角满足02sin 5.22 =-i ,即 ?=43.63i 或?=57.116i 。此值的倾角称为临界倾角,此类轨道称为临界轨道。若选择合 适的偏心率及合适的近地幅角,使0==e ω ,近地点幅角ω被保持,或称被冻结在90°。轨道的倾角和高度可以独立选择,此类轨道称作冻结轨道。 5. 回归轨道的回归系数是什么P26 轨道经过N 天回归一次,在回归周期内共转R 圈,每天的轨道圈数(非整数)Q 称为回归系数。R C Q I N N ==±,+表示轨迹东移,-表示轨迹西移。I 为接近一天的轨道圈数, 为正整数。 6. 静止轨道的特点、三要素是什么P28 (1) 轨道的周期与地球自旋周期一致 (2) 轨道的形状为圆形,偏心率0e = (3) 轨道处在地球赤道平面上,倾角0i = 7. 星座轨道的全球覆盖公式 相邻卫星星下点之间的角距为2b ,覆盖带宽度为2c ,

飞行器结构动力学-期末考试(大作业)题目及要求

《飞行器结构动力学》 2019年-2020年第二学年度 大作业要求 一、题目: 1.题目一:请围绕一具体动力学结构,给出其完整的动力学研究报告, 具体要求: (1)作业最终上交形式为一个研究报告。 (2)所研究结构应为实际科学发展或生产生活中的真实结构,可对其进行一定程度的简化,但不应过分简化,不可以为单自由度 系统,若为多自由度系统,其自由度应不少于5。 (3)所研究内容应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,可以包含但不限于:不同研究方法的对比,对结 构动力学响应的参数影响研究,针对结构动力学响应的结构优 化设计,动力学研究方法的改进,结构动力特性影响机理分析 等。 (4)研究报告应至少包含8部分内容:摘要,关键词,引言,问题描述,分析方法,研究结果,结论,参考文献等,正文字号为 小四,1.5倍行距,篇幅不短于3页,字数不少于1500字。 2.题目二:请拟出一份《飞行器结构动力学试卷》并给出正确答案和评 分标准,具体要求: (1)作业最终上交形式为一份考试卷答案及评分标准,具体形式及格式参考附件。 (2)题目应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,且明确合理无歧义。 (3)卷面总分100分。其中,考察单自由度系统知识点题目应占总分值的30%~40%;考察多自由度系统知识点题目应占总分值的 15%~30%;考察连续弹性体系统知识点题目应占总分值的 15%~30%。考察结构动力学的有限元方法及数值解法占

15%~30%。 (4)试卷可以包含的题目类型为:单选题,填空题,简答题和计算题四类,题目类型应不少于2种,不多于这4种。其中计算题 为必含题目,且分值应不少于40%。 (5)每道题均应给出分值、标准答案和评分标准。 分值的安排应当合理并清晰,需针对每道具体题目给出。 标准答案应当正确无误,且清晰明确,包含整个分析或计算的流程步骤。针对概念或问答等类型题目,应当给出该问题及 答案的来源,并附图以证实。针对计算类型题目,应给出至少 两种不同计算方法及其相应的计算步骤和结果,以证实该结果 的正确性。 评分标准应当合理并清晰地给出标准答案和分值的对应关系,例如:填空题应给出每一空格的分值;简答题应细化给出 题目内所有的关键内容,并给出所有关键内容各自所对应的评 判标准及分值;计算题应依据计算步骤给出每一关键步骤对应 的评判标准及分值。 二、要求 1.大作业题目有两道,请自选其一完成。 2.大作业上交截止时间为2020年6月2日晚12点,逾期则认定为缺考 无成绩。 3.大作业评定分为5个等级,分别为:优(90~100分),良(80~90分), 中等(70~80分),及格(60~70分)和不及格(60分以下)。其中由于 题目难易关系,若无抄袭情况出现,选择题目一的学生可以寻求任课 老师指导,且等级至少为良。 4.抄袭判定:上交作业若出现重复率超过30%情况则判定为抄袭,有7 天时间可以修改,修改后若仍旧为抄袭,则涉及学生均按照不及格处 理。 5.大作业相关参考资料见附件。

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.360docs.net/doc/b212721024.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

(完整版)航空知识手册全集3

第三章 - 飞行空气动力学 飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。作用于飞机的力 至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。 下面定义和平直飞行(未加速的飞行)相关的力。 推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。 阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。 重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。 升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。 在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升

力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下: ?向上力的总和等于向下力的总和 ?向前力的总和等于向后力的总和 对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。在滑翔中,重力矢量的一部分方向向前,因此表现为推力。换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。如图3-2

