β-1,3葡聚糖酶测定试剂盒使用说明

β-1,3葡聚糖酶测定试剂盒使用说明
β-1,3葡聚糖酶测定试剂盒使用说明

β-1,3葡聚糖酶测定试剂盒使用说明

分光光度法货号:BC0360

规格:50管/24样

产品内容:

提取液:液体50mL×1瓶,4℃保存;

试剂一:粉剂×1瓶,4℃保存;临用前加入3mL蒸馏水,充分溶解待用;用不完的试剂4℃保存;

试剂二:液体42mL×1瓶,4℃保存;

标准品:粉剂×1支,4℃保存,含10mg无水葡萄糖(干燥失重<0.2%),临用前加入1ml蒸馏水溶解,配制成10mg/ml葡萄糖溶液备用,4℃可保存1周,或者用饱和苯甲酸溶液溶解,可保存更长时间。

标准品准备:将标准品用蒸馏水稀释至1、0.8、0.6、0.4、0.2mg/ml。

产品说明:

β-1,3-GA(EC3.2.1.73)主要存在植物中,催化β-1,3-葡萄糖苷键水解。在植物染病或处于其他逆境条件下,可诱导细胞大量合成β-1,3-GA,因此β-1,3-GA活性测定广泛应用于植物病理和逆境生理研究。

β-1,3-GA水解昆布多糖,内切β-1,3-葡萄糖苷键,产生还原末端,通过测定还原糖生成速率,来计算其酶活性。

自备仪器和用品:

可见分光光度计、台式离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵、冰和蒸馏水。

操作步骤:

粗酶液提取:

按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL 提取液),进行冰浴匀浆。12000g4℃离心10min,取上清,置冰上待测。

测定步骤:

1、分光光度计预热30min以上,调节波长至540nm,蒸馏水调零。

2、样本测定(在1.5mL EP管中依次加入下列试剂):

试剂名称(μL)测定管对照管标准管(葡萄糖溶液)样本或标准液100100100蒸馏水100100

试剂一100

充分混匀,放入37℃水浴60min。

试剂二600600600

充分混匀,沸水浴5min(盖紧,防止水分散失),流水冷却,540nm处记录各管吸光值A,如果吸光值大于2,可以用蒸馏水稀释后测定(计算公式乘以相应稀释倍数),ΔA=A测定-A对照。每个测定管需设一个对照管。

β-1,3-GA活性计算:

根据标准管吸光度(x)和浓度(y,mg/ml)建立标准曲线,将ΔA带入公式中计算出样品中产生的还原糖的含量y值(mg/ml)

(1)按蛋白浓度计算

单位的定义:每mg组织蛋白每小时产生1mg还原糖定义为一个酶活性单位。

β-1,3-GA(U/mg prot)=(y×V1)÷(V1×Cpr)=y÷Cpr

(2)按样本鲜重计算

单位的定义:每g组织每小时产生1mg还原糖定义为一个酶活性单位。

β-1,3-GA(U/g鲜重)=(y×V1)÷(W×V1÷V2)=y÷W

(3)按细菌或细胞密度计算

单位的定义:每1万个细胞或细菌每小时产生1mg还原糖定义为一个酶活性单位。

β-1,3-GA(U/g鲜重)=(y×V1)÷(500×V1÷V2)=0.002×y

V1:加入反应体系中样本体积,0.1mL;V2:加入提取液体积,1mL;Cpr:样本蛋白质浓度,mg/mL;W:样本鲜重,g。

QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

货号:QS2631 规格:50管/24样 内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书 分光光度法 正式测定前务必取 2-3 个预期差异较大的样本做预测定 测定意义: Cx存在于细菌、真菌和动物体内,是纤维素酶系的组份之一,Cx主要作用于非晶态纤维素和水溶性纤维素衍生物,随机水解糖苷键,将其分解成葡萄糖、纤维二糖、纤维三糖和其他寡聚体。 测定原理: 采用3,5-二硝基水杨酸法测定Cx催化羧甲基纤维素钠降解产生的还原糖的含量。 需自备的仪器和用品: 可见分光光度计、水浴锅、离心机、可调式移液器、1mL 玻璃比色皿、研钵、冰和蒸馏水。 试剂的组成和配制: 提取液:液体 50mL×1 瓶,4℃保存; 试剂一:液体 15mL×1 瓶,4℃保存; 试剂二:液体 60mL×1 瓶,4℃保存; 样品测定的准备: 1、细菌或培养细胞:先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(104 个):提取液体积(mL)为 500~1000:1 的比例(建议 500 万细菌或细胞加入 1mL 提取液),超声波破碎细菌或细胞(冰浴,功率 20%或 200W,超声 3s,间隔 10s,重复 30 次);8000g 4℃离心 10min,取上清,置冰上待测。 2、组织:按照组织质量(g):提取液体积(mL)为 1:5~10 的比例(建议称取约 0.1g 组织, 加入 1mL 提取液),进行冰浴匀浆。8000g 4℃离心 10min,取上清,置冰上待测。 3、血清(浆)样品:直接检测。 测定步骤: 1、分光光度计预热 30min 以上,调节波长至 540nm,蒸馏水调零。 混匀, 90℃水浴 10min(盖紧,防止水分散失),冷却后,测 540nm 下吸光值 A,计 算ΔA=A 测定管-A 对照管。每个测定管需设一个对照管。 第1页,共2页

β-1,3 葡聚糖酶(β-1,3-glucanase,β-1,3-GA)试剂盒使用说明

β-1,3葡聚糖酶(β-1,3-glucanase,β-1,3-GA)试剂盒使用说明 分光光度法货号:BC0830 规格:50管/24样 产品内容: 提取液:液体50mL×1瓶,4℃保存; 试剂一:粉剂×1瓶,4℃保存;临用前加入3mL蒸馏水,充分溶解待用;用不完的试剂4℃保存; 试剂二:液体30mL×1瓶,4℃保存; 产品说明: β-1,3-GA(EC3.2.1.73)主要存在植物中,催化β-1,3-葡萄糖苷键水解。在植物染病或处于其他逆境条件下,可诱导细胞大量合成β-1,3-GA,因此β-1,3-GA活性测定广泛应用于植物病理和逆境生理研究。 β-1,3-GA水解昆布多糖,内切β-1,3-葡萄糖苷键,产生还原末端,通过测定还原糖生成速率,来计算其酶活性。 自备仪器和用品: 可见分光光度计、台式离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵、冰和蒸馏水。 操作步骤: 粗酶液提取: 按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL 提取液),进行冰浴匀浆。12000g4℃离心10min,取上清,置冰上待测。