西北工业大学2007至2008第二学期飞行器结构动力学期末考试

至学年第二学期飞行器结构动力学期末考试试题2008西北工业大学2007诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场本人签字:规则,诚实做人。 编号:成西北工业大学考试试题(卷)绩 学年第二学期2007-2008 飞行器结构动力学学时开课学院航天学院课程 考试日期2008年6月考试时间小时考试形式()()卷 名姓号考生班级学 一、填空题(共20分) 1、振动系统的固有频率,当刚度一定时,随质量的增大而________;当质量一定时,随刚度的增大而________。 2、系统的初始条件和外激励对系统的固有频率________影响。 β_________时隔振才3.对于弹簧阻尼隔振系统,不论阻尼大小,只有当频率比有效果,弹簧阻尼隔振器在低频区(相对系统固有频率)对隔振________;当频率比ββ_________;但在频率比以后,传递率曲线无穷大时,传递率趋于________βζ增大而________。;__________ 当频率比_________时,传递率随阻尼比 二、简答题(共10分) 1、(5分)简述影响结构动力学分析模型的主要因素及有限元模型的常见模型。

2、(5分)简述位移展开定律。 yYωt,,前轮轴上下运动sin=飞机在跑道上降落滑行的简化模型如图三、(10分)1mkc=5880s·,阻尼系数=294kN/m已知质量N/m=2940kg,弹簧刚度,路面的y=10sin30t(激励cm)(位移),求质量上下振动的振幅。 共3页第1页 图 1 四、(15分)如图2所示导弹头部安装带有减振装置的仪器组件。当垂直发 射时,导弹有随时间直线增加的加速度。其中为常数。如果该组件质量,求发射时组件相对弹体支承板的相对位移和组件的绝对加速度时间函数。为 阻尼忽略不计。 1 仪器组件 2 支承座 图2 带有仪器的弹头示意图 五、(20分)三个质量由两根弹性梁对称的连结在一起,可粗略作为飞机的简 化模型(如图3)。设中间的质量为,两端的质量各为,梁的横向刚度为, 梁本身质量可略去不计,,忽略阻尼。只考虑各个质量沿铅垂方向的运动,初 =[1,0,-1],=[0,0,0],求系统的响应,设=。

西北工业大学2005至2006学年第二学期飞行器结构动力学期末考试试题

西北工业大学2005至2006学年第二学期飞行器结构动力学期末考试试题 诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。 本人签字: 编号: 西北工业大学考试试题(卷) 2005 -2006 学年第二学期 开课学院 航天学院 课程 飞行器结构动力学 学时 考试日期 2006年6月 考试时间 小时 考试形式()()卷 考生班级 学 号 姓 名 一、填空题(共20分) 1.如图1所示是一简谐振动曲线,该简谐振动的频率为 Hz ,从A 点算起到曲线上 点表示为完成一次全振动。 图 1 2.一弹簧振子,周期是0.5s ,振幅为2cm ,当振子通过平衡位置向右运动时开始计时,那么2秒内振子完成_________次振动,通过路程_________cm 。 3.单自由有阻尼系统的自由振动中,当阻尼因子ζ_____时,系统为衰减的简谐振动;当阻尼因子ζ_____时,系统为振动与否的临界状态,称为_________情况;当阻尼因子ζ_____时,系统__________________,称为_________情况。 教务处印制 共2页 第1页 成绩

二、问答题:(共20分) 1、(10分)简述子空间迭代法的主要步骤和求解特征值的具体作法? 2、(5分)飞行器结构动态固有特性分析的作用与特点? 3、(5分)飞行器结构动态响应分析的时间域方法主要有哪些?选用它们时主要考虑的问题? 三、(20分)求图2所示系统在右支承端有简谐振动的振动微分方程,并求其稳态响应表达式。 图 2 四、(20分)估算导弹轴向频率的简化模型如图3所示,求图示系统的频率和振型(提示半定系统)。 图 3 五、(20分)如图4一端固定一端自由的纵向杆,杆的抗拉刚度为EA,质量 密度为ρ,长度为L,求解: 1、写出杆的纵向振动方程和边界条件; 2、已知杆的单元刚度矩阵为:,用集中质量方法(两 个质点),求杆的纵向振动频率(两阶频率)。 图 4 教务处印制共 2 页第 2 页

飞行力学部分知识要点

空气动力学及飞行原理课程 飞行力学部分知识要点 第一讲:飞行力学基础 1.坐标系定义的意义 2.刚体飞行器的空间运动可以分为两部分:质心运动和绕质心的转 动。描述任意时刻的空间运动需要六个自由度:三个质心运动和三个角运动 3.地面坐标系, O 地面任意点,OX 水平面任意方向,OZ 垂直地面 指向地心,OXY 水平面(地平面),符合右手规则在一般情况下。 4.机体坐标系, O 飞机质心位置,OX 取飞机设计轴指向机头方向, OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 5.气流(速度)坐标系, O 飞机质心位置,OX 取飞机速度方向且重 合,OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 6.航迹坐标系, O取在飞机质心处,坐标系与飞机固连,OX轴与飞 行速度V重合一致,OZ轴在位于包含飞行速度V在内的铅垂面内,与OX轴垂直并指向下方,OY轴垂直于OXZ平面并按右手定则确定 7.姿态角, 飞机的姿态角是由机体坐标系和地面坐标系之间的关系 确定的:

8. 俯仰角—机体轴OX 与地平面OXY 平面的夹角,俯仰角抬头为正; 9. 偏航角—机体轴OX 在地平面OXY 平面的投影与轴OX 的夹角,垂直于地平面,右偏航为正; 10. 滚转角—机体OZ 轴与包含机体OX 轴的垂直平面的夹角,右滚转为正 11. 气流角, 是由飞行速度矢量与机体坐标系之间的关系确定的 12. 迎角—也称攻角,飞机速度矢量在飞机对称面的投影与机体OX 轴的夹角,以速度投影在机体OX 轴下为正; 13. 侧滑角—飞机速度矢量与飞机对称面的夹角 14. 常规飞机的操纵机构主要有三个:驾驶杆、脚蹬、油门杆,常规气动舵面有三个升降舵、副翼、方向舵 15. 作用在飞机上的外力,重力,发动机推力,空气动力 16. 重力,飞机质量随燃油消耗、外挂投放等变化,性能计算中,把飞机质量当作已知的常量 17. 空气动力中,升力,阻力,的计算公式,动压的概念。 18. 随迎角增大,升力曲线非线性,迎角分别经历抖动迎角,失速迎角,临界迎角等过程 19. 喷气发动机工作原理f k p ()P m V V =-, 20. 台架推力Pf ,发动机在试车台上测得的推力 21. 可用推力Pky ,飞行中发动机能够实际供给的用以推动飞机前进的推力 22. 推重比γfd ,耗油量qh ,单位时间消耗的燃油质量

飞行器结构力学理论基础讲义

飞行器结构力学理论基础讲义 第一章绪论 1.1 结构力学在力学中的地位 结构力学是飞行器结构计算的理论基础。它研究飞行器在外载荷作用下,结构最合理的组成及计算方法。所谓最合理的结构是指:在满足设计中关于强度与刚度的基本要求下,同时在结构空间允许的情况下,具有最轻的重量。 为了达到以上的目的,对从事结构设计者来说,必须较熟练地掌握结构力学的基本原理与方法。对于本专业的学生来说,结构力学是飞行器强度与刚度计算的基础课程,并且为学习飞行器部件设计及传力分析打下必要的理论基础。 结构力学具体来说由以下四部分组成: (1)研究结构组成是否合理。主要指结构在外力作用下是否几何不变,同时内力与变形又不至于过大。 (2)结构在外载荷作用下,结构内力的计算方法。 (3)结构在外载荷作用下,结构刚度的计算方法。 (4)研究结构中某些元件及组合件的弯曲及稳定性。 1.2 结构力学的研究内容 不同的结构有其不同的结构力学,例如在建筑结构中主要涉及杆系,因此杆系所需的力学知识构成建筑结构力学。船舶结构的设计和制造中,主要涉及开口薄壁杆件,因此开口薄壁杆件的弯曲和扭转便构成船舶结构力学的主要内容。对于航天领域,飞行器结构大多是薄壁结构,薄壁结构力学构成飞行器结构力学的主要内容。 1.3 结构力学的计算模型 工程结构,尤其是飞行器结构往往是很复杂的,要考虑所有的因素来分析其内力和变形

几乎是不可能的,也是没有必要的。为了适应实际计算,首先需要将真实的结构加以简化,保留起主要作用的因素,略去次要因素,用理想化的受力系统代替实际结构,以得到所需要的计算模型。 计算模型选取的原则是: (1)反映实际结构的主要受力和变形特征; (2)便于结构的力学分析。 计算模型的简化大致可分成以下5个方面的内容。 1.外载荷的简化 (1)略去对强度和刚度影响不大的外载荷,着重考虑起主要作用的外载荷。 (2)将作用面积很小的分布载荷简化成集中载荷。 (3)将载荷集度变化不大的分布载荷简化成均布载荷。 (4)将动力效应不大的动力载荷简化成静力载荷。 2.几何形状的简化 飞行器的外形大多由曲线或曲面所构成,计算模型可以简化成用折线代替曲线,用若干平面代替曲面。 3.受力系统的简化 (1)略去结构中不受力或受力不大的元件。 (2)对元件的受力规律或受力类型作某些假设,抽象为理想元件。 4.连接关系的简化 将实际结构中所采用的铆接、螺接或焊接等连接方式,按照其受力及构造特点,可以简化为没有摩擦的铰接或刚接。杆件的汇交点称为结点,其可以简化为图1.1所示的三种形式。 (a)(b)(c) 图1.1 铰结点(见图1.1(a)),特征是被连接的杆件在连接处不能相对移动,但可绕该结点自由转动。铰结点可以传递力,但不能传递力矩。 刚结点(见图1.1(b)),特征是被连接的杆件不能相对移动,且不能相对转动。刚结点既可传递力,也可传递力矩。