测定步骤: 1、分光光度计预热30min以上,调节波长至550nm,蒸馏水调零。 2、样本测定(在1.5mL EP管中依次加入下列试剂): 试剂名称(μL)测定管对照管 样本100100 蒸馏水100 试剂一100 充分混匀,放入37℃水浴60min。 试剂二600600 充分混匀,沸水浴5min(盖紧,防止水分散失),流水冷却,550nm处记录各管吸光值A,如果吸光值大于2,可以用蒸馏水稀释后测定(计算公式乘以相应稀释倍数),ΔA=A测定-A对照。每个测定管需设一个对照管。 β-1,3-GA活性计算: 标准条件下测定回归方程为y=0.0958x-0.0192;x为标准品浓度(mg/mL),y为吸光值。 (1)按蛋白浓度计算 单位的定义:每mg组织蛋白每小时产生1mg还原糖定义为一个酶活性单位。 β-1,3-GA(U/mg prot)=[(ΔA+0.0192)÷0.0958×V1]÷(V1×Cpr)=10.438×(ΔA +0.0192)÷Cpr (2)按样本鲜重计算 单位的定义:每g组织每小时产生1mg还原糖定义为一个酶活性单位。 β-1,3-GA(U/g鲜重)=[(ΔA+0.0192)÷0.09585×V1]÷(W×V1÷V2)=10.438×(ΔA

葡聚糖凝胶 Sephadex LH20 使用说明及使用心得

葡聚糖凝胶 Sephadex LH-20 使用说明 Sephadex G型葡聚糖凝胶只适合在水中使用,Sephadex G-25羟丙化后就是Sephadex LH-20。此君既有分子筛作用,在由极性与非极性溶剂组成的溶剂中还有反相层析效果。虽然价位很高,但由性能颇佳,可再生利用,所以倍受钦睐。此外上柱样品损失很少,对处理小样品较好,这也是我们实验室常用的原因之一。 Sephadex LH-20适合用于有机溶剂分离嗜脂性分子,天然产物在有机溶剂中的纯化。可以非常经济的大规模制备各种天然产物,尤其在中药有效成分提取中作为大孔吸附树脂解析物的纯化。 结合凝胶过滤﹑分配色谱及吸附层析于一身,能分离结构相近的分子。因此使用中要考略几种色谱的作用机制。 最高载量可达250mg样品/ml凝胶﹑极少需要再生﹑使用得当,分离效果可保持不变。上样量视被分离物的结构性能的差异而定:差异大,则大;差异小,则小。凝胶过滤的上样量一般为5-7%的床体积,我们建议初次上样量控制在1-2%的床体积,视分离情况可以逐步增加;柱高的选择也与分离要求相关――难分物质要有一定柱高和流速控制;流动相可参考TLC 的条件,正确的流动相可以提高分离度并缩短分离时间。 流动相的常用溶剂为:水 甲醇 丙酮 乙酸乙酯 二氯甲烷 上述溶剂的极性依次降低,对带有极性的被分离物而言,保留值和分离度依次递增;同理选用的凝胶柱高可依次降低,流速可以增大(或上样量可以增加,树脂体积在低极性溶剂中明显收缩)。 溶剂的溶解性,极性,沸点,毒性都是要考虑到的。 二氯甲烷通常对被分离物质间的极性和碱性差异比较小时采用。甲醇通常对带环状(包括苯环)物质分离采用,葡聚糖凝胶对环状物质有强烈吸附。 LH-20同时具备亲水和亲脂双重性质,且被分离物质的极性在分离过程中起着重要作用。 使用方法:将干粉浸泡于60—70%乙醇中过夜(充分搅拌),洗去可能存在的残留物,抽干然后湿态不间隙装柱,绝对不能出现凝胶断层(否则要重新装柱),动态用一倍柱体积的60—70%乙醇淋洗,再用水洗净乙醇即根据自己选用洗脱液平衡层析柱至少两个柱体积直到基线变得平稳为

酶活力测定方法

蛋白酶活力测定: 参照中华人民共和国专业标准SB/ T10317-1999蛋白酶活力测定方法( Asha 等, 2007)。 纤维素酶DNS酶活力测定方法 DNS, 活力, 纤维素酶, 测定 1 定义" |0 `. y6 t9 b" ^ 2 x 1g固体酶粉在40℃和pH值4.2条件下,每分钟水解纤维素生成1微克葡萄糖的量为1个酶活力单位,以u/g表示。 2 原理 纤维素酶分解纤维素,产生纤维二糖、葡萄糖等还原糖,纤维二糖、葡萄糖等还原糖能将3,5二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,利用比色法测定其还原物生成量,表示酶的活力。! Y" m& p' q; I& K B& e$ T( B4 } 3.试剂和溶液 3.1 1%葡萄糖标准溶液(同β-葡聚糖酶酶活测定) 3.2 羧甲基纤维素钠(CMC)溶液 取1g羧甲基纤维素钠(粘度300~600厘泊),加入pH4.2的磷酸氢二钠-柠檬酸缓冲液(甲液414ml和乙液586ml并用pH计校正至pH为4.2)混合均匀,水浴加热至溶,冷却后用2M 盐酸或氢氧化钠调节pH到4.2,定溶至100ml,再用二层纱布过滤,此溶液在4℃冰箱贮存,有效期3天。取滤液100ml,20ml,蒸馏水40ml,混匀,贮冰箱备用。4 C) c+ }( l2 R( M( p! L 3.3 DNS 试剂(同β-葡聚糖酶酶活测定); h1 a. l3 Z3 k6 t2 | 4仪器和设备 4.1恒温水浴锅(40℃±0.2℃) 4.2分光光度计 含10mm比色皿,可在550nm处测量吸光度。$ ]1 h& A) p) K 5测定步骤 5.1 标准曲线绘制. [* |! P6 u* G& u2 ^6 J4 Q 分别吸取1%葡萄糖标准溶液0、1.0、2.0、3.0、4.0、5.0、6.0ml于50ml容量瓶中,用蒸馏水制成每ml分别含有葡萄糖0、200、400、600、800、1000、1200mg的稀标准液。各取不同浓度的稀标准液0.5ml于试管中,加入CMC溶液1.5ml、DNS试剂3.0ml,于沸水浴中沸腾7min,取出后立即加入蒸馏水10ml混匀。冷却后,用10mm比色皿,在波长550nm处用分光光度计分别测定其吸光度。以吸光度为纵坐标,相对应的葡萄糖浓度为横坐标,绘制标准曲线或计算回归方程。1 H, `% F/ `7 X/ U. W 5.2待测酶液的制备(同β-葡聚糖酶酶活测定) 1 L- {5 h8 W; q+ V4 u2 Y 5.3 比色测定 精确吸取经待测稀释酶液0.5ml,40℃预热5min,加入经40℃预热的CMC液1.5ml(每个样品同时作3支平行试管),于40℃水浴精确反应10min,立即加入DNS试剂3.0ml终止反应,以后按标准曲线制作步骤测定样品吸光度。 同时进行空白对照测定,取稀释酶液0.5ml,先加入DNS试剂3.0ml,再加入CMC液1.5ml,其余步骤同于样品测定。 6.计算0 W+ i$ S: }( _1 o7 ], R5 m( N

葡聚糖检测方法

葡聚糖检测方法(试剂盒方法翻译) 一.提供试剂 瓶1:exo-1,3-β-Glucanase (100 U/mL) plus β-Glucosidase(20 U/mL) suspension, 2.0 mL 瓶2:Amyloglucosidase (1630 U/mL) plus invertase(500 U/mL) solution in 50 % v/v glycerol, 20 mL 瓶3:GOPOD Reagent Buffer. Buffer (48 mL,pH 7.4), p-hydroxybenzoic acid and sodium azide(0.4 % w/v). 瓶4:GOPOD Reagent Enzymes. Glucose oxidaseplus peroxidase and 4-aminoantipyrine. Freeze-dried powder. 瓶5:D-Glucose standard solution (5 mL, 1.00 mg/mL) in0.2 % w/v benzoic acid 瓶6:Contr ol yeast β-glucan preparation ( 2 g, β-glucan content stated on the bottle label). 二.提供试剂的处理 1.向瓶1中加入8ml醋酸钠缓冲液,分装-20℃存放。 2.直接使用瓶2中的试剂,稳定在4°C ~ 2年或者-20°C > 4 年。 3.将瓶3的GOPOD试剂用纯化稀释水定容到1L,稳定在4°C > 2年。 4.将瓶4的GOPOD试剂用纯化稀释水定容到1L,黑暗环境存放, 稳定在4 °C 2 - 3个月,在-20°C或> 12个月。

葡聚糖凝胶层析实验报告

葡聚糖凝胶层析实验报告 一、实验目的 1、学习凝胶(Gel)层析法的基本原理; 2、掌握葡聚糖凝胶(Sephadex)柱层析的操作技术。 二、实验原理 凝胶层析又称排阻层析,凝胶过滤,渗透层析或分子筛层析等。对于某种型号的凝胶,一些大分子不能进入凝胶颗粒内部而完全被排 阻在外,只能沿着颗粒间的缝隙流出柱外(所用洗脱液的体积为外水 体积);而一些小分子不被排阻,可自由扩散,渗透进入凝胶内部的 筛孔,尔后又被流出的洗脱液带走(所用洗脱液的体积为内水体积)。分子越小,进入凝胶内部越深,所走的路程越多,故小分子最后流出 柱外,而大分子先从柱中流出。一些中等大小的分子介于大分子与小 分子之间,只能进入一部分凝胶较大的孔隙,亦即部分排阻,因此这 些分子从柱中流出的顺序也介于大、小分子之间。这样样品经过凝胶 层析后,分子便按照从大到小的顺序依次流出,达到分离的目的。 三、仪器、材料和试剂 1、仪器:内直径为1cm,外直径为 1.5cm的层析柱,恒流泵、收集器、酶标仪、试管、烧杯、移液枪。 2、材料与试剂:交联葡聚糖、双蒸水、蛋白溶液样品。 四、实验步骤 1、装柱 将交联葡聚糖溶液用玻璃棒引流导入层析柱中,要注意,不能让

柱子中有气泡,可以边装边用玻璃棒搅拌。 2、上样 装好柱后,用移液枪将柱子中上面的水吸出,再用移液枪将1ml 的蛋白溶液加入层析柱中。 3、洗脱和收集 打开恒流泵和收集器装置,待样品刚好渗入到凝胶中时,再向层析柱中加入3-4ml的蒸馏水,此时盖上层析柱的上盖,将上盖的细管插入到盛有双蒸水的烧杯中,调节恒流泵的速度和收集器时间,开始洗脱收集。 4、样品的检测 收集一段时间后,将样品取出,依次编号,依次加入200μl到酶标版上,选用一个孔加入双蒸水作为对照,用酶标仪在280nm下测检测。 五、实验结果及分析 1、实验结果: 序号 2 4 6 8 10 12 14 吸光 0.051 0.045 0.051 0.071 0.195 0.127 0.067 度A 序号16 8 吸光 0.055 0.039 0.066 0.027 0.053 0.049 0.011 度A 2、蛋白质样品洗脱曲线:

酶活测定方法

酶活测定方法 还原法 酶与底物在特定的条件下反应,酶可以促使底物释放出还原性的基团。在此反应体系中添加 化学试剂,酶促反应的产物可与该化学试剂发生反应,生成有色物质。通过在特定的波长下 比色,即可求出还原产物的含量,从而计算出酶活力的大小。 色原底物法 通过底物与特定的可溶性生色基团物质结合,合成人工底物。该底物与酶发生反应后,生色基团可被释放出来,用分光光度法即可测定颜色的深浅,在与已知标准酶所做的曲线比较后,即可求出待测酶的活力。 粘度法 该法常用于测定纤维素酶、木聚糖酶和β-葡聚糖酶的活力。木聚糖和β-葡聚糖溶液通常 情况下可形成极高的粘度,当酶作用于粘性底物时木聚糖和β-葡聚糖会被切割成较小的分子 使其粘度大为降低。基于Poiseuille定律我们知道,只要测定一定条件下溶剂和样品溶液的运动粘度,便可计算特性粘数,并以此来判断酶的活力。 高压液相色谱法 酶与其底物在特定的条件下充分反应后,在一定的色谱条件下从反应体系中提取溶液进行 色谱分析,认真记录保留时间和色谱图,测量各个样的峰高和半峰高,计算出酶促反应生成物 的含量,从而换算出酶活力的数值。 免疫学方法 常用于酶活性分析的免疫学方法包括:免疫电泳法、免疫凝胶扩散法。这两种方法都是根据酶与其抗体之间可发生特定的沉淀反应,通过待测酶和标准酶的比较,最终确定酶活力。 免疫学方法检侧度非常灵敏,可检侧出经过极度稀释后样品中的酶蛋白,但其缺点是不同厂 家生产的酶产品需要有不同特定的抗体发生反应。 琼脂凝胶扩散法 将酶作用的底物与琼脂混合熔融后,倒入培养皿中或载波片上制成琼脂平板。用打孔器在 琼脂平面上打出一个约4-5mm半径的小孔。在点加酶样并培养24h以后,用染色剂显色或用展开剂展开显出水解区,利用水解直径和酶活力关系测定酶活力。 蛋白酶活力的测定