微型飞行器空气动力学研究

2005年9月系统工程理论与实践第9期 文章编号:100026788(2005)0920137205 微型飞行器空气动力学研究 李占科,宋笔锋,张亚锋 (西北工业大学航空学院,陕西西安710072) 摘要: 围绕与微型飞行器相关的低雷诺数空气动力学问题,进行了低雷诺数翼型气动特性的数值分析 研究、低马赫数低雷诺数流场数值计算方法研究、考虑扑翼结构弹性变形的气动特性估算方法研究、微 型飞行器气动特性估算的非定常涡格法研究和微型飞行器的风洞试验研究,取得的研究成果对微型飞 行器的发展具有重要的参考价值和指导意义. 关键词: 微型飞行器;雷诺数;扑翼;风洞试验 中图分类号: V27912 文献标识码: A Aerodynamics Research on M icro Air Vehicles LI Zhan2ke,S ONG Bi2feng,ZHANG Y a2feng (School of Aeronautics,N orthwestern P olytechnical University,X i’an710072,China) Abstract: In the paper,Based on the low Reynolds number aerodynamics of the micro air vehicles(M AVs),s ome researches were done.such as aerodynamics characteristic numerical analysis research on the air foil at low Reynolds numbers,numerical calculation method of low Mach low Reynolds numbers fluid field,estimation method research on aerodynamic characteristic of the aeroelastic flapping wing,unsteady v ortex method of aerodynamics characteristic estimation and wind tunnel test of M AVs.The results of this paper have im portant reference value and instructive meaning to the development of M AVs. K ey w ords: micro air vehicles(M AVs);Reynolds number;flapping wing;wind tunnel test 1 引言 近年来,微型飞行器作为一种新型的航空飞行器,在国内外形成了新的研究热潮.低速和小尺寸共同决定了微型飞行器的飞行雷诺数很低(105左右),这远低于传统飞行器(包括普通的无人驾驶飞机)的飞行雷诺数范围(106~108以上).微型飞行器必须在低雷诺数条件下仍能保持良好的气动性能,而这方面的研究目前尚处在探索阶段.本文主要围绕与微型飞行器有关的低雷诺数空气动力学问题,进行了数值计算和风洞试验等方面的研究,取得了具有一定参考价值的研究成果. 2 微型飞行器空气动力学研究 211 低雷诺数翼型气动特性的数值分析研究 微型飞行器外形尺寸小,速度低,基于微型飞行器尺寸的雷诺数也比较小,粘性效应相对强烈,流动易分离,准确求解这种低雷诺数的流场对湍流模型乃至整个数学模型都是一个极大的挑战.本研究针对低雷诺数问题,利用求解雷诺平均的NS方程,数值模拟了绕翼型的低雷诺数流动,分析了与低雷诺数流动有关的不稳定性.研究表明,分离流动都是不稳定的,会产生周期性的脱出涡.结合绕翼型的低雷诺数流动,对采用的计算模型进行了以下研究: 1)FNS方程与T LNS方程数值准确性的对比研究 分别采用FNS方程和T LNS方程计算了在条件:Ma=012,雷诺数Re=110×105,攻角α=1°时绕 收稿日期:2003207207 资助项目:总装气动预研项目(413130401)及国防基础科研项目(J1500C001)联合资助 作者简介:李占科(1973-),男,陕西岐山人,西北工业大学飞机系博士,主要从事与微型飞行器有关的研究.

飞行器结构力学讲义

飞行器结构力学 郑晓亚王焘 西北工业大学 2011年6月

目录 第一章绪论 (1) 1.1 结构力学在力学中的地位 (1) 1.2 结构力学的研究内容 (1) 1.3 结构力学的计算模型 (1) 1.4 基本关系和基本假设 (3) 第二章结构的组成分析 (5) 2.1 几何可变系统和几何不变系统 (5) 2.2 自由度、约束和几何不变性的分析 (5) 2.3 组成几何不变系统的基本规则、瞬变系统的概念 (7) 2.4 静定结构和静不定结构 (12) 第三章静定结构的内力及弹性位移 (13) 3.1 引言 (13) 3.2 静定桁架的内力 (13) 3.3 静定刚架的内力* (16) 3.4 杆板式薄壁结构计算模型 (19) 3.5 杆板式薄壁结构元件的平衡 (20) 3.6 静定薄壁结构及其内力 (25) 3.7 静定系统的主要特征 (34) 3.8 静定结构的弹性位移 (35) 第四章静不定结构的内力及弹性位移 (45) 4.1 静不定系统的特性 (45) 4.2 静不定系统的解法——力法 (45) 4.3 对称系统的简化计算 (54) 4.4 静不定系统的位移 (57) 4.5 力法的一般原理和基本系统的选取 (60) 第五章薄壁梁的弯曲和扭转 (64) 5.1 引言 (64) 5.2 自由弯曲时的正应力 (65) 5.3 自由弯曲时开剖面剪流的计算 (68) 5.4 开剖面的弯心 (71) 5.5 单闭室剖面剪流的计算 (77) I

5.6 单闭室剖面薄壁梁的扭角 (81) 5.7 单闭室剖面的弯心 (82) 5.8 多闭室剖面剪流的计算* (86) 5.9 限制扭转的概念* (91) 第六章结构的稳定 (94) 6.1 引言 (94) 6.2 压杆的稳定性 (95) 6.3 薄板压曲的基本微分方程 (95) 6.4 薄板的临界载荷 (99) 6.5 板在比例极限以外的临界应力 (102) 6.6 薄壁杆的局部失稳和总体失稳 (103) 6.7 加劲板受压失稳后的工作情况——有效宽度概念 (104) 6.8 加劲板受剪失稳后的工作情况——张力场梁概念 (108) II

西北工业大学2007至2008学年第二学期飞行器结构动力学期末考试试题

西北工业大学2007至2008学年第二学期飞行器结构动力学期末考试试题 诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做 人。 本人签字: 编号: 西北工业大学考试试题 (卷) 2007-2008学年第二学期 开课学院 航天学院 课程 飞行器结构动力学 学时 考试日期 2008年6月 考试时间 小时 考试形式()()卷 考生班级 学 号 姓 名 成绩

一、填空题(共20分) 1、振动系统的固有频率,当刚度一定时,随质量的增大而________;当质量一定时,随刚度的增大而________。 2、系统的初始条件和外激励对系统的固有频率________影响。 3.对于弹簧阻尼隔振系统,不论阻尼大小,只有当频率比β_________时隔振才有效果,弹簧阻尼隔振器在低频区(相对系统固有频率)对隔振________;当频率比β无穷大时,传递率趋于________;但在频率比β_________以后,传递率曲线__________;当频率比β_________时,传递率随阻尼比ζ增大而________。 二、简答题(共10分) 1、(5分)简述影响结构动力学分析模型的主要因素及有限元模型的常见模型。 2、(5分)简述位移展开定律。 三、(10分)飞机在跑道上降落滑行的简化模型如图1,前轮轴上下运动y=Y sinωt,已知质量m=2940kg,弹簧刚度k=294kN/m,阻尼系数c=5880s·N/m,路面的激励 y=10sin30t(cm)(位移),求质量上下振动的振幅。 共3页第1页 图1 四、(15分)如图2所示导弹头部安装带有减振装置的仪器组件。当垂直发 射时,导弹有随时间直线增加的加速度。其中为常数。如果该组件质量 为,求发射时组件相对弹体支承板的相对位移和组件的绝对加速度时间函 数。阻尼忽略不计。

橡筋动力模型飞机的制作与飞行(教学设计)

橡筋动力模型飞机制作 设计思路: 天驰橡筋动力飞机创意套材内含螺旋桨、尾钩、橡筋及其它一些制作模型飞机的材料,学生自行设计其余部分配件并组装成一架橡筋动力飞机,通过制作可让学生亲身体验,培养其动脑动手和发现问题,解决问题的能力。 活动目标: 1.了解橡筋动力模型飞机的基本结构。 2.制作橡筋动力模型飞机,激发学生对航空飞机的兴趣和热爱。 3.通过模型制作,培养学生动脑动手,发现问题,解决问题,学会合作的能力。活动重、难点:制作橡筋动力模型飞机。 活动准备:橡筋动力模型飞机套材、尺子、学生剪、砂纸 活动过程: 一、激趣导入,确定主题 1. 人类的航空航天梦。 2. 了解模型飞机的基本结构: 主翼尾翼机身 动力:电动、油动、橡筋动力等 3.橡筋动力飞机简介: “橡筋动力飞机”是靠储存在橡筋内的能量带动螺旋桨旋转产生拉力而使飞机上升的模型。橡筋动力用完后,模型滑翔下降。 二、橡筋动力飞机的制作 课件出示 1.整理套材零件 2.定型主翼 (1)按照主翼压痕轻轻折出机翼翼型; (2)将定型片粘贴到机翼上反角背面,用加强胶带加固; 3. 安装翼台 将翼台安装到机身上,大约6CM,注意翼台前后不能搞错,安装好后将双面胶贴到翼台上。