葡聚糖凝胶G-25的使用方法

葡聚糖凝胶柱的使用方法: (1) 预处理 称取Sephadex G-25(50-100目)约5g ,加入蒸馏水100ml ,置室温下3h 进行溶胀。 (2) 装柱 凝胶层析柱的直径与柱长之比一般为1:15。柱的底部用装有细玻璃管的橡皮塞塞紧,用洗净的玻璃丝(约200目尼龙布)垫底或购买类似规格的商品柱。然后将柱垂直安装好,先加入1/3柱体积蒸馏水,接着将溶胀好的凝胶边搅匀边连续装入,使它们在柱内自然沉降。同时大开下口慢速流出蒸馏水。装柱后的凝胶必须均匀,不能有气泡或明显条纹。否则,必须到出重装,装好后,用蒸馏水平衡2-3h 即可加样品分离。 (3) 加样 加样前,首先把柱内凝胶上面多余的蒸馏水放出,直到柱内液面与凝胶表面相齐(或留一极薄液层)为止。然后,由柱的上端加水解液2ml ,注意不要让溶液把凝胶冲松浮起,加完样品后,打开下口缓慢放出液体至液面与凝胶面相齐,再用少量蒸馏水冲洗原来盛样品的容器2-3次,待全部进入层析柱后,即可进行洗脱。 (4) 洗脱与收集 洗脱时,用蒸馏水作洗脱剂,并且要连续不断地进行,使凝胶柱上端保持一定的液层,防止凝胶柱表面的液体流干。本实验洗脱液流出的速度应控制在0.8-1.0ml/min 。洗脱液的收集采用分管连续顺序收集,每管收集3ml ,共收集10管。据经验,4或5号管核苷酸浓度最大,可作为层析鉴定的样品液。但因层析柱长度的差异,管号会有变化,必要时可用紫外检测A260nm ,找出浓度最大的管号。 (5) 凝胶的再生和回收 凝胶柱使用一次后,必须反冲疏松一次,平衡后再使用。若使用数次,就需要再生处理。用0.1mol/L NaOH-0.5mol/L NaCl 溶液浸泡,然后用蒸馏水洗至中性备用。若实验完毕,将再生后的凝胶在布氏漏斗上用蒸馏水洗涤抽干,再用95%乙醇洗两次,在60℃烘箱中烘干,回收保存。

β-1,3葡聚糖酶检测试剂盒使用说明

β-1,3葡聚糖酶检测试剂盒使用说明 分光光度法货号:BC0360 规格:50管/24样 产品内容: 提取液:液体50mL×1瓶,4℃保存; 试剂一:粉剂×1瓶,4℃保存;临用前加入3mL蒸馏水,充分溶解待用;用不完的试剂4℃保存; 试剂二:液体42mL×1瓶,4℃保存; 标准品:粉剂×1支,4℃保存,含10mg无水葡萄糖(干燥失重<0.2%),临用前加入1ml蒸馏水溶解,配制成10mg/ml葡萄糖溶液备用,4℃可保存1周,或者用饱和苯甲酸溶液溶解,可保存更长时间。 标准品准备:将标准品用蒸馏水稀释至1、0.8、0.6、0.4、0.2mg/ml。 产品说明: β-1,3-GA(EC3.2.1.73)主要存在植物中,催化β-1,3-葡萄糖苷键水解。在植物染病或处于其他逆境条件下,可诱导细胞大量合成β-1,3-GA,因此β-1,3-GA活性测定广泛应用于植物病理和逆境生理研究。 β-1,3-GA水解昆布多糖,内切β-1,3-葡萄糖苷键,产生还原末端,通过测定还原糖生成速率,来计算其酶活性。 自备仪器和用品: 可见分光光度计、台式离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵、冰和蒸馏水。

操作步骤: 粗酶液提取: 按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL 提取液),进行冰浴匀浆。12000g4℃离心10min,取上清,置冰上待测。 测定步骤: 1、分光光度计预热30min以上,调节波长至540nm,蒸馏水调零。 2、样本测定(在1.5mL EP管中依次加入下列试剂): 试剂名称(μL)测定管对照管标准管(葡萄糖溶液)样本或标准液100100100蒸馏水100100 试剂一100 充分混匀,放入37℃水浴60min。 试剂二600600600 充分混匀,沸水浴5min(盖紧,防止水分散失),流水冷却,540nm处记录各管吸光值A,如果吸光值大于2,可以用蒸馏水稀释后测定(计算公式乘以相应稀释倍数),ΔA=A测定-A对照。每个测定管需设一个对照管。 β-1,3-GA活性计算: 根据标准管吸光度(x)和浓度(y,mg/ml)建立标准曲线,将ΔA带入公式中计算出样品中产生的还原糖的含量y值(mg/ml) (1)按蛋白浓度计算 单位的定义:每mg组织蛋白每小时产生1mg还原糖定义为一个酶活性单位。 β-1,3-GA(U/mg prot)=(y×V1)÷(V1×Cpr)=y÷Cpr (2)按样本鲜重计算

蛋白酶活力测定方法

酸性蛋白酶产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。工作机理 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 酸性蛋白酶(Acid protease )是指蛋白酶具有较低的最适pH,而不是指酸性基团存在于酶的活性部位,酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右。从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羟基。这一类蛋白酶中研究最彻底的是胃蛋白酶。(酸性蛋白酶537容易失活)