4. 安装机翼 (1)机翼粘帖到翼台上,前后缘不要搞错,粘帖两边机翼要对称; (2)用塑料片和小橡皮圈将机翼再次加固固定; 5. 安装尾翼 (1)安装尾钩和尾翼翼座; (2)粘贴垂直尾翼和水平尾翼,水平尾翼要和机身水平,垂直尾翼要和水平尾翼垂直; 6. 安装螺旋桨 7. 美化机身 8. 安装橡筋 三、展示交流 1.展示评价 检视模型:从模型头部直视,安装完好的模型应无扭曲,并且左右对称。2.制作过程中发现的问题 3.如何解决出现的问题 四、拓展延伸 1. 飞机飞行的动力学原理: 在飞机的飞行过程中,如何提升飞机的升力对于飞机的飞行是至关重要的。飞机的升力主要取决于飞机的翼型的设计。在设计翼型时,机翼的上表面有一个流线型的突起。当飞机的上下表面距离不同时,飞机在前进过程中受到的空气压力也就不同。上表面的空气流速快,飞机受到的压力小,小表面的空气流速慢,飞机受到的空气压力大。所以就会产生向上的升力。 2.飞行与调整

飞行动力学知识点

《飞行动力学》掌握知识点 第一章 掌握知识点如下: 1)现代飞机提高最大升力系数采取的措施包括边条翼气动布局或近耦鸭式布局2)飞行器阻力可分为摩擦阻力、压差阻力、诱导阻力、干扰阻力和激波阻力等3)试描述涡喷发动机的三种特性:转速(油门)特性,速度特性,高度特性并绘出变化曲线. P8 答:转速特性是在给定调节规律下,高度和速度一定时,发动机推力和耗油率随转速的变化关系。速度特性是在给定调节规律下,高度和转速一定时,发动机推力和耗油率随飞行速度或Ma的变化关系。高度特性是在发动机转速和飞行速度一定时,发动机推力和耗油率随飞行高度的变化关系。第二章 掌握知识点如下: 1)飞机飞行性能包括平飞性能、上升性能、续航性能和起落性能。 2)飞机定直平飞的最小速度受到哪些因素的限制?答:允许升力系数,抖动升力系数,最大平尾偏角,发动机可用推力。 3)为提高飞机的续航性能,飞机设计中可采取哪些措施?答:设计中力求提高升阻比,增加可用燃油量,选用耗油率低,经济性好的发动机,选择最省油状态上升和最佳巡航状态巡航。 第三章 掌握知识点如下: 1)了解飞机机动性的基本概念。答:飞机机动性是指飞机在一定时间内改变飞行速度,飞行高度和飞行方向的能力,相应的分为速度机动性,高度机动性和方向机动性。按航迹特点分为铅垂平面内,水平平面内和空间的机动飞行。 2)了解飞机敏捷性的基本概念和目前用来评价敏捷性的指标。答:飞机的敏捷性是指飞机在空中迅速精确的改变机动飞行状态的能力。选用状态变化和时间两个属性来衡量飞机敏捷性。敏捷性按照时间尺度分为瞬态敏捷性,功能敏捷性和

敏捷性潜力;按照飞机运动形式分为轴向敏捷性,纵向敏捷性和滚转敏捷性。第四章 掌握知识点如下: 1)了解“方案飞行”和“飞行方案”的基本概念。答:方案飞行是导弹按照某种固定的飞行程序飞行,用来攻击静止的或运动缓慢的目标,或将导弹及其他飞行器送到预定点。飞行方案是设计弹道时所设定的某些运动参数随时间变化的规律。 第五章 掌握知识点如下: 1)导引规律运动学分析的基本假设条件。答:1.控制系统的工作是理想的2.导弹的速度是已知的时间函数,不受导引规律的影响3.把导弹和目标的运动都看成是可控制的质点运动。 2)相对弹道、绝对弹道的基本概念。答:相对弹道是导弹重心相对某个活动目标的运动轨迹。绝对弹道是导弹相对地面某个固定目标的运动轨迹。 3)了解平行接近法的基本概念,以及其优缺点。答:平行接近法是指导弹在攻击目标的过程中目标视线始终平行移动,即目标视线角始终不变。 4)掌握选择导引方法时需要考虑的因素。答:需要考虑导弹的飞行性能,作战空域,技术实施,导引精度,制导设备,战术使用等方面。 5)了解攻击区的基本概念,以及限制攻击区的条件。答:只有在相对于目标的某一特定区域内发射导弹才可能命中目标,这一特定区域称为理论发射区,又称攻击区。限制因素:导引头截获目标的距离限制,最大能源工作时间限制,最大最小相对速度限制,引信解除保险所需时间的限制,导弹可用过载Na的限制,导引头最大跟踪角速度的限制,导引头最大离轴角的限制。 第六章 掌握知识点如下: 1)影响飞行器运动特性的因素包括机体的弹性变形、飞行器上的旋转部件、重量随时间的变化、地球的曲率和自转、大气的运动等。 2)推导飞行器动力学中用到的主要简化假设。答:1.假设地球为平面大地,忽略地球的曲率和自转2.飞行器为刚体3.大气为静止标准大气,不考虑风的影响。

第三章 飞行空气动力学

第三章- 飞行空气动力学 飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。 作用于飞机的力 至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。 下面定义和平直飞行(未加速的飞行)相关的力。 推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。 阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。 重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。 升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。 在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下: 向上力的总和等于向下力的总和 向前力的总和等于向后力的总和

航空飞行器飞行动力学答案

航空飞行器飞行动力学答案

航空飞行器飞行动力学答案 【篇一:尔雅航空与航天考试答案】 class=txt>a、 脱壳而出 b、 气垫着陆 c、 乘伞而降 d、 网捕而归 正确答案:d 我的答案:d 2第一颗人造卫星发射于()。1.0 分 a、 1957年8月4日 b、 1958年8月4日 c、 1957年10月4日 d、 1958年10月4日

正确答案:c 我的答案:c 3鱼鹰属于()1.0 分 a、 歼击机 b、 无人机 c、 运输机 d、 轰炸机 正确答案:c 我的答案:c 4飞机低速飞行时的马赫数可能是()。1.0 分a、 5 b、 3 c、 0.3 d、 正确答案:c 我的答案:c 5 在飞机飞行速度约为每小时800-900公里时()。

1.0 分 a、 涡扇发动机油耗率高于涡轮发动机 b、 涡轮发动机油耗率高于涡扇发动机 c、 涡轮发动机和涡扇发动机油耗率基本相等d、 涡轮发动机和涡扇发动机的油耗率波动较大正确答案:b 我的答案:b 6 脱离速度是()。 1.0 分 a、 第一宇宙速度 b、 第二宇宙速度 c、 第三宇宙速度 d、 第四宇宙速度 正确答案:b 我的答案:b

7飞机的外部部件连接的方式主要以()为主。1.0 分 a、 拼接 b、 胶水 c、 焊接 d、 铆接 正确答案:d 我的答案:d 8关于采用无线遥控方式操作的无人机,下列说法错误的是()。1.0 分 a、 飞机成本较高 b、 飞机灵活性较高 c、 受到距离限制 d、 存在电子干扰 正确答案:a 我的答案:a 9我国的高级教练机包括()。0.0 分

2017年西北工业大学 839飞行器飞行力学 硕士研究生考试大纲

题号:839 《飞行器飞行力学》 考试大纲 一、考试内容 根据我校教学及该试题涵盖专业的特点,对考试范围作以下要求: 1.基本概念:压力中心;焦点;静稳定性;失速;瞬时平衡假设;纵向运动;攻击禁区;相对弹道;绝对弹道;理想弹道;理论弹道;基准运动;扰动运动;附加运动;强迫扰动运动;自由扰动运动;动态稳定性;操纵性;超调量;调节规律;特征方程及特征根。 2.坐标系及其转换:惯性坐标系;弹道坐标系;速度坐标系;弹体坐标系;坐标转换方程;迎角、侧滑角、弹道倾角、弹道偏角、姿态角、速度滚转角;作用在导弹上的力和力矩。 3.导弹运动方程的建立:导弹作为刚体的六自由度运动方程的建立方法;导弹作为可操纵质点的运动方程的建立;纵向运动方程的建立;平面运动方程的建立;轴对称和面对称导弹的操纵方法;理想操纵关系式。 4.过载:过载的概念;过载的投影;过载与运动参数之间的关系;过载与机动性的关系;过载与导弹结构强度设计之间的关系;过载与弹道形状的关系;需用过载;可用过载;极限过载;最大过载;过载与轨道半径的关系。 5.导引规律与弹道:导引弹道的研究方法、特点;相对运动方程的建立;追踪法;平行接近法;比例导引法;三点法;角度法;复合制导。 6.方案制导:方案制导的弹道方程;按要求给出方案弹道的具体方案。 7.干扰力和干扰力矩:风的干扰;发动机安装偏差;弹身对接偏差;弹翼安装偏差;控制系统误差。 8.扰动运动方程:扰动运动方程的建立;扰动运动方程与扰动源性质的关系;“系数”冻结法;扰动运动方程的拉氏解析求解方法;扰动运动方程特征根与扰动运动形态和稳定性的关系。 9.纵向扰动运动:纵向扰动运动动态特性的分析方法;纵向短周期扰动运动特性的分析;纵向短周期扰动运动的动态稳定条件的推导;纵向短周期扰动运动的动稳定性与静稳定性的关系;纵向短周期扰动运动的传递函数;舵面阶跃偏