简介:酸性蛋白酶是由隆科特黑曲霉优良菌种经发酵精制提炼而成,它能在低PH条件下,有效水解蛋白质,广泛应用于酒精、白酒、啤酒、酿造、食品加工、饲料添加、皮革加工等行业。 1、产品规格:,规格有5万u/g~10万u/g 液体型为黑褐色液体,规格有50000u/ml~10000u/ml. 2、酶活力定义:一个酶活力单位是1g酶粉或1ml酶液在40℃,PH3.0条件下,1分钟水解酪素产生1ug酪氨酸为一个酶活力单位(u/g或u/ml) 特性1、温度范围为:最适温度范围为40℃-50℃2、PH为:最适PH范围为2.5~3.5 使用方法 1、白酒工业: 本品用以淀粉为原料的生产酒精及白酒行业,提高出酒率0.25%个酒分,提高发酵速度。 2、食品工业: 食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 3、啤酒生产: 能有效阻断双乙酰生成,缩短啤酒成熟期。 4 饲料添加剂:提高饲料利用率。 5、毛皮软化: 提高上色率,手感丰满,增加毛皮光泽。

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法)产品技术要求kehe

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法) 适用范围:用于体外定量测定人血清样本中真菌(1-3)-β-D葡聚糖的含量。1.1 规格 24人份/盒、48人份/盒 1.2 主要组成成分 校准品靶值批特异,详见靶值单 质控范围批特异,详见靶值单 2.1 外观 反应主剂为白色冻干块状物,样品处理液、溶解液和主剂复溶液为无色透明液体。 2.2 装量 处理液、溶解液和主剂复溶液装量不小于标示量。 2.3 准确度

试剂盒的回收率须在85%~115%范围内。 2.4 重复性 检测浓度为125pg/mL的溶液,重复检测10次,其变异系数(CV)值应不大于10%。 2.5 线性 2.5.1在浓度[31.25,500]pg/mL范围内,其线性相关系数的绝对值r≥0.990; 2.5.2在浓度[31.25 ,125)pg/mL范围内,其线性绝对偏差的绝对值不大于12.5 pg/mL;在浓度[125 ,500]pg/mL范围内,其线性相对偏差的绝对值不大于10%。 2.6 空白限 试剂盒的空白限不大于16 pg/mL。 2.7 溯源性 根据GB/T21415的有关规定提供校准品的来源、赋值过程及测量不确定等内容,溯源至企业工作校准品。 2.8 质控品赋值有效性 检测质控品,检测结果应在质控范围内。 2.9 批内瓶间差 同一批号的10个待检试剂盒对浓度为250pg/mL的标准溶液进行测试,重复10次,瓶间差的变异系数不得大于10%。 2.10 批间差 3个批号的试剂盒检测结果的变异系数应不大于15%。 2.11 稳定性 2.11.1 2℃~8℃保存,有效期12个月,取过有效期3个月以内的试剂盒进行测定,应符合2.3、2.3、2.5、2.6、2.7、2.8的要求; 2.11.2校准品溶解后,-20℃保存10天后进行测定,应符合2.3的要求; 2.11.3质控品溶解后,-20℃保存10天后进行测定,应符合2.8的要求; 2.11.4反应主剂溶解后,立即冻存至-20℃保存7天后进行测定,应符合2.3、2.5的要求。

β-葡聚糖酶是一类分解β-葡聚糖的酶

β-葡聚糖酶是一类分解β-葡聚糖的酶,它主要分解大麦等麦类中以β-1,3和β-1,4混合键连接的β-D-葡聚糖和细菌地衣多糖,也称地衣多糖酶。β-葡聚糖酶主要由植物和微生物产生,在动物饲粮(尤其是含有大麦的饲粮)中添加能有效地解决β-葡聚糖的抗营养作用,降低食糜粘度。 产品规格 型号酶活剂型包装规格 FE303A2000 IU/g粉状20 kg/袋或桶 FE303B4000 IU/g粉状20 kg/袋或桶 FE303C6000 IU/g粉状20 kg/袋或桶 FE303AL2000 IU/ml液体30 kg/桶或200 kg/桶FE303BL4000 IU/ml液体30 kg/桶或200 kg/桶FE303CL6000 IU/ml液体30 kg/桶或200 kg/桶 产品特点 ●采用新型国际专利菌种生产,产品性能优良,使用效果得以保证; ●先进的全自动液体深层发酵技术,领先的后处理加工工艺,保障了产品的 高纯度、高稳定性和良好的均匀度; ●采用基因工程技术改良发酵菌种,使内切酶活性大幅度提高,是普通产品 的2.5~3.5倍; ●有良好的对高温高湿的耐受能力,在饲料制粒条件下,制粒后的酶活可以 保持85%以上,保证了其在颗粒饲料中的使用效果; ●有良好的对动物胃酸、胃蛋白酶、胰蛋白酶和高浓度金属离子的耐受能力, 保证了其在动物生产中的使用效果。 产品功能 ●有效降解植物饲料中的抗营养因子——β-葡聚糖,消除其抗营养作用, 降低食糜粘度,提高饲料养分的消化率和吸收利用率; ●与纤维素酶、木聚糖酶一起作用,有效摧毁植物细胞壁结构,促进植物细 胞内其它营养物质释放,提高原料中营养物质的利用率; ●促进内源酶的分泌,提高消化道中内源酶活性,促进营养物质的消化和吸 收,提高饲料利用率;