P053-飞行器结构动力学-期末考试(大作业)-基于有限元ANSYS的金属罐稳定性分析

北京力学会第18届学术年会论文集:固体力学 基于有限元ANSYS的金属罐稳定性分析 刘娜杨庆生 (北京工业大学机电学院,100124) 摘要:本论文建立了金属两片罐与三片罐的力学模型,并进行了稳定性分析;通过PRO/E 建模,然后用有限元分析软件ANSYS进行稳定性分析;分析了金属包装容器由于局部结构 的变化造成的稳定性影响。 关键词:金属罐,稳定性,ANSYS 一、 金属罐稳定性分析 1.1金属罐振动稳定性分析 金属罐在运输过程中的振动,除了受液体静压力外,还受容器本身的惯性力以及在其底部和侧壁上遭受到储存在容器中的液体所产生的液动压力[1]。金属罐的振动状态如图1所示。 图1 金属罐的振动简化模型示意图图2金属罐动力学模型 金属罐简化为圆柱体,内部的液体简化为一系列质点-弹簧系统,连接于圆柱体的侧壁,其动力学模型,如图2所示。不同振子接受到的来自地面的振动激励不同,将每个振子划分为等质量的模块,每个振子与底端基地的距离是成比例增加的,而每个振子的激励响应随着弹簧刚度系数的增加而增大。在实际运输中表现为罐顶部位受到的振动冲击最激烈,将首先发生失稳,在实际中表现为顶部先发生泄漏。 1.2两片罐的稳定性分析 利用ANSYS有限元对两片罐的轴向稳定性进行分析,结果如图3所示。通过应力云图可以看出,罐顶和罐底处的应力比较均匀,在底部过渡处和顶部缩颈处都出现了应力集中。从罐顶到罐底的应力逐渐增大,但罐身部分在周向方向上应力各个方位上各有不同,这在实际情况中就会表现为罐身部分失稳发生屈曲现象。 1.3金属三片罐的稳定性分析 利用ANSYS有限元对三片罐的轴向稳定性进行分析,如图4所示 三片罐侧壁上的焊缝相当于给罐体部分加了加强筋[2],在应力云图上可以看出焊缝所在的半个圆周曲面上的耐压强度明显高于无焊缝的圆周曲面。罐顶和罐底的应力比罐

飞行器动力工程-专业培养方案

西北工业大学本科生培养方案专业名称飞行器动力工程 专业代码0203 0701 学院名称航天学院动力与能源学院 培养方案制定人签字年月日 院长签字年月日 校长签字年月日 西北工业大学 1 1

飞行器动力工程专业本科培养方案 一、专业介绍 西北工业大学飞行器动力工程专业以航空航天飞行器动力为对象,以航空宇航推进理论与工程、动力工程与工程热物理学科为依托,以动力、能源、机械及控制等学科为延拓,历经60多年的发展,已成为我校最具航空航天特色的专业之一。本专业拥有2个国家级重点实验室、2个省部级重点实验室和工程中心,是陕西省本科“名牌专业”、国防科工委“重点建设专业”和教育部“特色专业”。 本专业涵盖航空发动机和火箭发动机设计、燃烧与流动、叶轮机械、发动机结构与强度等多个研究方向,参与并支持了我国多个航空飞行器动力装置、航天飞行器动力系统等方面的科研工作,已形成了一支教学水平高、科研能力强的师资队伍。本专业以国民经济发展和国防建设需求为牵引,充分发挥国防特色的突出优势,教学与科研紧密结合,培养的学生基础扎实、实践能力强、综合素质高、创新意识强,得到用人单位的一致好评。 毕业生就业方向主要分布在航天、航空研究院(所)、大专院校、大型企业及部队,从事发动机设计、制造、试验、测试等方面的研究、开发和管理等工作;也可选择报考本专业及相关学科专业的硕士研究生,近年来平均读研率在60%以上。 二、培养目标 培养适应社会主义现代化建设需要的德智体全面发展,掌握航空航天动力系统设计基本理论和工程应用等专门知识,具备航空航天热动力机械方面设计、分析和解决实际问题的能力,能从事航空航天动力系统总体设计、性能仿真、燃烧组织、流动模拟、传热分析及相关软件开发等,并能从事通用机械设计及制造的高级研究人员和工程技术人员。 三、培养要求 通过通识通修、学科专业和综合实践等培养环节,使学生具有高尚的人文素养、掌握宽广的基础科学理论、具备解决实际问题的基本方法和创新能力;并可结合自身的兴趣、爱好和就业取向,选修有助于拓展视野和提高能力的个性培养课程,从而达到综合素质的全面提升。 毕业生应获得以下几方面的知识和能力: 1、具有扎实的自然科学基础知识,良好的人文、艺术和社会科学基础及较强的语言表达和阅读写作能力。 2 1

相关文档
最新文档