饲料酶活性测定方法

饲用酶活性测定方法

附录A 木聚糖酶活力的测定方法 A1应用范围 本标准规定了用分光光度法测定饲料添加剂中木聚糖酶的活力。 本标准适用于饲料添加剂木聚糖酶产品,最低检出限为10.0U/g。 A2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注册日期的引用文件,其最新版本适用于本标准。A3木聚糖酶活力单位定义 在37℃,pH为5.5的条件下,每分钟从浓度为5mg/ml的木聚糖溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位U。 A4测定原理 木聚糖酶能将木聚糖降解成寡糖和单糖。具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂发生显色反应。反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中木聚糖酶的活力成正比。因此,通过分光比色测定反应液颜色的强度,可以计算反应液中木聚糖酶的活力。 A5.试剂与溶液 除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水。 A5.1乙酸溶液,c(CH3COOH)为0.1mol/L: 吸取冰乙酸0.60ml。加水溶解,定容至100ml。 A5.2乙酸钠溶液,c(CH3COONa)为0.1mol/L: 称取三水乙酸钠1.36g。加水溶解,定容至100ml。 A5.3氢氧化钠溶液,c(NaOH)为200g/L: 称取氢氧化钠20.0g。加水溶解,定容至100ml。 A5.4乙酸—乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH为5.50 称取三水乙酸钠23.14g,加入冰乙酸1.70ml。再加水溶解,定容至2000mL。测定溶液的pH。如果pH偏离5.50,再用乙酸溶液(5.1)或乙酸钠溶液(5.2)调节至5.50。 A5.5木糖储备溶液,c(C5H10O5)为10.0mg/ml: 称取无水木糖1.000g,加缓冲液(5.4)溶解,定容至100ml。 A5.6木聚糖溶液,浓度为5mg/mL 称取木聚糖(Sigma X0672)1.00g,加入氢氧化钠0.32g(或0.5mol/LNaOH溶液16mL),再加入90mL水(75mL),加热,磁力搅拌至木聚糖完全溶解。再加入冰乙酸0.5mL,再用乙酸乙酸钠缓冲溶液(5.4)定容至100mL。如果pH偏离5.50,再用乙酸溶液(5.1)或乙酸钠溶液(5.2)调节pH 至5.50,然后再用乙酸乙酸钠缓冲溶液(5.4)定容至100mL。使用前,适当摇匀。4℃避光保存,有效期为12h。 A5.7DNS试剂 称取3,5-二硝基水杨酸3.15g(化学纯),加水500mL,搅拌5s,水浴至45℃。然后逐步加入100mL 氢氧化钠溶液(5.3),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃)。再逐步加入四水酒石酸钾钠91.0g、苯酚2.50g和无水亚硫酸钠2.50g。继续45℃水浴加热,同时补加水300mL,不断搅拌,直到加入的物质完全溶解。停止加热,冷却至室温后,用水定容至1000mL。用烧结玻璃过滤器过滤。取滤液,储存在棕色瓶中,避光保存。室温下存放7

β-葡聚糖酶活性测定(精)

β-葡聚糖酶活性测定 β-葡聚糖是由葡萄糖单体通过β-1,3和β-1,4糖苷键连接而成的D型葡萄糖聚合物,它主要存在于单子叶禾本科谷实中的糊粉层和胚乳细胞壁中。β-葡聚糖酶属于水解酶类,能有效地降解β-葡聚糖分子中的β-1,3和β-1,4糖苷键,使之降解为小分子。由于在饲料中,大麦的β-葡聚糖含量较高,难以被单胃动物消化利用,而且对饲料中各种养分的消化利用具有明显的干扰和抑制作用,成为麦类饲料中的抗营养因子。在饲料中添加β-葡聚糖酶,能有效地消除β-葡聚糖的抗营养作用,促进饲料中各种养分的消化和吸收利用,增进畜禽健康。在啤酒生产中,添加β-葡聚糖酶可以加快麦汁和啤酒的过滤速度、提高麦汁得率、增加可发酵糖的含量。此外,β-葡聚糖酶在造纸工业、日化工业等其它许多方面也有着广泛的应用,对β-葡聚糖酶的研究将越来越受到人们的重视。 β-葡聚糖酶活力的测定方法主要有3种:还原糖测定法(分光光度法)、粘度测定法和底物染色法。其中还原糖测定法简便实用,比较准确,而且结果重复性好,是广泛使用的一种酶活测定方法。其原理是:β-葡聚糖酶能将β-葡聚糖降解成寡糖和单糖,其具有的还原基团在沸水浴条件下可与DNS试剂发生显色反应,显色的深浅与还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比,因此,可以利用比色测定反应液的吸光度值来计算还原糖的生成量,从而得出β-葡聚糖酶的活力。但在该测定方法的具体操作中存在一些影响酶活力测定结果的因素,本文即对还原糖法测定β-葡聚糖酶活力的几个重要影响因素进行研究,并得出最佳测定条件。 1 材料与方法 1.1 菌株与培养基 1.1.1 发酵产酶菌株 黑曲霉(Aspergillus niger)A47菌株,由本实验室保藏。 1.1.2 固态发酵培养基 麸皮70 g、米糠27 g、NH4NO3 2.95 g、微量元素液0.05 ml、蒸馏水100 ml,pH值5.0,121 ℃灭菌20 min。 微量元素液的组成为:2 mol/l HCl溶液 5 ml、FeSO4 2.5 g、MnSO4·H2O 0.98 g、ZnCl2 0.83 g、CoCl2 1.0 g、蒸馏水100 ml。

纤维素酶活力测定方法_张瑞萍

测试与标准 纤维素酶活力测定方法 张瑞萍 南通工学院(226007) 摘 要 用DN S 为显色剂,分别以滤纸和CM C 为底物,以滤纸糖酶活性(FP A )和羧甲基纤维素酶活性(CM C a se )表征纤维素酶活力。确定酶活测定用波长为530nm,参比溶液应为失活酶、底物和DN S 等共热的反应物;比较了两种底物的酶活力测定方法。结果表明,CM C a se 比FP A 高,说明酶对水溶性底物有较高的活力,也表明吸附对酶的活性部位与纤维素分子链段的结合及催化均有很大影响;对于不同牌号的纤维素酶,织物的酶减量率与CM C 酶活力关系密切。 叙 词: 测试 纤维素酶 活度中图分类号: TS197 纤维素酶是多组分复合物,各组分的底物专一性不同。纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力测定方法很多,各国的方法亦不统一。我们选择滤纸、CM C 为底物,原理系利用纤维素酶催化水解纤维素,产生纤维多糖、二糖及葡萄糖等还原糖,与显色剂反应,求出还原糖的浓度,间接求出酶的活力。由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力)和CM C ase (羧甲基纤维素酶酶活力)。本文分析确定酶活力测定的主要条件,比较两种底物的酶活力测定方法的结果,探讨纤维素酶活力与织物减量率的关系,为酶在生产中的利用提供依据。 1 实验方法 1.1 化学药品、材料 纤维素酶(工业品),DNS 试剂(自配),冰醋酸,醋酸钠,葡萄糖(均为分析纯),滤纸(定性),羧甲基纤维素酶CM C (试剂级),纯棉针织物半制品(南通针织厂)。 1.2 FPA 滤纸酶活力和CMC 酶活力的测定 取适当稀释的酶液,分别以滤纸或1%的CM C 溶液为底物,于50℃恒温水解反应1h ;然后加入显色剂DNS,沸水浴中煮沸5min;再加入蒸馏水,于530nm 测定吸光度OD 值。 酶活可定义为:每毫升酶液1min 产生1mg 葡萄糖为一个单位( )。 1.3 针织物酶减量率的测定 将酶处理前后的试样在烘箱中105℃烘至恒重。减量率= 处理前织物干重-处理后织物干重 处理前织物干重 ×100% 2 结果与讨论 2.1 显色剂的选择 选用DNS ,在碱性条件下与还原糖反应,生成有色化合物,用分光光度计比色,确定低分子糖含量。 碱性条件下DNS 与还原糖共热反应如下: O 2N OH O 2N CO OH +还原糖  H 2N OH CO OH O 2N DN S(黄色) 3-氨基-5-硝基水杨酸(棕红色) 生成的棕红色氨基化合物系比色法测定基础。2.2 最大吸收波长的确定 选取490~580nm 波长对显色液进行比色。由图1可知,不同浓度的葡萄糖溶液在490~500nm 处有最大吸收,DNS 在此波长下也有较明显的吸收。为了排除DNS 的干扰,选择在波长 530nm 处进行测定,此波长下的葡萄糖吸收虽有所降低,然而符合“吸收最大、干扰最小”的原则。 图1 D NS 与葡萄糖的吸收曲线 2.3 底物及酶本身含糖量的影响 在实验过程中发现,底物特别是滤纸,也含有一定的还原糖,在碱性的DNS 试剂中也会发色。而且,试验所用的纤维素酶是一种工业级的复合酶,品种不同,其本身含糖量也不同。为了排除这类还原糖的干扰,参比溶液取失活后的酶、底物、DNS 等共热的反应物。2.4 葡萄糖标准曲线 用不同浓度的葡萄糖溶液作为标准溶液,与DNS 共热反应显色后,测出其吸光度OD 值(见图2)。标准曲线的线性相关系数R 2为0.9991(见图2),线性相当好,可以用于酶活力的测定。 38 印 染(2002No .8) www .cdfn .com .cn

真菌βD葡聚糖检测与真菌感染诊断

真菌β-D-葡聚糖检测与真菌感染诊断 一、概述 经研究表明,(1-3)-β-D-葡聚糖是一种广泛存在于真菌细胞壁的抗原成分, 占其干燥重量的80%~90%,其它微生物、动物及人的细胞成分和细胞外液均不含有。深部真菌感染患者中血浆(1-3)-β-D-葡聚糖含量增高,两者存在相关性。? 当真菌进入人体血液或深部组织后,经吞噬细胞的吞噬、消化代谢后,(1-3)-β-D葡聚糖可从胞壁中释放出来,从而使血液或其它体液中(1-3)-β-D葡聚糖含量增高。当真菌在体内含量减少时,机体免疫可迅速对其清除。而在浅部真菌感染中,(1-3)-β-D葡聚糖未被释放出来,故其在体液中的量不增高,它在血液及无菌体液中的存在可以很大程度上视为IFI(深部真菌感染)的标志。 二、深部真菌感染的诊治 近年来,由于造血干细胞移植、实体器官移植的广泛开展、高强度免疫抑制剂和大剂量化疗药物的应用以及各种导管的体内介入、留置等,临床上侵袭性真菌感染(invasive fungal infections,IFI)的患病率明显上升。IFI也日益成为导致骨髓及器官移植受者、接受化疗的恶性血液病和恶性肿瘤患者、AIDS以及其他危重病患者的严重并发症及重要死亡原因之一。由于缺少有效的早期诊断手段,深部真菌感染病死率居高不下。对深部真菌感染治疗成败的关键在于早期诊断,及早用药治疗。 常规病原学诊断“微生物培养”可为临床提供直接的诊断依据,但其培养方法耗时长(4-7天),不适宜用作早期诊断。并且,随着光谱抗生素、抗菌药物的大量应用,使得培养的阳性率极低。常用的免疫学方法,也由于抗原抗体反应的特异性差,往往对某一疑似真菌感染患者要作多种真菌抗原或抗体检测,既费时又不经济,而且当所用药盒的抗原谱或抗体谱不全时也极易造成漏诊。对一些以往接触过相应真菌抗原的个体,作抗体检测时还会出现阳性反应,因而对抗体的检测往往要求作动态观察才能作出诊断,期末属性较差。 有研究报道血清葡聚糖在念珠菌血症时明显升高,将其用于念珠菌血症的早期诊断明显优于传统的培养法和血清学诊断试验。虽然检测(1-3)-β-D葡聚糖只能提示有无真菌侵袭性感染,不能确定为何种真菌,但也可能转化为一种优势。因近年来,一些罕见的条件致病真菌也可引起深部感染,这就要求一种能迅速确定有无深部真菌感染的方法。因系统抗真菌药物种类较少,抗菌谱较广,且不因真菌种类而异,当检测到标本中的(1-3)-β-D葡聚糖含量较高时,可给予以系统治疗,不必耗时等待鉴定出种属,否则会贻误最佳治疗时机。 因此,血清(1-3)-β-D葡聚糖含量检测不失为一种实用的真菌感染早期诊断方法。并且,相关研究表明,(1-3)-β-D葡聚糖水平在确诊IFI患者的血清中出现持续升高,而随着药物的使用,对药物敏感者可很快出现(1-3)-β-D葡聚糖水平下降及转阴,而药物治疗无效人群(1-3)-β-D葡聚糖值无明显改变。因此,(1-3)-β-D葡聚糖可以用来判断药物的疗效,以协助临床医师及时进行药物种类及剂量的调整。 通过对人体体液进行(1-3)-β-D葡聚糖含量检测,可帮助判断人体是否已被真菌感染。对高危患者的样本进行连续分析,可为临床检测提供入侵真菌的量值或阴性预示值,为临床诊断和

β-葡聚糖测定方法

β-葡聚糖酶活力测定方法(NY/T911-2004) ? 1.原理 β-葡聚糖酶能将木聚糖降解成还原性糖。还原性糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂反应显色反应。反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比。因此,通过分光比色测定反应液颜色的强度,可以计算反应液中β-葡聚糖酶的活力。 ? 2. 操作 ? 2.1.标准葡萄糖曲线的制作 2.1.1 吸取PH5.5的0.1M乙酸-乙酸钠+缓冲溶液4.0mL,加入DNS试剂5.0mL, 沸水浴加热5min。用自来水冷却至室温,用水定容至25.0mL,制成标准空白样。 2.1.2 分别吸取葡萄糖溶液1.00mL、2.00mL、 3.00mL、 4.00mL、 5.00mL、 6.00mL 和7.00mL,分别用PH5.5的0.1M醋酸缓冲溶液定容至100mL,配制成浓度为 0.10mg/mL、0.20mg/mL、0.30mg/mL、0.40mg/mL、0.50mg、0.60mg/mL和0.70mg/mL 葡萄糖标准溶液。 2.1.3 分别取上述浓度系列的葡萄糖标准溶液各2.00mL(做两个平行),分别 加入到刻度试管中,再分别加入2.0mL缓冲液94.4)和5.0mLDNS试剂。电磁振荡3s-5s,沸水浴加热5min。然后用自来水冷却到室温,在用水定溶液至25mL。 以标准空白为对照调零,在540min处测定吸光度A值。 以葡萄糖糖浓度为Y轴、吸光度A值为X轴,绘制标准曲线。每次新配制DNS试剂均需要重新绘制标准曲线 ? 3. 酶样测定 吸取10.0mLβ-葡聚糖溶液,37℃平衡20min。 吸取10.0经过适当稀释的酶液,37℃平衡10min。 ?吸取2.00mL经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mLDNS试剂,电磁振荡3s-5s。然后加入8.0g/lβ-葡聚糖溶液2.0ml,37℃保温30min,沸水浴加热5min。用自来水冷却至室温,加水定容至25mL,电磁振荡3s-5s。以标准空白样(2.1.1)为空白对照,在540min处测定吸光度A 。 B

β-葡聚糖酶

植物β-1,3-葡聚糖酶的研究进展 β-1,3-葡聚糖酶参与了植物的多种生长发育过程,包括细胞分裂、小孢子发生、花粉萌发、育性、韧皮部胼胝质去除、受精、种子萌芽及植物生长调控等过程。20世纪70年代以前,对β-1,3-葡聚糖酶的研究主要集中于它对植物本身不同发育阶段的作用,随着分子生物学技术在植物抗病基因工程中的逐步应用,β-1,3-葡聚糖酶基因的抗病研究取得了快速发展。目前,β-1,3-葡聚糖酶基因在植物抗病基因工程研究中已被认为是最具吸引力的基因之一。 1 β-1,3-葡聚糖酶基本生物学特性和分类 已知的β-1,3-葡聚糖酶均属于糖基水解酶第十七家族,其成员具有共同的氨基酸序列结构:(LIVM)一x一(LIVM-FVW)3一(STAG)-E-(ST)-G- W-P-(Srr)-X-G.(Lan等,1998),β-1,3-葡聚糖酶分为外切酶和内切酶,目前主要研究的是内切酶。它的分子量为32-37kD,等电点从酸性到碱性。它的作用底物为以β-1,3-苷键连接起来的多聚糖,以随机作用方式将多聚糖分解成为糊精或寡聚糖。各种类型的β -1,3-葡聚糖酶已从多种植物中分离出来。根据其等电点、定位、mRNA表达模式及序列的同源性等特点可将其分为四种不同类型。I类葡聚糖酶为碱性,主要存在于液泡中,体外具较强抑菌活性。碱性β-1,3-葡聚糖酶通常具有1个液泡定位的羧基末端多肽(carboxyl terminal polypetide,CTPP)结构,CTPP中往往含有糖基化位点即CTPP切除信号氨基酸结构, CTPP的缺乏使得β-l,3-葡聚糖酶分泌到胞外,因此,CTPP存在与否成为β-1,3-葡聚糖酶分类的重要依据。现已分离出三种编码I类葡聚糖酶的cDNA,它的前体蛋白含有N一端信号肽及C一端液泡导向肽序列。在根及老叶中组成型表达.占可溶性蛋白的5%-10%,且主要分布在叶的表皮细胞层中。受病源菌、乙烯、水杨酸、伤口、UV等因素诱导,但被auxin /cytokine所抑制,并受发育的调节。Ⅱ类葡聚糖酶具有较低等电点,被称为酸性葡聚糖酶。主要分布在细胞间隙,在体外无抑菌活性,它的氨基酸序列中不具有C一端延伸序列。与I类酶有55%同源性,但Ⅱ类酶与I类酶在血清学上具有相似性。它主要包括PR2(又称PR-36)。PR-N,PR-O(又称PR-37),能被病原菌诱导,I类葡聚糖酶与Ⅱ类葡聚糖酶相比.只有54%~59%的同源性。Ⅲ类酶属于分布在胞外的诱导物释放型β-1,3-葡聚糖酶(PR-Q’),分子量为35KD(又称PR-35)。PR-Q’由烟草花叶病毒(TMV)诱导表达,其诱导速度慢于或相同于Ⅱ类葡聚糖酶,持续时间也较短嘲。Ⅳ类葡聚糖酶为酸性胞外非诱导型β-1,3-葡聚糖酶(PR-O’),分子量为25KD,是一种二聚体,不能被病原物诱导㈣。与Ⅱ类、Ⅲ类酶相似性较小,且与前三种酶均不能发生抗血清交叉反应。 2 β-1,3-葡聚糖酶抗病机制研究 植物受病原物侵染时常产生一些PR蛋白进行抵御,β-1,3-葡聚糖酶即是其中之一。PR类蛋白是由植物寄主基因编码的、在病理或相关条件下诱导产生的蛋白质,PR类蛋白与植物系统获得性抗性fSystemic acquired resistence,SARl和系统诱导性抗性fInduced Systemic Resistance ISRl的建立密切相关。根据蛋白质之间氨基酸序列的相似程度,目前已经发现的PR蛋白可分为十一类,β-1,3-葡聚糖酶属于PR2类,在植物的抗病过程中扮演着重要角色。β-1,3-葡聚糖是真菌细胞壁的重要结构成分。许多真菌的菌丝尖端β-1,3-葡聚糖暴露在表面,能够直接受到β-1,3-葡聚糖酶的攻击。体外抑菌实验表明,β-1,3-葡聚糖酶对菌丝生长具有抑制作用。不过,只有液泡定位的碱性葡聚糖酶能够降解菌丝壁,从而抑制生长,而胞间定位的类型则没有抑菌活性。当然,真菌也合成一些葡聚糖酶抑制蛋白fGlucanase Inhibitor Protein RIPl,RIP特异性地抑制寄主内源葡聚糖酶的活性旧,这反映了植物与微生物共进

相关文档
最新文档